化工设计:环氧乙烷的制取
环氧乙烷的生产方法

环氧乙烷的生产方法
环氧乙烷的生产方法主要有以下几种:
1. 乙烷催化氧氯化法:乙烯与氯气在氯化铁钾催化剂的存在下反应生成氯乙烷,然后在酸性条件下与水反应生成环氧乙烷。
2. 乙烯-过硫酸盐氧化法:乙烯与过硫酸盐反应生成乙酸乙烯酯,然后在碱性条件下与过碱反应生成环氧乙烷。
3. 乙烯-高锰酸钾氧化法:乙烯与高锰酸钾反应生成1,2-环己
二酮,然后在碱性条件下经过酸化、环氧化反应生成环氧乙烷。
4. 碳氧化物法:乙烯与碳氧化物反应生成乙酸乙烯酯,然后在碱性条件下与过碱反应生成环氧乙烷。
这些生产方法中,乙烯是环氧乙烷的主要原料,催化剂的选择和反应条件的控制对产率和纯度都有一定的影响。
此外,环氧乙烷的生产还需要注意安全性和环境保护等因素。
环氧乙烷生产—环氧乙烷生产原理确定工艺条件

已不O能起催化作用,须把这种残余氧 Ag Ag
4 O + CH2 = CH2 Ag Ag
2CO2 + 2 H2O + 4Ag
乙烯直接氧化为环氧乙烷的反应,其选择性不可能为100%。5个参加反应 乙烯分子中,有一个用于催化剂的再生,所以,反应的选择性最高为 4/5=80%。
这是乙烯直接环氧化为环氧乙烷的最简单的解释,由Twigg在1946年 提出的。
抑制剂
碱土金属、稀土金属和贵金属等分散银微 粒,防止银微晶的熔结,有利于提高催化 剂的稳定性,延长其使用寿命。
硒、碲、氯、溴,可抑制二氧 化碳的生成,提高银催化剂的 选择性
银催化剂制备方法
粘结法
浸渍法
即将活性组分银盐和助催化剂混合 在一起,用粘结剂粘结在无孔载体 上,再经干酸银或 银—有机铵络合物等)和助催化剂溶液中, 然后进行干燥和热分解。
3. 原料纯度及配比
原料纯度
有害杂质
硫化物、砷化物、卤化物、 C2H2、乙炔银
H2 C2H2 C03+ C=3+ C2H2 C=3+
Ar H2 铁离子
循环气带入EO CO2
危害
催化剂中毒 爆炸危险
燃烧放大量热 加快催化剂积炭
影响爆炸限 EO重排 降低收率 对环氧化有抑制
一般要求:
硫化物<1mg/kg 氯化物<1mg/kg 乙烯中乙炔<5ml/m3
化剂表面上没有4个相邻的银原子簇可被利用时,这种化学吸附生成离子化 的分子氧吸附态
O2 + Ag
Ag O2 (吸附)
乙烯与吸附的离子化分子态氧反应,能有选择性地氧化为环氧乙烷并同时 产生一个吸附的原子态氧。
Ag O 乙烯与
乙烯制环氧乙烷工艺流程设计与催化剂筛选

乙烯制环氧乙烷工艺流程设计与催化剂筛选一、引言乙烯是一种重要的有机化工原料,广泛应用于合成各种化工产品。
其中,乙烯制环氧乙烷被认为是一种高附加值化工产品。
本文将重点探讨乙烯制环氧乙烷的工艺流程设计以及催化剂的筛选。
二、工艺流程设计2.1 环氧乙烷制备的常规工艺乙烯制环氧乙烷的传统工艺主要包括以下步骤:乙烯的氧化反应、反应产物的分离、环氧化反应以及环氧乙烷的分离纯化等。
其中,乙烯的氧化反应是整个工艺的关键步骤。
2.2 乙烯氧化反应的催化剂选择在乙烯氧化反应中,选择合适的催化剂对于提高反应效率和产物选择性至关重要。
常用的催化剂包括银基催化剂和金基催化剂。
银基催化剂具有较高的乙烯氧化活性,但选择性较低,易产生副反应。
而金基催化剂具有较高的选择性,但反应活性相对较低。
因此,需要在实际生产中权衡选择。
2.3 环氧化反应和环氧乙烷的分离纯化在乙烯的氧化反应完成后,得到的反应产物中包含一定量的环氧乙烷。
环氧化反应是将环状物质引入到乙烯的化学结构中的关键步骤。
同时,需要对生成的环氧乙烷进行分离纯化,以获得高纯度的产品。
三、催化剂筛选3.1 催化剂的物理化学特性在进行催化剂的筛选时,需要考虑催化剂的物理化学特性对反应活性和选择性的影响。
包括催化剂的表面积、孔径分布、活性组分的分散性以及尺寸等。
3.2 催化剂的催化性能评价方法对于催化剂的筛选,需要进行催化性能的评价。
一般的评价指标包括催化剂的活性、选择性、稳定性以及抗中毒性等。
3.3 催化剂的改性与优化在实际应用中,常常通过改性和优化催化剂的物理化学性质,以提高催化剂的催化性能。
例如,通过担载等方法来改善催化剂的分散性和稳定性。
