目前国际各种无功补偿装置优缺点的比较
SVG与SVC比较优势和节能

SVG与SVC比较1.设备的先进性:SVC属于静止无功补偿的早期产品,而SVG是其换代产品,即SVG代表该领域的发展方向。
SVG是目前最为先进的无功补偿装置,基于电压源型逆变器的补偿装置实现了无功补偿方式质的飞跃。
它不再采用大容量的电容、电感器件,而是通过电力电子器件的高频开关实现无功能量的变换。
2.设备的安全可靠性:基于IGBT逆变器,为可控电流源型补偿装置,不会发生谐波放大及谐振,对系统参数不敏感,安全性与稳定性好;SVG属于阻抗型补偿装置,对系统参数很敏感,当参数配置不合理、或者一段时间后,系统参数发生变化,很容易引起系统谐振或谐波电流放大,这也是一些传统补偿设备经常运行不正常的重要原因之一。
谐振或谐波电流放大不仅危害补偿系统自身的设备安全,对系统其他设备的安全也是隐患。
近年来,SVC频繁发生电容器烧毁,熔断器群爆等严重事故,致使无功补偿装置长期不能投运,闲置浪费。
SVG无需大容量的电容器,SVG相当于系统的一个电源,不改变系统的阻抗特性,避免了类似的事故发生,保证了可靠地长期在线运行。
SVC的TCR部分采用可控硅的直接串联,需要解决器件的均压问题,要求很严格,要求可控硅必须是同型号、同批次的产品,如果某一元件损害,需要更换同一桥臂的所有元件,使维护困难,而SVG是链节模块的串联,是多个逆变电源的串联,而不是IGBT的直接串联,所以并不需要模块的一致性,而且每个模块的脉冲是错一定的角度,即IGBT并非同时导通,所以产生过电压的机会并不多。
采用脉冲循环控制机制,直流侧电压波动在5%范围之内。
采用H桥串联的链式结构,直接接入6kV、10kV、35kV系统,成本降低。
而且具备N+1冗余结构,每相一个链节单元损坏后仍可继续满负荷运行,装置自身运行可靠性高。
3.设备的快速性:响应速度更快,SVG响应时间:≤10ms。
SVC响应时间:≥20ms。
SVG可在极短的时间之内完成从额定容性无功功率到额定感性无功功率的相互转换,这种无可比拟的响应速度完全可以胜任对冲击性负荷的补偿。
无功补偿几种补偿方式的优缺点

无功补偿几种补偿方式的优缺点无功补偿几种补偿方式的优缺点无功功率补偿,简称无功补偿,在电力供电系统中起提高电网的功率因数的作用,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。
所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。
合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。
反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。
今天就带大家了解13种无功补偿方式,各自有什么优点和缺点。
(1)同步调相机基本原理:同步电动机无负荷运行,在过励时发出感性无功;在欠励时吸收感性无功;主要优点:既能发出感性无功,又能吸收感性无功;主要缺点:损耗大,噪音大响应速度慢,结构维护复杂;适用场合:在发电厂尚有少量应用。
(3)就地补偿基本原理:一般将电容器直接与电动机变压器并联,二者共用1台开关柜;主要优点:末端补偿,能最大限度的降低线损;主要缺点:台数较多,投资量大;适用场合:水厂、水泥厂应用较多;(3)集中补偿基本原理:集中装设在系统母线上,一般设置单独的开关柜;主要优点:可对整个变电所进行补偿,投资相对较小;主要缺点:一般为固定补偿,在负载低时可能出现过补偿;适用场合:适用于负载波动小的系统(4)自动补偿(机械开关投切电容器)基本原理:采用机械开关(接触器、断路器)等根据功率因数控制器的指令投切电容器;主要优点:能自动调节无功出力,使系统无功保持平衡,技术成熟,占地小、造价低;主要缺点:响应时间较慢,受电容器放电时间限制;适用场合:目前主流补偿方式,满足大多数行业用户需求;(5)晶闸管投切电容器基本原理:采用晶闸管阀组根据功率因数控制器的指令过零投切电容器;主要优点:响应速度快,无涌流,无冲击;主要缺点:占地面积大,造价高;适用场合:多用于港口等负荷变化快速的场合;(6)晶闸管控制电抗器基本原理:一般由固定并联电容器和晶闸管控制的并联电抗器并联组成,通过改变晶闸管导通角改变电感电流,从而控制整套装置的无功输出;主要优点:响应速度快,无级调节,既能补偿容性无功,又能补偿感性无功;主要缺点:占地面积大,造价高,同时对大多企业用户而言,不需要感性无功;适用场合:多用于钢铁、电气化铁路和输变电系统;(7)磁控电抗器基本原理:通过可控硅控制励磁电流的大小和铁芯饱和度改变电感电流,从而控制整套装置的无功输出;主要优点:动态响应,无级调节,双向补偿,晶闸管耐压低,无须多级串联,产生谐波小;主要缺点:响应时间较TCR稍慢,噪声大;适用场合:在高压系统中占有优势;(8)串联补偿基本原理:串联电容器组用来补偿输电线路的电感,以提高线路的输电能力和稳定性。
