初一数学代数式的值练习题精选复习过程
初一数学代数式求值

初一数学代数式求值题的详细解析:1. 题目:已知x = 1 ,求2x + 3 的值。
解析:把x = 1 代入式子,得到2×1 + 3 = 5 。
2. 题目:若y = -2 ,求3y²- 4 的值。
解析:将y = -2 代入,3×(-2)²- 4 = 8 。
3. 题目:当a = 5 时,求6a - 1 的值。
解析:把a = 5 代入,6×5 - 1 = 29 。
4. 题目:已知b = 4 ,求7b + 2 的值。
解析:因为b = 4 ,所以7×4 + 2 = 30 。
5. 题目:若c = 0 ,求8c - 5 的值。
解析:由于c = 0 ,所以8×0 - 5 = -5 。
6. 题目:当d = -3 时,求5d + 7 的值。
解析:把d = -3 代入,5×(-3) + 7 = -8 。
7. 题目:已知e = 2 ,求9e - 6 的值。
解析:将e = 2 代入,9×2 - 6 = 12 。
8. 题目:若f = -1 ,求10f + 8 的值。
解析:把f = -1 代入,10×(-1) + 8 = -2 。
9. 题目:当g = 3 时,求4g - 9 的值。
解析:把g = 3 代入,4×3 - 9 = 3 。
10. 题目:已知h = 5 ,求6h - 10 的值。
解析:因为h = 5 ,所以6×5 - 10 = 20 。
11. 题目:若i = 0 ,求7i - 3 的值。
解析:由于i = 0 ,所以7×0 - 3 = -3 。
12. 题目:当j = -2 时,求8j + 5 的值。
解析:把j = -2 代入,8×(-2) + 5 = -11 。
13. 题目:已知k = 1 ,求5k - 7 的值。
解析:将k = 1 代入,5×1 - 7 = -2 。
14. 题目:若l = -3 ,求6l + 4 的值。
初一数学代数式的值练习题精选

初一数学代数式的值练习题精选1.化简代数式322(2x-1+x)-x-1,可以先将括号内的项合并得到322(3x-1)-x-1,再将常数项合并得到966x-325.2.代数式(a+b)2-(a-b)2可以展开得到4ab,代入a=-2、b=-3得到结果12.3.将2(x-y)2+3x-3y+1展开得到2x2-7xy+6y2+3x+1,代入x-y=3得到2y2+15.4.将x(2x-y+3z)展开得到2x3-xy+3xz的值,代入x=7、y=4、z=0得到126.5.将3a-a-a+1化简得到-a-1,代入a=-3得到结果2.6.将b-4ac代入a=2、b=-3、c=4得到-59.7.代数式(1/2-x-y)+5ab可以化简得到(5/2)-x-y+5ab,但没有给出具体的求值。
8.将3x-1+2y+3化简得到3x+2y+2,代入3x-2y得到-x+2.9.将2a+3a+1=6代入得到a=1,代入6a+9a+5得到35.10.将x=-2、y=-5代入得到-9/8,将x=2、y=5代入得到23/8.11.将x=2代入4x2-2xy+2y2得到20-4y+2y2,y的绝对值最小为0,代入得到20.12.将x+3=5-y化简得到y=2-x,代入a/b=b/a得到a=-1,b=-1,代入得到-5/2.13.将2x2+3x+5=6代入得到x=-1或x=5/2,代入6x2+9x-3得到33/2或-3/2.14.将2x-y=5化简得到y=2x-5,代入2y-4x+5得到-3x+5,没有给出具体的求值。
15.将x=11/2代入得到121/4.16.将a=4、b=12代入得到44.17.将x=1、y=-6代入得到(1)37,(2)49,(3)49.18.用代数式10a+(a+5)表示这个两位数,当a=3时得到35.19.用代数式100a+b表示这个四位数,没有给出具体的求值。
20.将x=1、y=-1代入得到-1/2.。
初一数学第三章《代数式》知识点及测试题

代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。
①单项式:由或的相乘组成的代数式称为单项式。
单独一个数或一个字母也是单项式,如,5 a。
·单项式的系数:单式项中的叫做单项式的系数。
·单项式的次数:单项式中叫做单项式的次数。
·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。
例:232a b-的系数是________,次数是_______。
②多项式:几个的和叫做多项式。
其中,每个单项式叫做多项式的,不含字母的项叫做。
·多项式的次数:多项式里的次数,叫做多项式的次数。
·多项式的幂:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:42321n n-+是一个四次三项式。
·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a-++是_______次________项式。
3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即xbabxax)(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。
判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。
在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
初一数学代数式练习题