四、结论本文对乙烯制环氧乙烷的工艺流程设计和催化剂的筛选进行了探讨。
乙烯氧化反应是整个工艺的关键步骤,催化剂的选择对反应效率和产物选择性有重要影响。
催化剂的物理化学特性以及催化性能评价方法是催化剂筛选的关键。
进一步的研究和实践将推动乙烯制环氧乙烷工艺的进一步优化和发展。
年产环氧乙烷工艺设计

年产环氧乙烷工艺设计# 年产环氧乙烷工艺设计一、环氧乙烷的历史其实啊,环氧乙烷这东西可不是什么新鲜玩意儿,它已经有很长的历史啦。
早在 19 世纪末,人们就开始研究它了。
那时候,科学家们发现了这种神奇的化合物,并且逐渐了解到它的一些特性和用途。
随着时间的推移,对环氧乙烷的研究越来越深入,它的应用也变得越来越广泛。
说白了就是,环氧乙烷是化工领域里一个很重要的角色呢。
二、环氧乙烷的制作过程1.1 原料准备要生产环氧乙烷,首先得有合适的原料呀。
一般来说,乙烯和氧气就是主要的原料。
乙烯就像是建筑的基石,而氧气则像是让反应发生的催化剂。
1.2 反应过程这就像是一场奇妙的化学反应舞会。
乙烯和氧气在一定的条件下,比如合适的温度、压力和催化剂的作用下,就开始跳舞啦,它们相互作用,最终生成了环氧乙烷。
这个过程可不简单哦,需要精确的控制和调节,就像跳舞要踩准节奏一样。
1.3 产物分离反应完成后,还得把生成的环氧乙烷从其他物质中分离出来。
这就像是从一堆杂物中找出我们想要的宝贝一样,需要一些专门的技术和设备。
通过各种分离手段,我们就能得到纯净的环氧乙烷啦。
三、环氧乙烷的特点3.1 化学性质活泼环氧乙烷的化学性质特别活泼,就像一个调皮的小孩子,总是喜欢到处捣蛋。
它很容易和其他物质发生反应,这也让它有了很多不同的用途。
3.2 挥发性强它还有一个特点就是挥发性强,就像香水一样,很容易散发到空气中。
所以在处理和使用环氧乙烷的时候,可得特别小心,要做好防护措施。
3.3 具有腐蚀性可别小瞧它,它还具有一定的腐蚀性呢。
就像酸一样,如果不小心碰到,可能会对我们造成伤害。
所以啊,和环氧乙烷打交道可得万分小心。
四、环氧乙烷的应用4.1 消毒剂在医疗领域,环氧乙烷可是个大功臣呢。
它可以被用作消毒剂,就像我们家里用的消毒水一样,能把细菌和病毒都杀死。
比如医院里的一些医疗器械,很多都是用环氧乙烷来消毒的。
4.2 化工原料在化工行业,它也是个重要的原料。
环氧乙烷的制取

环氧乙烷的制取《化工工艺设计》课程设计说明书乙烯制取环氧乙烷生产工艺设计姓名:张正元学科、专业:应用化学0911学号: 0920109124指导教师:刘垚完成日期: 2012年7月1日苏州科技学院Suzhou University of Science and Technolog目录1、设计任务书 (1)1.1基本数据 (1)1.2课程设计内容及要求 (1)1.2.1内容 (1)1.2.2具体要求 (1)2、设计方案简介 (1)2.1反应过程分析 (2)2.2催化剂的选择 (2)2.3反应器及混合器的选择: (3)2.4影响因素(反应条件)的分析 (3)3、工艺流程草图及说明 (5)3.1 氧化反应部分 (5)3.1.1 工艺流程草图 (5)3.1.2 流程草图说明 (5)3.2 环氧乙烷回收和精制部分 (6)4、物料衡算 (6)4.1 由设计任务书已知数据 (6)4.2乙烯催化氧化制取环氧乙烷得物料衡算框图 (7)4.3衡算过程 (7)4.3.1确定反应混合气(RP)组成 (8)4.3.2确定混合分离气(SP)的组成 (9)4.3.3确定新鲜原料(FF)和循环气(RC)组成 (9)的循环气SPC的组成 (11)4.4.4确定未脱CO24.4.5确定SRC的组成 (11)5、数据校核及结果评价 (12)5.1数据校核 (12)5.2结果评价 (12)6、计算结果一览表 (13)7、工艺流程及控制点说明 (14)7.1工艺流程说明 (14)7.1.1环氧乙烷反应系统工艺流程 (14)7.1.2二氧化碳脱除系统工艺流程 (15)7.2控制点说明 (15)7.2.1环氧乙烷反应系统控制点 (15)7.2.2二氧化碳脱除系统控制点 (16)参考文献 (16)1、设计任务书1.1基本数据原料乙烯年处理量为12万吨选择性: 73.8%环氧乙烷的吸收率: 99.5%O2中夹带Ar 0.00856mol,循环排放气中含Ar为12.85%,产品环氧乙烷中含Ar 0.00631mol。