无功补偿技术的优势与不足

无功补偿技术的优势与不足无功补偿技术是电力系统中常用的一种措施,用于改善功率因数、提高电能利用率,增强电力系统的稳定性。
本文将探讨无功补偿技术的优势与不足。
一、优势1.1 提高功率因数无功补偿技术可以通过补偿电网中的无功功率,实现功率因数的调整和提高。
功率因数是衡量电能利用率的重要指标,当功率因数低于1时,会导致电网输电损耗增加,降低电力系统的效率。
通过无功补偿技术,可以有效提高功率因数,减少无效功率损耗,提高电网的供电质量。
1.2 改善电力系统的稳定性在电力系统中,无功补偿技术可以通过调整无功功率平衡,提高电力系统的稳定性。
电力系统中无功功率的不平衡会导致电压波动、电流不均等问题,进而影响电网的稳定性。
通过无功补偿技术的应用,可以平衡电网的无功功率,减小电压波动,提高电力系统的稳定性。
1.3 减少潮流损耗无功补偿技术还可以有效地降低电力系统中的潮流损耗。
电流的传输与无功功率的平衡有关,通过无功补偿技术可以减少无功功率的传输,减小潮流损耗。
这对于电力系统的经济运行和降低能源消耗具有重要意义。
二、不足2.1 技术复杂性无功补偿技术的应用需要综合考虑电力系统的负荷情况、功率因数要求、无功容量等多方面因素,技术上较为复杂。
对于一般的电力工作人员来说,需要具备一定的专业知识和经验才能正确应用无功补偿技术。
此外,无功补偿设备的选择、调试等方面也需要相应的技术支持。
2.2 系统成本高无功补偿技术的应用需要投入相应的设备和材料,从而增加了电力系统的建设成本。
尤其是对于旧有电力系统的改造,无功补偿技术的引入需要进行大量的设备更新和布线等工作。
这些成本对于一些经济条件较为薄弱的地区或企业来说,可能难以承担。
2.3 对系统稳定性影响尽管无功补偿技术可以提高电力系统的稳定性,但过度补偿无功功率也会对电力系统产生不利影响。
过度补偿造成的电压异常和电流过大等问题可能引起设备的过热、损坏,从而对系统的稳定性产生负面影响。
因此,在应用无功补偿技术时需要合理控制补偿容量,避免过度补偿。
国内外无功功率补偿装置发展现状和趋势

国内外无功功率补偿装置发展现状和趋势摘要: 本文介绍了无功功率补偿装置的应用背景,并分析了各种无功功率补偿装置的分类和优缺点,重点介绍了静止同步补偿器SVC和静止同步补偿器STATCOM的特点和工作的原理,并介绍了基于STATCOM的两种控制方法。
关键词: 电能质量优化;无功功率补偿装置;静止同步补偿器;静止同步补偿器Abstract: in this paper, the reactive power compensation device application background of power, and analyzes all kinds of reactive power compensation device and the classification of the advantages and disadvantages, and introduced the static synchronous compensator SVC and static synchronous compensator STATCOM characteristics and working principle, and introduced the two control based on STATCOM method.Keywords: power quality optimization; Reactive power compensation device; Static synchronous compensator; Static synchronous compensator0 引言随着现代工业和电力工业的不断发展,电能传输的距离和容量日益增大,工业用户对电能质量的要求越来越高。
近年来,电弧炉、轧钢机、大型可控硅装置的应用和大功率冲击性负载的存在,使得系统功率因数变低,电网谐波加大。
无功补偿分别有几种补偿方式?各自有哪些优点和缺点?

