平方根和立方根专题.docx

合集下载

(完整版)平方根与立方根及实数知识点总结

(完整版)平方根与立方根及实数知识点总结

(完整版)平方根与立方根及实数知识点总结“平方根”与“立方根”知识点小结一、知识要点 1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a 的算术平。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a 的立方根,记作(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3有意义的条件是a ≥0。

4、公式:⑴)2=a (a ≥0)=(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-;(3)49151;⑷ 21(3)- 例2 求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343;⑵ 10227-;⑶ 0.729二、巧用被开方数的非负性求值. 大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a的非算术平方根.练习①已知233(2)0x y z -+-++=,求xyz 的值。

平方根和立方根

平方根和立方根
2
即 0.0004 0.02 ;
解: ( 25) 25 , 25 的平方根为
2 2
(25) 2 (4)
2
25 ,

25
2
25 ;
(5) 11
解:11的平方根是 11 .

总结:运用平方运算求一个非负数的平 方根是常 用的方法,如果被开方数是小数, 要注意小数点的位置,也可先将小数化为分 数, 再求它的平方根,如果被开方数是带分 数,先要把它化为假分数.
(1)64
解:
49 121
(8) 64 , 64的平方根为 8 ,
2
即 64 8 ;
(2)
解:
7 2 49 7 49 ( ) , 的平方根 , 11 121 121 11
49 7 即 121 11 ;

巩固新知
(3) 0.0004
解: (0.02) 0.0004 , 0.0004的平方根为0.02 ,
注意要弄清 a , a , a 的意义,不能用 a 来表 示a的平方根,如:64的平方根不要写成 64 8 .
议一议 一个正数有几个平方根?它 们是什么关系? 一个正数有两个平方根,它们是互 为相反数.
0的平方根有几个?
一个,0的平方根是0.
负数有平方根吗? 负数没有平方根.
想一想
3的平方等于9,那么9的算术平方根就是
2 5
3
2 5
的平方等于
4 25
4 ,那么 25 的算术平方根就是
展厅的地面为正方形,其面积49平方米,则边长 7 米
4 问题:平方等于9, 25
,49的数还有吗?
3

平方根,立方根运算专攻

平方根,立方根运算专攻

数学习题册运算能力 专项提升训练(七年级上册——八年级上册)目录:1、平方根、立方根2、二元一次方程3、不等式4、整式的加减乘除5、乘法公式6、因式分解注:请认真完成每道习题,若碰到不会做的题请在题目旁边注明不 会的原因, 课堂未讲完的习题作为课后作业, 试题讲解完后请认真总 结好该知识点。