环氧乙烷的制备

2摘要环氧乙烷是乙烯工业衍生物中仅次于聚乙烯和聚氯乙烯的重要有机化工产品,产品每年的全球产量超过1.1千万吨。
全球约60 %的环氧乙烷转化成生产聚酯纤维、树脂和防冻剂用的单体乙二醇(涤纶纤维原料),约有13 %的环氧乙烷用于生产其他多元醇,例如二乙二醇、三乙二醇和多乙二醇。
环氧乙烷的第二大用途是生产用于洗涤剂工业的乙氧基化物。
其他环氧乙烷衍生物有乙醇胺、溶剂和乙二醇醚等。
在合成洗涤剂、消毒剂、谷物熏蒸剂、抗冻剂、乳化剂以及生产增塑剂润滑剂橡胶和塑料等行业有极其广泛的应用。
另外,环氧乙烷还可用于生产药物消毒剂等。
由于环氧乙烷的广泛使用,各国的生产厂商都在不断改进生产工艺,在得到更高的产量和质量的同时,对生产过程中的安全隐患,及尾气处理等方面的问题进行相应的技术改进。
本文介绍了用乙烯制环氧乙烷的化工装置设计要点,相关工艺系统设计所必须遵循的规范,规定和材料选择原则。
从环氧乙烷的用途与性质开始,对生产技术进展与市场分析、催化剂的选择对环氧乙烷生产装置经济效益的影响、环氧乙烷生产装置的安全分析与评价等问题作了具体深入的探讨。
在此基础上完成了环氧乙烷装置的工艺计算和反应器、吸收塔、换热器等设备的选型。
进而完成带控制点的工艺流程图和设备图的绘制。
同时,对工艺条件的改进方法、合成反应器温度-时间优化策略、乙烯氧化制环氧乙烷反应器操作参数的优化等问题做了讨论。
关键词:乙烯;环氧乙烷;生产装置IAbstractEthylene oxide derivatives Ethylene Industry is second only to polyethylene and PVC important organic chemical products, Products annual global production of more than 1.1 million tons. About 60% of the world's ethylene oxide into the production of polyester fiber, resins and monomers used in antifreeze glycol (PET raw materials), About 13% of ethylene oxide used in the production of other polyols, such as diethylene glycol, triethylene glycol and ethylene glycol more. Oxirane the second largest use in the production of industrial detergent for the ethoxylated compounds. Other ethylene oxide derivatives are triethanolamine, solvents and glycol ether. The synthetic detergent, disinfectant, grain fumigants, antifreeze, emulsifier and the production of plasticizer lubricant such as rubber and plastics industry is a very wide range of applications. In addition, ethylene oxide can be used to produce drugs and disinfectants.Because ethylene oxide are used widely, the national manufacturers are constantly improving the production process, in