无功补偿分别有几种补偿方式?各自有哪些优点和缺点?1. 基本概念无功补偿是一种电力调节方式,是在电力系统发生无功电流时,通过增加或减少无功的注入,来达到提高电力系统的功率因数和电力质量的目的。
无功补偿主要采用补偿电容、电感或制动矩等设备,实现在电力系统中合理地消耗或产生无功功率。
2. 无功补偿方式2.1 静态补偿方式静态补偿方式指的是通过静态无功补偿器(SVC)或静态无功发生器(SVG)等设备来实现无功补偿的方式。
静态无功补偿器是一种装有补偿电容、电感器和可控电抗器等设备的电子器件,用于在有功功率不变的情况下实现无功补偿。
静态无功发生器是一种无旋转部件的电气设备,通过控制电路中电容器的电压和电流大小,来产生或吸收无功电力。
2.2 动态补偿方式动态补偿方式指的是通过能够根据控制信号动态调整输出无功功率的设备进行无功补偿。
常见的动态补偿器包括柔性直流输电(FACTS)设备和动态无功补偿器(D-STATCOM)等。
常见的无功补偿方式有:1.SVC:静态无功补偿器常用于负荷变化较大的地方,可以快速响应电网的无功补偿要求,补偿近期的负荷变化,实现电压稳定,但是电容器的使用寿命相对较短,而且电力质量受制于调制器的精度。
2.SVG:静态无功发生器在与静态无功补偿器相比,具有良好的控制性能和适应性。
其优点在于不含有电容器元件,故无需考虑元件的使用寿命。
而缺点在于,与静态无功补偿器相比,相同功率的SVG体积和重量都要大得多,给配电和输电系统的构造带来一定的限制。
3.D-STATCOM:动态无功补偿器是一种可控制的交流电压源,用于消除电力系统中的电力质量问题。
D-STATCOM不需要向电网提供有功功率,可以对负载造成极小的影响。
同时,D-STATCOM十分精确地响应电网电压的变化,有着显著的电力质量改善效果。
其缺点是,需要使用有源元器件,成本相对较高。
4.基于FACTS设备的无功补偿方式:FACTS设备是一种综合型电力调节设备,通过改变输电线路等电参数,可以在电力系统中实现无功补偿的功能。
各种无功补偿装置的比较

目前各国家各种无功补偿装置的性能比较大类名称型号工作原理技术指标优点缺点应用场合旋转式无功补偿同步发电机/调相机欠励磁运行,向系统发出有功吸收无功,系统电压偏低时,过励磁运行提供无功功率将系统电压抬高可双向/连续调节;能独立调节励磁调节无功功率,有较大的过载能力其损耗、噪声都很大,设备投资高,起动/运行/维修复杂,动态响应速度慢,不适应太大或太小的补偿,只用于三相平衡补偿,增加系统短路容量适用于大容量的系统中枢点无功补偿静止式静态无功补偿机械投切电容器MSC用断路器\接触器分级投切电容投切时间10~30s控制器简单,市场普遍供货,价格低,投资成本少,无漏电流不能快速跟踪负载无功功率的变化,而且投切电容器时常会引起较为严重的冲击涌流和操作过电压,这样不但易造成接触点烧焊,而且使补偿电容器内部击穿,所受的应力大,维修量大适用无功量比较稳定,不需频繁投切电容补偿的用户机械投切电抗器MSR并联在线路末端或中间,吸收线路上的充电功率其补偿度60% ~ 85%防止长线路在空载充电或轻载时末端电压升高不能跟踪补偿,为固定补偿超高压系统(330kV及以上)的线路上静止式动态无功补偿SVC 