掌握情况:) ) ) ) ) )、平方根、立方根课堂习题1.9 的算术平方根是( ) A .-3 B .3 C .±3 D .81A . 4=±2B . ( 9)281=9C .30.064 =0.4 D. 16 的平方根是±2- 1的平方的立方根是(81A .4B . 1C8A . 9 的算术平方根是2. 列计算不正确的是(3. 列说法中不正确的是( 4. C . 27 的立方根是± .立方根等于 -1 的实数是 -1 3 64 的平方根是( )A .± 8B .±4 ±2 .± 2 5. 6. 1861的平方根是;9 的立方根是7.用计算器计算:41 ≈___ .32006 ≈ __ (保留 4个有效数字)8.求下列各数的平方根.9 15(1)100;(2)0;(3)9;(4)1;(5)115;(6)0.09.25 499.计算:(1)- 9;(2)38;(3)1;(4)± 0.25.10.一个自然数的算术平方根是 x,则它后面一个数的算术平方根是()A .x+1B .x2+1C .x+1D .x2 111.若 2m-4与 3m-1是同一个数的平方根,则 m的值是()A .-3B .1C .-3 或 1D .-112.已知 x,y 是实数,且3x 4 +( y-3 )2=0,则 xy 的值是()99A .4B .-4C .9D .- 94413.若一个偶数的立方根比 2 大,算术平方根比 4小,则这个数是 14.将半径为 12cm的铁球熔化,重新铸造出 8 个半径相同的小铁球,不计损耗, ?小铁球的半径是多少厘米?(球的体积公式为 V=34 R3)15.利用平方根、立方根来解下列方程.4)1 (x+3)3 4 5 6 7=4.2B . x 是实数,且 x 2a ,则 a 0D .0.1 的平方根是 0.014.若一个数的平方根是 8,则这个数的立方根是( ). A . 2 B . 2 C .4 D . 45.若 a 2 ( 5)2,b 3 ( 5)3,则 a b 的所有可能值为( ).1)(2x-1 )* 2-169=0;2)4(3x+1)2-1=0;3) 27 x 3-2=0;3.下列说法中正确的是(A .若a 0,则 a 2C . 有意义时, x 0A .06.若 1 m 0,且 n m,则 m、 n的大小关系是( ). A . mn B . m n C . m n D .不能确定 7. 设 a 76,则下列关于 a 的取值范围正确的是( ). A . 8.0 a 8.2B .8.2 a 8.5 C . 8.5 a 8.8 D .8.8 a 9.1 8. 27 的立方根与 81的平方根之和是( ). A . B .6 C .-12或6D .0 或-6 9. 若a , b 满足| 3 a 1| (b 2)2 0,则ab 等于(). A .1B .2C . 210.若一个数的一个平方根是 8,则这个数的立方根是( ). A . C .2 D .11. 列各式中无论 x为任何数都没有意义的是( ). A . 7x B .1999x 3 C .0.1x 21 D . 3 6x2 5 12. 列结论中,正确的是(). A .0.0027 的立方根是0.03 B . 0.009 的平方根是 0.3C .0.09的平方根是0.3 D . 一个数的立方根等于这个数的立方,那么这个数为1、0、 1 13. ( 4)2的平方根是 的平方根. 25 ( 1)32( )2 214.在下列各数中 0, 4 ,a 2 1, 3 , ( 5)2 ,x 2 2x 2,|a1| ,|a| 1, 16有平方根的个数是 个.S 1gt2215.自由落体公式:2 ( g是重力加速度,它的值约为9.8m/ s2),若物体降落的高度S 300m,用计算器算出降落的时间Ts(精确到0.1s ).16.代数式 3 a b的最大值为,这是a,b的关系是.3x317.若x 5 ,则x ,若3|x| 6,则x18.若3 (4 k) k 4,则k的值为.19.若n 10 n 1,m 8 m 1,其中m、n为整数,则m n .20.若m的平方根是5a 1和a 19,则m= 21.求下列各数的平方根31⑴( 3) 1 ⑵316⑶022.求下列各数的立方根:210 271⑵64⑶0 ⑷8错题总结:讲解后是否理解:23.解下列方程:2⑵(4x 1)22251 ⑶2(x 1)3 80⑷125(x 2)334324.计算:25272⑶3( 1)2 38 |1 3|371 2 1.75⑸8、二元一次方程组要点:消元法,加减法。