a higher yield and quality, the production process of potential safety problems, and exhaust gas handling problems of the corresponding technical improvements.This paper describes the system ethylene ethylene chemical plant design features, related system design process to be followed in the norm regulations and the principle of material selection. From the use of ethylene oxide and the nature, progress on production technology and market analysis, The choice of catalyst for ethylene oxide unit cost-effective, Ethylene oxide production in the safety analysis and evaluation of specific issues in-depth study. Based on this completed the installation of ethylene oxide and calculation process reactor, absorption tower, heat exchanger, such as equipment selection. Then completed with the process control point plans and the drawing equipment. Meanwhile, the process of improving conditions, the reaction temperature-time optimization strategy Ethylene Oxidation of ethylene oxide reactor operating parameters of the optimization problem has been discussed.Keywords:Ethylene;Ethylene oxide;Production EquipmentII目录摘要 ......................................................................................................................... I Abstract ......................................................................................................................... I I 第1章引言 .. (1)1.1环氧乙烷的基本简介 (1)1. 2国内外环氧乙烷的市场 (2)1. 3环氧乙烷的性质及用途 (3)1.3.1环氧乙烷的性质 (3)1.3.2环氧乙烷的用途 (4)1. 4环氧乙烷生产方法的比较 (5)1.4.1氯醇法 (5)1.4.2直接氧化法 (6)第2章生产概述 (9)第3章原材料、公用工程及主要产品规格 (12)3.1原料规格 (12)3. 