初一数学代数式练习题一、选择题(每题3分,共30分)1. 若a+b=5,则2a+2b的值为()A. 5B. 10C. 15D. 202. 计算下列代数式的值:3x-2y,当x=2,y=3时,结果为()A. -1B. 1C. 3D. 53. 已知x=2,求代数式4x^2-3x+1的值()A. 1B. 3C. 5D. 74. 代数式2x+3y=9中,当x=3时,y的值为()A. 1B. 2C. 3D. 45. 计算代数式(2x-3)(3x+4)的结果为()A. 6x^2-5x+12B. 6x^2+5x-12C. 6x^2+5x+12D. 6x^2-5x-126. 代数式\(\frac{1}{2}x+\frac{1}{3}y\)的值是()A. \(\frac{5}{6}xy\)B. \(\frac{3}{2}xy\)C. \(\frac{5}{3}xy\)D. \(\frac{3}{5}xy\)7. 已知a=3,b=4,代数式ab-a+b的值为()A. 10B. 11C. 12D. 138. 代数式\(\frac{2}{3}x-\frac{1}{2}y\)与\(\frac{1}{3}x+\frac{1}{4}y\)的和为()A. \(\frac{7}{12}x-\frac{3}{4}y\)B. \(\frac{5}{12}x-\frac{1}{4}y\)C. \(\frac{5}{12}x+\frac{3}{4}y\)D.\(\frac{7}{12}x+\frac{1}{4}y\)9. 代数式\(\frac{3x}{2}+\frac{2y}{3}\)的值是()A. \(\frac{9}{4}xy\)B. \(\frac{6}{5}xy\)C. \(\frac{5}{6}xy\)D. \(\frac{4}{9}xy\)10. 计算代数式\((x-2)(x+3)\)的结果为()A. \(x^2+x-6\)B. \(x^2-x-6\)C. \(x^2+x+6\)D. \(x^2-x+6\)二、填空题(每题4分,共20分)1. 若\(2x-3y=1\),\(3x+2y=2\),求\(x+y\)的值。
人教版七年级上册数学 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
初中数学代数式化简求值练习题(含答案)

初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。
2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。
3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。
4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。
5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。
7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。
8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。
9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。
10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。
11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。
12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。
13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。
初一下册代数式练习题及答案

初一下册代数式练习题及答案一.选择题1.下列各式子中,符合代数式书写要求的是12ab22x?3千米ab?31ab ?2.下列各式不是同类项的是ab 与3ab x与2x22121ab与?3ab ab与4ba63.下列各式正确的是3a?b?3ab 3x?4?27x?2??2x?2?3x??.单项式?2ab的次数是1 - 5.一个两三位数,a表示百位数,b表示十位数,c表示个位数,那么这个两位数可表示为 a?b?c abc10abc100a?10b?c6.在排成每行七天的日历表中取下一个3?3方块。
若所有日期数之和为189,则n的值为:21 11 1.若k为自然数,22k?pp1xy与?xk?3y3是同类项,则满足条件的k值有21个2个 3个无数个8.长方形的一边长等于3a?2b,另一边比它小a?b,那么这个长方形的周长是10a?6b 7a+3b 10a+10b 12a+8b.代数式a?3a?7a?7与3?2a?3a?a的和是奇数偶数 5的倍数无法确定 10.如果A是三次多项式,B是三次多项式,那么A+B一定是六次多项式次数不高于3的整式三次多项式次数不低于3的整式二.填空题。
11.实数a?a?0?的相反数的倒数是 12.a,b两个数在数轴上表示如右图,则表示这两个数的两点之间的距离是。
13.单项式??r的系数是。
2322314.多项式a?21a?1的最高次项是15.一年期的存款的年利率为p%,利息个人所得税的税率为20%。
某人存入的本金为a元,则到期支出时实得本利和为元。
16.2a?4b?3与a?b的2倍是17.已知多项式ax?bx?cx?9,当x??1时,多项式的值为17。
则该多项式当x?1时的值是。
18.已知甲、乙两种糖果的单价分别是x元/千克和12元/千克。
为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是元/千克。
初一上册数学代数式求值试题

初一上册数学代数式求值试题及答案一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为( )A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为( )A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为( )A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是( )A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为( )A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x ﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为( )A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是( )A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是( )A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为( )A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式 ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是( )A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4= a﹣3b+4=7,解得 a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为( )A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学代数式的值练习题精选
精品文档
收集于网络,如有侵权请联系管理员删除 1. 化简
1)12(223--+-x x x 的结果是 . 2. 若a= -2、b= -3,则代数式(a+b)2—(a —b)2=___________.
3. 当x-y=3时,代数式2(x-y)2+3x-3y+1=___________.
4. 当x= 7,y= 4,z= 0时,代数式x(2x -y+3z)的值为__________.
5. 当3-=a 时, 求13
1323+--a a a 的值 6. 当4,3,2=-==c b a 时,计算代数式ac b 42-的值
7. 求代数式y
x y x 32+-的值,其中(1) 5,2-=-=y x ; (2) 5,2==y x .
8. 已知03213=++-y x ,那么代数式y x 23-的值是________.
9. 若代数式1322++a a 的值为6,则代数式5962++a a 的值为 .
10. 当a =0.25,b =0.5时,代数式a
1-b 2的值是 11. 已知x =2,y 是绝对值最小的有理数,则代数式4x 2-2xy +2y 2= . 12. 若x+3=5-y,a,b 互为倒数,则代数式
21(x +y )+5 ab = . 13. 如果代数式2x 2+3x +5的值为6,那么代数式6x 2+9x -3的值为 .
14. 若代数式2x -y=5,则代数式2y -4x+5的值为
15. 当12x =时,代数式21(1)5
x +的值为 16. 当a =4,b =12时,代数式a 2-b a 的值是___________ 17. 当x =1,y =-6时,求下列代数式的值。
(1)x 2+y 2 (2)(x +y )2 (3)x 2-2xy +y 2
18. 有一个两位数,十位上的数字为a ,个位上的数字比十位上的数字大5,用代数式表示
这个两位数,并求当a =3时,这个两位数是多少?
19. a 是三位数,b 是一位数,如果把b 放在a 的左边,那么所成的四位数应表示为
20. 1=x ,2
1=y ,那么y x y x 432--=。