七年级数学平方根立方根试题

七年级数学平方根立方根试题

七年级数学平方根立方根试题一、平方根相关试题。

1. 求16的平方根。

- 解析:- 一个正数有两个平方根,它们互为相反数。

- 因为(±4)^2 = 16,所以16的平方根是±4。

2. 若x^2 = 25,求x的值。

- 解析:- 因为x^2 = 25,根据平方根的定义,x是25的平方根。

- 又因为(±5)^2 = 25,所以x = ±5。

3. √(49)的值是多少?- 解析:- √(49)表示49的算术平方根。

- 因为7^2 = 49,所以√(49)=7。

4. 计算√(0.09)。

- 解析:- 因为0.3^2 = 0.09,所以√(0.09)=0.3。

5. 若√(a)=3,求a的值。

- 解析:- 因为√(a)=3,根据算术平方根的定义,a = 3^2 = 9。

6. 求√(frac{1){16}}的值。

- 解析:- 因为((1)/(4))^2=(1)/(16),所以√(frac{1){16}}=(1)/(4)。

7. 一个正数的平方根是2a - 1和- a+2,求这个正数。

- 解析:- 一个正数的两个平方根互为相反数。

- 所以2a - 1+( - a + 2)=0。

- 化简得2a - 1 - a+2 = 0,即a+1 = 0,解得a=-1。

- 则其中一个平方根为2a - 1 = 2×(-1)-1=-3。

- 所以这个正数为( - 3)^2 = 9。

8. 已知√(x - 1)+√(1 - x)=y + 4,求x,y的值。

- 解析:- 要使√(x - 1)和√(1 - x)有意义,则x - 1≥slant0且1 - x≥slant0。

- 所以x - 1 = 0,即x = 1。

- 当x = 1时,√(x - 1)+√(1 - x)=0,则y+4 = 0,解得y=-4。

9. 比较√(3)与1.7的大小。

- 解析:- 因为(√(3))^2 = 3,1.7^2 = 2.89。

(完整word版)平方根与立方根典型题大全,推荐文档

(完整word版)平方根与立方根典型题大全,推荐文档

平方根与立方根典型题大全一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.若一个实数的算术平方根等于它的立方根,则这个数是_________;3.算术平方根等于它本身的数有________,立方根等于本身的数有________.4.x ==则 ,若,x x =-=则 。

4.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;5.当______m 时,m -3有意义;当______m 时,33-m 有意义;6.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 7.21++a 的最小值是________,此时a 的取值是________.二、选择题8.若2x a =,则( )A.0x >B. 0x ≥C. 0a >D. 0a ≥8.2)3(-的值是( ).A .3-B .3C .9-D .99.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、510.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .311.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( ) A 、32210+ B 、3425+ C 、32210+或3425+ D 、无法确定 12.若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤13.若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +14.若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >三、解方程12. 8)12(3-=-x 13.4(x+1)2=8 14. 2(23)2512x x -=-四、解答题15.已知:实数a 、b 满足条件0)2(12=-+-ab a 试求)2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab ΛΛ的值。

平方根和立方根专题(比较难)

平方根和立方根专题(比较难)

平方根和立方根专题(比较难) 平方根和立方根知识归纳】1.平方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术平方根,记为$\sqrt{x}$。

规定,$\sqrt{1}=1$。

2)一个正数的平方根有2个,它们互为相反数;只有1个平方根,它是本身;负数没有实数平方根。

3)两个公式:a)$(a+b)^2=a^2+2ab+b^2$;b)$(a-b)^2=a^2-2ab+b^2$。

2.立方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术立方根,记为$\sqrt[3]{x}$。

2)一个正数的立方根有1个,负数有1个立方根。

3)立方根的性质:a)$\sqrt[3]{a^2}=a^{\frac{2}{3}}$;b)$a^3=(\sqrt[3]{a})^3$。

4.已知某数有两个平方根分别是$a+3$与$2a-15$,求这个数。

设这个数为$x$,则有$(a+3)^2=x$,$2a-15$也是$x$的平方根,因此$(2a-15)^2=x$。

解得$a=7$,$x=64$。

5.已知:$2m+2$的平方根是$\pm4$,$3m+n+1$的平方根是$\pm5$,求$m+2n$的值。

由题意可列出方程组:begin{cases}sqrt{2m+2}=4\\sqrt{3m+n+1}=5end{cases}$解得$m=6$,$n=13$,因此$m+2n=32$。

6.已知$a<0$,$b<0$,求$4a^2+12ab+9b^2$的算术平方根。

4a^2+12ab+9b^2=(2a+3b)^2$,因此算术平方根为$|2a+3b|$。

7.甲乙二人计算$a+1-2a+a^2$的值,当$a=3$的时候,得到下面不同的答案:甲的解答:$a+1-2a+a^2=a+(1-a)^2=a+1-a=1$。

乙的解答:$a+1-2a+a^2=a+(a-1)^2=a+a-1=2a-1=5$。

哪一个解答是正确的?错误的解答错在哪里?为什么?乙的解答是正确的。

专题03 平方根与立方根章节6种题型梳理

专题03 平方根与立方根章节6种题型梳理

专题03 平方根与立方根6种题型梳理基础知识点知识点1-1 算术平方根的概念1)算术平方根概念:一个正数的平方等于a ,即x 2=a ,那么这个正数x 叫作a 的算术平方根。

其中,a 叫作被开方数,规定0的算术平方根为0。

记作√a =x 。

注:①“”表示的是算术平方根(与后面的平方根注意区分)②a ≥0,x ≥0。

负数没有算术平方根(因为x 2≥0) 2)常见算术平方根表:知识点1-2 平方根1)平方根的概念:如果一个数的平方等于a ,那么这个数叫作a 的平方根或者二次方根。