2 公用工程技术观察 (14)3.3 产品规格 (15)第4章环氧乙烷生产装置的安全分析与评价 (16)4.1 工艺流程简述 (16)4.2 道化学公司火灾、爆炸危险指数的计算 (17)4.3 环氧乙烷生产装置的事故树分析 (18)4.3.1 绘制事故树 (19)4.3.2 求最小割集和最小径集 (20)4.3.3 基本事件的结构重要度分析 (20)4.4 环氧乙烷生产装置的事件树分析 (22)4.5 对环氧乙烷生产装置安全评价结果讨论及对策 (24)第5章主要工艺参数 (26)第6章工艺计算 (27)6.1 反应器的物料衡算 (27)6.1.1 反应部分的工艺参数指标 (27)6.1.2 计算 (28)6.2 吸收塔物料衡算 (31)6.2.1各组分得亨利系数、相平衡常数、吸收率及吸收因子 (31)6.2.2吸收塔的物料衡算 (33)6.3 反应器热量衡算 (37)6.4 吸收塔热量衡算 (40)6.5 原料气―——氧化气换热器热量衡算 (41)第7章主要工艺设备工艺尺寸的计算 (44)7.1反应器的工艺尺寸计算 (44)7.1.1计算所需要的催化剂总量 (44)7.1.2催化剂床层总截面积A及高度H和停留时间的确定和计算 (44)7.1.3床层压力降的估算 (44)7.1.4 反应器的直径和反应管数 (45)7.1.5反应器的传热系数 (46)7.2 吸收塔工艺尺寸计算 (52)7.2.1 工艺条件 (52)7.2.2塔板的工艺尺寸初步计算 (52)7.2.3 塔径的初步核算 (54)7.2.4 溢流装置设计 (55)7.2.5塔板布置及液阀数目与排列 (55)7.2.6 塔板流体力学验算 (57)7.2.7 塔板负荷性能图 (59)7.2.8 实际塔板数计算 (61)7.3 循环气冷却器工艺尺寸计算(E-115) (62)7.4 循环气压缩机造型计算 (66)第8章环氧乙烷合成反应器温度-时间优化策略 (68)8.2 优化目标函数 (69)8. 3 优化问题的求解 (70)8.4 优化结果讨论 (71)8.5 结论 (74)第9章结论 (75)参考文献 (76)第1章引言1.1环氧乙烷的基本简介环氧乙烷是重要基本有机合成原料,用途甚广,因此世界各国环氧乙烷的产量上升较快。
环氧乙烷的生产方法

环氧乙烷的生产方法环氧乙烷, 生产环氧乙烷(EO)又名氧化乙烯,是最简单的环状醚。
环氧乙烷是石油化学工业的重要产品,也是一种基本有机化工原料,广泛地用于生产乙二醇、非离子表面活性剂、乙醇胺、乙醇醚溶剂、医药中间体、油田化学品、农药乳化剂等各种精细化学品。
1 环氧乙烷的生产方法环氧乙烷早期采用氯醇法工艺生产,20世纪20年代初,UCC公司进行了工业化生产,之后公司基于Lefort有关银催化剂的研究成果,使用银催化剂,推出空气法乙烯直接氧化生产环氧乙烷工艺。
20世纪50年代末,Shell公司采用近乎纯氧代替空气作为生产环氧乙烷的氧原料,推出氧气法乙烯直接氧化生产环氧乙烷工艺,经过不断改进,目前较先进的生产方法是用银作催化剂,在列管式固定床反应器中,用纯氧与乙烯反应,采用乙烯直接氧化生产环氧乙烷。
现就这几种方法进行分析比较。
1.1 氯醇法环氧乙烷氯醇法生产分两步进行:首先氯气与水反应生成次氯酸,再与乙烯反应生成氯乙醇;然后氯乙醇用石灰乳皂化生成环氧乙烷。
这种方法存在的严重缺点大致有:1)消耗氧气,排放大量污水,造成严重污染;2)乙烯次氯酸化生产氯乙醇时,同时副产二氧化碳等副产物,在氯乙醇皂化时生产的环氧乙烷可异构化为乙醛,造成环氧乙烷损失,乙烯单耗高;3)氯醇法环氧乙烷,醛的质量分数很高,约为4×10-6-5×10-6最低也有2×10-6 。
氯醇法生产环氧乙烷,由于装置小、产量少、质量差、消耗高,因而成本也高,与大装置氧化法生产的高质量产品相比已失去了市场竞争能力。
1.2 直接氧化法乙烯直接氧化法,分为空气直接氧化法和氧气直接氧化法。
1.2.1 空气直接氧化法空气直接氧化法用空气作氧化剂,因此生产中必须有空气净化装置,以防止空气中有害杂质带人反应器而影响催化剂的活性。
空气法的特点是由两台或多台反应器串联,即主反应器和副反应器,为使主反应器催化剂的活性保持在较高水平(63%-75%),通常以低转化率操作(20%-50%)。
环氧乙烷制取的化工设计

目錄一、設計任務書 2二、設計方案簡介 3三、工藝流程草圖及說明 6四、物料衡算 9五、計算結果一覽表 16六、工藝流程說明 17七、附圖 20八、參考文獻 22設計任務書一、基本資料用N2作為惰性致穩氣時的原料氣組成反應器的單程轉化率:12.3%選擇性: 73.8%環氧乙烷的吸收率: 99.5%O2中夾帶的0.00856mol,迴圈排放氣中含Ar為12.85%,產品環氧乙烷中含Ar 0.00631mol。