自饱和电抗器SSR依靠自饱和电抗器自身固有的能力来稳定电压,它利用铁心的饱和特性来控制发出或吸收无功功率的大小调整时间长,动态补偿速度慢动态补偿原材料消耗大,噪声大,震动大,补偿不对称电炉负荷自身产生较多谐波电流,不具备平衡有功负荷的能力,制造复杂,造价高超高压输电线路晶闸管投切电容器TSC分级用可控硅在电压过零时投入电容,在380V低压配电系统中应用较多10~20ms无涌流,无触点,投切速度快,级数分得足够细化,基本上可以实现无级调节晶闸管结构复杂,需散热,损耗大,遇到操作过电压及雷击等电压突变情况下易误导通而被涌流损坏,有漏电流需快速频繁投切电容补偿的用户复合开关投切电容器TSC+MSC分级先由可控硅在电压过零时投入电容,再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持交流接触器触点闭合下运行0.5s左右无涌流,不发热,节能使用寿命短,故障较多,有漏电流一般工厂/小区和普通设备,无功量变化大于30s晶闸管控制电容器TCC采用同时选择截止角β和导通角α的方式控制电容器电流,实现补偿电流无级、快速跟踪20ms 价格低廉,效率非常高产生谐波低压小容量,非常适合广大终端低压用户第 1 页共2 页静止式动态无功补偿SVC 晶闸管阀控制高阻抗变压器TCT通过调整触发角的大小就可以改变高阻抗变压器所吸收的无功分量,达到调整无功功率的效果阻抗最大做到85%和TCR型差不多高阻抗变压器制造复杂,谐波分量也略大一些,价格较贵,而不能得到广泛应用容量在30Mvar以上时价格较贵,而不能得到广泛应用晶闸管投切电抗器TSR+FC分级用可控硅作为无触点的静止可控开关投切电抗器功率因数0.95不会产生谐波,而且响应速度快,不会产生冲击电流。
无功补偿的多种方式及各自的优缺点有哪些

无功补偿的多种方式及各自的优缺点有哪些无功补偿是指通过投入无功功率来改善电力系统的功率因数和电压质量。
无功补偿的多种方式根据实现的方法和装置的种类,可以分为静态无功补偿和动态无功补偿。
下面将对这两种方式及其各自的优缺点进行详细说明。
静态无功补偿常见的方式有电容补偿、电抗补偿和混合补偿等。
电容补偿主要通过并联接入电容器的方式进行,它能够提高电力系统的功率因数,提高电源的容量利用效率,减小线路功率损耗,并改善电压的稳定性。
电容补偿的优点有:1.无需响应时间,能实现快速无功补偿;2.功率因数改善明显,系统稳定性较好;3.维护成本低,装置体积小;4.可靠性高,寿命长。
但电容补偿也存在一些缺点:1.稳态补偿效果受负荷变化的影响较大;2.补偿效果受谐波干扰的限制;3.对电源电压波动敏感,需配合电压调整设备。
电抗补偿主要通过串联电抗器的方式实现,它能够提高电力系统的电压质量,改善电网稳定性,减小潮流损耗,提高电能质量。
电抗补偿的优点有:1.对电源电压波动不敏感,较适合对电力系统进行长距离补偿;2.补偿稳态性能好,可适用于任意负荷;3.能抵抗系统谐波干扰。
电抗补偿的缺点是:1.响应速度较慢,不能实现快速的动态无功补偿;2.在低频部分容易产生谐振问题;3.需要较大的设备体积和投资成本。
混合补偿通常综合了电容补偿和电抗补偿的优点,通过同时串联接入电容器和并联接入电抗器的方式进行补偿。
混合补偿的优点有:1.能够综合利用电容补偿和电抗补偿的优点,使补偿效果更好;2.适用于各种负荷类型和负荷变化的场合;3.能够抑制谐波,提高电压质量;4.稳态和动态补偿效果均较好。
混合补偿的缺点是:1.需要更大的设备容量,增加了投资成本;2.响应时间相对较长。
动态无功补偿是指通过高速的开关装置来实现无功功率的补偿。
常见的动态无功补偿装置包括静态无功发生器(SVG)、静止补偿装置(SSC)和可变补偿器(VSC)等。
动态无功补偿的优点有:1.响应速度极快,可以实现毫秒级的无功补偿;2.能够实现连续调整补偿功率,适应负荷变化;3.能够抑制谐波,提高电压质量;4.对电源电压波动不敏感。
FC、TSC、SVG对比分析(主要无功补偿方式分析).