求一个数a 的平方根的运算,叫作开平方。

注:①“”表示算数平方根的意思,平方根表示为“±”②正数的平方根有两个,它们互为相反数。

且正数根即为算术平方根; ③0的平方根和算术平方根都为0;④负数没有平方根和算术平方根。

重难点题型题型1 运用平方根和算术平方根的概念解题 解题技巧:平方根与算术平方根的区别于联系:A3 B .12-是14的平方根 C .带根号的数不一定是无理数 D .a 2的算术平方根是a 【答案】D【解析】±3,故A 正确;211()24-=,则12-是14的平方根,故B 正确;2=是有理数,则带根号的数不一定是无理数,故C 正确;∵a 2的算术平方根是|a|,∴当a≥0,算术平方根为a ,当a <0时,算术平方是﹣a , 故a 2的算术平方根是a 不正确.故D 不一定正确;故选:D .2.(2019·河南洛宁初二期中)算术平方根和立方根都等于本身的数有_________.【解析】1的算术平方根是1,立方根是1,0的算术平方根和立方根都是0,所以算术平方根和立方根都等于本身的数有0和1.3.(2019·全国初二课时练习)填空:(1)1的平方根为____,立方根为_____,算术平方根为_____;(2) 27的立方根是____;(3)___;(4)____.【解析】解:(1)1的平方根为1=±1=,算术平方根为1=,故答案为:±1,1,1;(2)273=,故答案为:3;(3)8=-2=-,故答案为:2-;(44==的平方根为2=±,故答案为:±2. 4.(2019·全国初二课时练习)下列说法中,正确的个数是( )①512的立方根是8,记做8=;②49的平方根是-7;③8是16的算术平方根;④ ±2;⑤如果一个数有立方根,那么它一定有平方根. A .1B .2C .3D .4【解析】解:①512的立方根是8,记做35128=,正确;②不正确,49的平方根是±7;③不正确,16的算术平方根是4±2,正确;⑤不正确,如-8的立方根,是-2,但-8没有平方根.综上所述,正确的有①④.故选:B .A ±6B ±2C .|﹣8|的立方根是﹣2D 4【解析】解:A 6=,6的平方根是,故该选项错误;B 4=,4的平方根是±2,故该选项正确;C 、|−8|=8,8的立方根2,故该选项错误;D 4=,4的算术平方根是2,故该选项错误,故选:B .6.(2020·河南省初二期中)按如图所示的程序计算:若开始输入的值为64,输出的值是_______.【解析】82,2.题型2利用平方根和立方根解方程解题技巧:(1)先将方程化简为(x +a )2=ℎ的形式,移项将系数化为1;然后直接开方即可。

平方根立方根专题训练

平方根立方根专题训练

平方根立方根专题训练平方根和立方根是数学中常见的概念,它们在数学运算和实际问题中都有重要的应用。

首先,我们来看一下平方根和立方根的定义和性质。

平方根是一个数的平方的逆运算。

如果一个数的平方等于另一个数,那么这个数就是这个另一个数的平方根。

例如,数a的平方根记作√a,满足(√a)²=a。

立方根类似地是一个数的立方的逆运算。

如果一个数的立方等于另一个数,那么这个数就是这个另一个数的立方根。

数a的立方根记作³√a,满足(³√a)³=a。

在实际运用中,平方根和立方根经常用于解决各种问题。

比如在几何学中,计算三角形的斜边长度或者正方体的体积时,就需要用到平方根和立方根。

在物理学中,速度、加速度等概念的计算中也会用到平方根和立方根。

在工程学和经济学中,对数据进行分析和预测时也会用到这两个运算。

为了熟练掌握平方根和立方根的计算,可以进行一些专题训练。

这些训练可以包括计算给定数的平方根和立方根、解决实际问题中涉及平方根和立方根的计算、以及进行一些综合性的练习和应用题。

通过大量的练习,可以加深对平方根和立方根的理解,提高计算的准确性和速度。

此外,还可以利用一些数学软件或在线资源进行平方根和立方根的训练和练习。

这些资源通常会提供各种难度和类型的题目,帮助学生系统地掌握平方根和立方根的运算规则和方法。

总之,平方根和立方根是数学中重要的概念,对于学生来说,掌握它们的计算方法和应用场景是非常重要的。

通过系统的训练和练习,可以更好地理解和应用平方根和立方根,提高数学水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根和立方根
【知识归纳】
1. 平方根:
(1)若 x 2=a (a >0),那么 a 叫做 x 的 ,我们把
称为算术平方根 , 记为。