二、課程設計內容及要求(一)內容1、對環氧乙烷反應系統的物料衡算;2、繪製環氧乙烷反應系統的工藝流程圖(一張);3、繪製二氧化碳脫除系統的工藝流程圖(一張);4、編制課程設計說明書(一份)。
(二)具體要求1、環氧乙烷反應系統的物料衡算方法參考《基本有機化工工藝學》(吳指南主編)一書。
2、繪製的帶控制點的工藝流程圖必須符合化工製圖的規範,並且字體必須工整。
3、編制的課程設計說明書應對計算過程與工藝流程的選擇以及控點的確定進行詳細的說明和解釋。
設計方案簡介環氧乙烷(簡稱EO)是最簡單也是最重要的環氧化合物,在常溫下為氣體,沸點10.5℃。
可以與水、醇、醚及大多數有機溶劑以任意比混合。
有毒,易自聚,尤其當有鐵,酸,堿,醛等雜質或高溫下更是如此,自聚時放出大量熱,甚至發生爆炸,因此存放環氧乙烷的貯槽必須清潔,並保持在0℃以下。
環氧乙烷是以乙烯為原料產品中的第三大品種,僅次於聚乙烯和苯乙烯。
它的用途是制取生產聚酯樹脂和聚酯纖維的單體、製備表面活性劑,此外還用於製備乙醇胺類、乙二醇醚類等。
一、反應過程分析:工業上生產環氧乙烷最早採用的方法是氯醇法,該法分兩步進行,第一步將乙烯和氯通入水中反應生成2-氯乙醇,2-氯乙醇水溶液濃度控制在6%-7%(品質);第二步使2-氯乙醇與Ca(OH)2反應,生成環氧乙烷。
該法的優點是對乙烯的濃度要求不高,反應條件較緩和,其主要缺點是要消耗大量氯氣和石灰,反應介質有強腐蝕性,且有大量含氯化鈣的污水要排放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、设计任务书 2二、设计方案简介 3三、工艺流程草图及说明 6四、物料衡算9五、计算结果一览表16六、工艺流程说明17七、附图20八、参考文献22设计任务书一、基本数据用N2作为惰性致稳气时的原料气组成反应器的单程转化率:12.3%选择性:73.8%环氧乙烷的吸收率:99.5%O2中夹带的0.00856mol,循环排放气中含Ar为12.85%,产品环氧乙烷中含Ar 0.00631mol。
二、课程设计内容及要求(一)内容1、对环氧乙烷反应系统的物料衡算;2、绘制环氧乙烷反应系统的工艺流程图(一张);3、绘制二氧化碳脱除系统的工艺流程图(一张);4、编制课程设计说明书(一份)。
(二)具体要求1、环氧乙烷反应系统的物料衡算方法参考《基本有机化工工艺学》(吴指南主编)一书。
2、绘制的带控制点的工艺流程图必须符合化工制图的规范,并且字体必须工整。
3、编制的课程设计说明书应对计算过程与工艺流程的选择以及控点的确定进行详细的说明和解释。
设计方案简介环氧乙烷(简称EO)是最简单也是最重要的环氧化合物,在常温下为气体,沸点10.5℃。
可以与水、醇、醚及大多数有机溶剂以任意比混合。
有毒,易自聚,尤其当有铁,酸,碱,醛等杂质或高温下更是如此,自聚时放出大量热,甚至发生爆炸,因此存放环氧乙烷的贮槽必须清洁,并保持在0℃以下。
环氧乙烷是以乙烯为原料产品中的第三大品种,仅次于聚乙烯和苯乙烯。
它的用途是制取生产聚酯树脂和聚酯纤维的单体、制备表面活性剂,此外还用于制备乙醇胺类、乙二醇醚类等。
一、反应过程分析:工业上生产环氧乙烷最早采用的方法是氯醇法,该法分两步进行,第一步将乙烯和氯通入水中反应生成2-氯乙醇,2-氯乙醇水溶液浓度控制在6%-7%(质量);第二步使2-氯乙醇与Ca(OH)2反应,生成环氧乙烷。
该法的优点是对乙烯的浓度要求不高,反应条件较缓和,其主要缺点是要消耗大量氯气和石灰,反应介质有强腐蚀性,且有大量含氯化钙的污水要排放。
因此开发了乙烯直接氧化法,取代氯醇法。
工业上生产环氧乙烷的方法是乙烯直接氧化法,在银催化剂上乙烯用空气或纯氧氧化。
乙烯在Ag/α-Al2O3催化剂存在下直接氧化制取环氧乙烷的工艺,可用空气氧化也可以用氧气氧化,氧气氧化法虽然安全性不如空气氧化法好,但氧气氧化法选择性较好,乙烯单耗较低,催化剂的生产能力较大,故大规模生产采用氧气氧化法。