几种无功补偿方案的对比分析荣信电力电子股份有限公司二、补偿方案选择1. 固定并联电容补偿①固定无功补偿方案是补偿无功功率的常规方法。
装置具有结构简单、经济方便等优点,其补偿无功的容量是设计根据计算的平均负荷大小而确定的,是一个不可调的固定量,通常由电抗器和电容器串联组成,其功能主要是补偿负荷产生的感性无功,并对三次谐波有一定的抑制作用。
一般采用机械开关控制电容器的投切,投切时的冲击电流和操作过电压大,易发生谐振,因此不能频繁投切。
由于固定补偿装置的补偿容量不能随负荷而变化,“欠补”和“过补”交替发生,计费方式又为“反转正计”,使得变电所平均功率因数达不到0.9的要求,造成力率罚款,并使供电设备的能力不能充分发挥。
目前我国普遍采用的方案是在变电所设置固定电容并联补偿。
该方案主要问题是在无负荷和轻负荷的区段,过补偿十分突出,投入固定并联补偿电容后,功率因数比不投时还低,无法达到经济功率因数的要求,变电所因功率因数大幅下降,而遭受巨额罚款,固定电容器补偿还会导致空载时电压抬升,反而恶化电压质量。
②从以上分析结论可知,变电所采用固定补偿方案解决不了功率因数问题,不能随负荷的无功波动随机的调节补偿的容性无功,所以不具备抑制谐波和电压波动。
要解决功率因数问题,抑制谐波和电压波动,必须放弃固定补偿方案,寻求新的补偿方案。
2 自动投切并联电容器组并联电容器组是最早就出现的静止型无功补偿方式,因其结构简单等特点而得到了广泛的应用,一般的并联电容器组都是应用在负荷较为平稳的场合,由手工进行投切,每天的投切次数不超过10次。
自动投切并联电容器组则根据系统所需无功自动进行投切操作,其投切次数可达每天数十次,甚至数百次。
其工作特点如下:响应速度刚切除后的电容器组,需待放电完全后才能再次投入,至少需要数十秒以上。
损耗只有并补电容器和串联电抗器产生损耗,因此损耗非常小。
约在0.1%左右。
谐波电流不产生也不滤除谐波电流。
三相不平衡并联补偿电容器组是三相完全平衡的,因此不能改善不平衡度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率因数0.95
不会产生谐波,而且响应速度快,不会产生冲击电流。
分级多成本高,制造复杂,维护繁琐
与TSC配合使用在牵引变电所
晶闸管控制空芯电抗器
TCR
通过调整触发角的大小就可以改变电抗器所吸收的无功分量,达到调整无功功率的效果
40ms
可以实现较快、连续的无功功率调节,具有反应时间快、运行可靠、无级补偿、可分相调节、能平衡有功、适用范围广
高级动态无功
补偿
SVG
新型静止无功发生器
SVG
动态补偿装置SVG是基于大功率逆变器的动态无功补偿装置,它以大功率三相电压型逆变器为核心,其输出电压通过连接电抗接入系统,与系统侧电压保持同频、同相,通过调节其输出电压幅值与系统电压幅值的关系来确定输出功率的性质,当其幅值大于系统侧电压幅值时输出容性无功,小于时输出感性无功。
适用于大容量的系统中枢点无功补偿
静止式静态无功补偿
机械投切电容器
MSC
用断路器\接触器分级投切电容
投切时间10~30s
控制器简单,市场普遍供货,价格低,投资成本少,无漏电流
不能快速跟踪负载无功功率的变化,而且投切电容器时常会引起较为严重的冲击涌流和操作过电压,这样不但易造成接触点烧焊,而且使补偿电容器内部击穿,所受的应力大,维修量大