规定,0 的算术平方根为。

(2)一个
的平方根有 2 个,它们互为 ;
只有 1 个平方根,它是 0 本身;
没有平方根。

(3)两个公式:( a )2=

);
a 2
2. 立方根:
1)若 x 3=a (a >0),那么 a 叫做 x 的 ,记为

2)一个正数 的立方根有 个,0 的个立方根为 ,负数有
个立方根。

3)立方根的性质:(1) 3 a
3
,(2) 3 a 3

=.
4). 已知某数有两个平方根分别是a+3与 2a -15, 求这个数.
5). 已知:2 m+2的平方根是±4,3m+n+1 的平方根是±5,求 m+2n 的值. 6). 已知 a<0,b<0,求 4a 2+12ab+9b 2 的算术平方根.
7)甲乙二人计算a+ 1 2a a 2 的值,当 a=3的时候,得到下面不同的答案:
甲的解答:a+ 1 2a a 2 =a+ (1 a) 2 =a+1-a=1. 乙的解答:a+ 1 2a a 2 =a+ (a 1) 2 =a+a -1=2a -1=5. 哪一个解答是正确的?错误的解答错在哪里?为什么?
【巩固练习】:
1、
16 的算术平方根是 _______,平方根是 _______;2、若 x 2=16,则 5-x 的算术平方根是

3、
64
36 的平方根是
,算术平方根是

4、若 4a +1 的平方根是± 5,则 a 2 的算术平方根是

5、
a 1
(b
2) 2
0 ,则 a
b 的平方根为
.
3
6. 第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm, 求第二个纸盒的棱长.
平方根立方根的综合应用
1、若 x 、y 为实数,且 x
y
y
2
,则 ( x
)2010
的值为
y
2、若 2a 2 与| b +2| 互为相反数,则( a -b )2=__________
3、若 2x +1+|y -1| =0,则 x 2+y 2=__________
4 x y
为实数,且 y x 9 9 x 4 .求 x
y
的值
、已知 、
5 、 已 知 a,b, c
实 数 在 数 轴 上 的 对 应 点 如 图 所 示 , 化 简
a 2
a b c a (b
c) 2
6、已知实数 a,b, c 满足 1
a b
2b c (c 1 )2
0 ,求 a(b c) 的值
2
2
7、已知 a 510 2a b 4 ,求 a,b 的
8、已知2009a a 2010 a ,求 a 20092490 的
9、如果 a 22a b ,且 b 3a m ,求m 的是多少?
10、已知a 1 ab 20,求1
111的值ab(a 1)(b 1)(a 2)(b 2)(a 1998)(b1998)
11、一个三角形的两3, 2 ,它的第三可能是()A.0.2 C.32
12、一个三角形的三分是a, b, c,(a b c)2=______________, (a b c)2=________________
13、求下列各式中的 x
(1)(x-2) 2-4=0(2)(x+3)3 +27=0(3) 27x3125 =0(4) (2x-1)2 = 25
14、已知 x 是10 的整数部分, y 是 10 的小数部分,求(y
x1
10)的平方根。

15、如,某算装置有一数据入口A和一运算果的出口B,下表是小明入的一些数据和些数据装置算后出的相果:按照个算装置的算律,若出的数是 101,入的数是
A 1 2 345
B 2 5 10 17 26
16、已知 3a-22 和 2a-3 都是 m的平方根,求 m的
17、已知实数 a、b 满足 a 2 2 b 2a 0 ,那么 b-a=.
11111111
18、察下列各式: 43, 85, 127 , 169, ⋯.
22334455
你将猜想到的律用含自然数 n(n1) 的代数式表示出来是.
19.若x, y都是实数且y2x 3 3 2x 4 ,求xy的值.。

相关文档
最新文档