主要反应方程式如下:主反应副反应由乙烯环氧化反应的动力学可知,乙烯完全氧化生成二氧化碳和水,该反应是强放热反应,其反应热效应要比乙烯环氧化反应大十多倍。
故副反应的发生不仅使环氧乙烷的选择性降低,而且对反映热效应也有很大的影响。
选择性下降,热效应就明显增加,如选择性下降移热慢,反应温度就会迅速上升,甚至产生飞温。
所以反应过程中选择性的控制十分重要。
二、催化剂的选择:环氧化法生产环氧乙烷是一个强放热放应,为减少深度氧化的副反应,提高选择性,催化剂的选择非常重要。
研究表明,只有在银催化剂催化下乙烯的环氧化反应才有较高的选择性。
工业上使用的银催化剂是由活性组分,载体和助催化剂所组成。
载体载体的主要功能是分散活性组分和防止银微晶的半熔和烧结,使其活性保持稳定。
由于乙烯环氧化过程存在平行副反应和连串副反应的竞争,又是一强放热反应,故载体的表面结构及其导热性能,对反应的选择性和催化剂颗粒内部温度的分布有显著的影响。
载体表面积大,活性比表面积大,催化剂活性高但也有利于乙烯完全氧化反应的发生,甚至生成的环氧乙烷很少。
载体如有空隙,由于反应物在细空隙中的扩散速度慢,产物环氧乙烷在空隙中浓度比主体浓度高,有利于连串副反应地进行。
工业上为了控制反应速度和选择性,均采用低比表面积无孔隙或粗空隙惰性物质作为载体,并要求有较好的导热性能和较高的热稳定性。
工业上常用的载体又碳化硅,α-氧化铝和含有少量氧化硅的α-氧化铝等。
助催化剂所采用的助催化剂有碱金属类,碱土金属类和稀土元素化合物等。
碱土金属类中,用得最广泛的是钡盐。
在银催化剂中加入少量钡盐,可增加催化剂的抗熔结能力,有利于提高催化剂的稳定性,延长其寿命,并可提高活性。
据研究两种或两种以上的助催化剂起到协同作用,可提高选择性。
抑制剂在银催化剂中加入少量硒碲氯溴等对抑制二氧化碳的生成,提高环氧乙烷的选择性有较好的效果。
工业上常在原料气中添加微量有机氯如二氯乙烷,以提高催化剂的选择性,调节温度。
三、反应器及混合器的选择:乙烯环氧化制环氧乙烷是一强放热反应,温度对反应的选择性又甚敏感,对于这种反应最好采用流化床反应器,但因为细颗粒的银催化剂易结块也易磨损,流化质量很快恶化,催化剂效率急速下降,故工业上普遍采用的是列管式固定床反应器,管内放催化剂,管间走冷却介质。
在配制混合气时,由于纯氧加入到循环气和乙烯的混合气中去,必须使氧和循环气迅速混合达到安全组成,如果混合不好很可能形成氧浓度局部超过极限浓度,进入热交换器时易引起爆炸危险。
为此,混和器的设计极为重要,工业上是借多空喷射器对着混和气流的下游将氧高速度喷射到循环气和乙烯的混合气中,使他们迅速进行均匀混合。
为了确保安全,需要用自动分析检测仪监视,并配制自动报警连锁切断系统,热交换器安装需要有防爆措施。
四、影响因素(反应条件)的分析:⑴反应温度乙烯环氧化过程中存在着平行的完全氧化副反应,影响转化率和选择性的主要因素是温度。
温度过高,反应速度快、转化率高、选择性下降、催化剂活性衰退快、易造成飞温;温度过低,速度慢、生产能力小。
所以要控制适宜温度,其与催化剂的选择性有关,一般控制的适宜温度在200-260℃。
⑵反应压力加压对氧化反应的选择性无显著影响,但可提高反应器的生产能力且有利于环氧乙烷的回收,故采用加压氧化法,但压力高对设备的要求高费用增加催化剂易损坏。
故采用操作压力为2Mpa左右。
⑶空速与温度相比该因素是次要的,但空速减小,转化率增高,选择性也要降低,而且空速不仅影响转化率和选择性,也影响催化剂的空时收率和单位时间的放热量,故必须全面衡量,现在工业上采用的混合气空速一般为4000-8000/h左右,也有更高的。
催化剂性能高反应热能及时移出时选择高空速,反之选择低空速。
⑷原料纯度原料其中的杂质可能给反应带来不利影响:①使催化剂中毒而活性下降,如乙炔和硫化物使催化剂永久中毒,乙炔和银形成的乙炔银受热会发生爆炸性分解;使选择性下降(铁离子);②使反应热效应增大(H2、C3以上烷烃和烯烃);③影响爆炸极限,如氩气是惰性气体但其会使氧的爆炸极限浓度降低而且增加爆炸的危险性,氢也有同样的效应,故原料中的杂质含量要严格控制乙炔<5ppm,C3以上烃<1ppm,硫化物<1ppm,H2<5ppm)。
⑸进入反应器的混合气配比由于反应的单程转化率较低故采用具有循环的乙烯环氧化过程,进入反应器的混合气是由循环气和新鲜原料气混合而成的,其组成既影响经济效益也关系生产安全。
氧的含量必须低于爆炸极限浓度,因乙烯的浓度影响氧的极限浓度而且影响催化剂的生产能力,所以其浓度也需控制。
乙烯和氧浓度有一适量值(如浓度过高,反应快,放热多,反应器的热负荷大,如放热和除热不能平衡,就会造成飞温),如果以氧气作氧化剂,为使反应不致太剧烈仍须加入致稳剂。
以氮气作致稳剂时进入反应器的乙烯浓度可达15-20%,氧浓度为8%左右。
由于反应的转化率比较低,为了充分利用原料从吸收塔出来的气体须循环。
由于循环气中含有杂质和反应副产物,所以需要在循环之前将一部分有害气体排除,即脱除二氧化碳。
从吸收塔排出的气体,大部分(90%)循环使用,小部分送二氧化碳吸收装置,用碱洗法(热碳酸钾溶液)脱除掉副反应生成的二氧化碳。
二氧化碳对环氧化反应有抑制作用,但适量提高其含量对反应的选择性有好处,且能提高氧的爆炸极限,故循环气中允许有一定量二氧化碳,但不宜过多。
⑹乙烯转化率单程转化率的控制与氧化剂的种类有关,用纯氧作氧化剂时,单程转化率一般控制在12%—15%,选择性可达75-84%或更高。
用空气作氧化剂时,单程转化率一般控制在30%—35%,选择性可达70%左右。
单程转化率过高时,由于放热量大,温度升高快,会加快深度氧化,使环氧乙烷的选择性明显降低。
因为工业上采用循环流程,所以单程转化率也不能太低,否则会因循环气量过大而耗能增加。
工艺流程草图及说明(一)氧化反应部分一工艺流程草图二流程草图说明由于此反应为气固相反应,并且催化剂比较贵,所以选择列管式固定床反应器。
反应放出大量的热,所以须采用换热介质进行换热,根据反应的热效应求得反应的温度在180-250℃,因此选择矿物油作为换热介质,采用外部循环式换热。
由以上流程图可以看出,新鲜原料气与循环气混合后,经过热交换器预热一段时间后,从反应器上部进入催化床层。
自反应器流出的反应混合气中环氧乙烷的含量仅为1-2%,经热交换器利用其热量并进行冷却后,进入环氧乙烷吸收塔。
由于环氧乙烷能以任何比例与水混合,故采用水做吸收剂以吸收反应气中的环氧乙烷。
从吸收塔排出的气体,大部分(约90%)循环使用,而一小部分需送入CO2吸收装置,用热碳酸钾溶液脱除掉副反应所生成的CO2。
送入CO2吸收装置的那一小部分气体在二氧化碳吸收塔中与来自再生塔的高温贫碳酸氢钾-碳酸钾溶液接触。
在二氧化碳作用下转化为碳酸氢钾。
自二氧化碳吸收塔塔顶排出的气体经冷却,并分离出夹带的液体后,返回至循环系统。
二氧化碳吸收塔塔釜的富碳酸氢钾-碳酸钾溶液经减压入再生塔,经加热,使碳酸氢钾分解为二氧化碳和碳酸钾,CO2自塔顶排出,再生后的贫碳酸氢钾-碳酸钾溶液循环回二氧化碳吸收塔。
(二)环氧乙烷回收和精制部分自吸收塔塔底排出的环氧乙烷吸收液(1.5%)经热交换利用其热量后进入解析塔,冷凝出大部分水和重组分杂质。
解析出10%(质量)的环氧乙烷水溶液,同时分离出一起解离出的二氧化碳和其他不凝气体。
然后进入脱气塔脱二氧化碳,此处脱出的气体除含二氧化碳外还有大量的环氧乙烷蒸汽,这部分气体返回吸收塔。
自脱气塔排出的环氧乙烷水溶液,一部分直接送乙二醇装置,加入适量水后水合制乙二醇。
其余进精馏塔,塔顶蒸出的甲醛(含环氧乙烷)和塔下部取出的含乙醛的的环氧乙烷,仍返回脱气塔。
精馏塔和解析塔的塔底排出的水,经热交换利用其热量和冷却后,循环回吸收塔作吸收水用。
关于能耗方面,除了反应选择性和反应热的利用等影响因素外,环氧乙烷吸收液的浓度和吸收水热量的利用,对能耗也有显著影响。
在环氧乙烷吸收系统和解吸收系统设置多个换热器,以回收不同位能的热量;低位能热量的回收和利用,降低吸收水温度以提高吸收效率,提高吸收液中环氧乙烷的浓度,减少循环水量,二氧化碳系统热量的回收和利用等,均可降低能耗。
乙烯催化氧化法制环氧乙烷的工艺需注意以下两点1、保障安全性对此工艺,由于副反应为强放热反应,温度的控制尤为重要,若反应热未及时移走,就会导致温度难于控制,产生飞温现象。