使用寿命短,故障较多,有漏电流
一般工厂/小区和普通设备,无功量变化大于30s
晶闸管控制电容器
TCC
采用同时选择截止角β和导通角α的方式控制电容器电流,实现补偿电流无级、快速跟踪
20ms
价格低廉,效率非常高
产生谐波
低压小容量,非常适合广大终端低压用户
静止式动态无功补偿SVC
晶闸管阀控制高阻抗变压器
TCT
响应时间10ms,从容性无功到感性无功连续平滑调节
除较低次的谐波,并使较高的谐波限制在一定范围内;使用直流电容来维持稳定的直流电源电压,和SVC使用的交流电容相比,直流电容量相对较小,成本较低;另外,在系统电压很低的情况下,仍能输出额定无功电流,而SVC补偿的无功电流随系统电压的降低而降低
控制复杂,成本高,35kV以上系统没有产品
目前国际各种无功补偿装置优缺点的比较
大类
名称
型号
工作原理
技术指标
优点
缺点
应用场合
旋转式无功补偿
同步发电机/调相机
欠励磁运行,向系统发出有功吸收无功,系统电压偏低时,过励磁运行提供无功功率将系统电压抬高
可双向/连续调节;能独立调节励磁调节无功功率,有较大的过载能力
其损耗、噪声都很大,设备投资高,起动/运行/维修复杂,动态响应速度慢,不适应太大或太小的补偿,只用于三相平衡补偿,增加系统短路容量
适用无功量比较稳定,不需频繁投切电容补偿的用户
机械投切电抗器
MSR
并联在线路末端或中间,吸收线路上的充电功率
其补偿度60% ~ 85%
防止长线路在空载充电或轻载时末端电压升高
不能跟踪补偿,为固定补偿
超高压系统(330kV及以上)的线路上
静止式动态无功补偿SVC
自饱和电抗器
SSR
依靠自饱和电抗器自身固有的能力来稳定电压,它利用铁心的饱和特性来控制发出或吸收无功功率的大小
调整时间长,动态补偿速度慢
动态补偿
原材料消耗大,噪声大,震动大,补偿不对称电炉负荷自身产生较多谐波电流,不具备平衡有功负荷的能力,制造复杂,造价高
超高压输电线路
晶闸管投切电容器
TSC
分级用可控硅在电压过零时投入电容,在380V低压配电系统中应用较多
10~20ms
无涌流,无触点,投切速度快,级数分得足够细化,基本上可以实现无级调节
晶闸管结构复杂,需散热,损耗大,遇到操作过电压及雷击等电压突变情况下易误导通而被涌流损坏,有漏电流
需快速频繁投切电容补偿的用户
复合开关投切电容器
TSC+
MSC
分级先由可控硅在电压过零时投入电容,再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持交流接触器触点闭合下运行
0.5s左右
无涌流,不发热,节能
通过调整触发角的大小就可以改变高阻抗变压器所吸收的无功分量,达到调整无功功率的效果
阻抗最大做到85%
和TCR型差不多
高阻抗变压器制造复杂,谐波分量也略大一些,价格较贵,而不能得到广泛应用
容量在30Mvar以上时价格较贵,而不能得到广泛应用
晶闸管投切电抗器
TSR+
FC
分级用可控硅作为无触点的静止可控开关投切电抗器
300ms
功率因数达到0.90~0.99的要求,无功补偿容量自动无级调节,不产生谐波,可靠性高、维护简单,使用寿命长,应用电压等级广泛
相对于TCR型SVC,其谐波水平、有功损耗、占地面积都要小,但调节时间长,成本高,温升和噪音是需要控制的
0.4~500kV系统,适用于冲击性负荷:牵引变电站,电弧炉,轧钢机,造船厂
结构复杂,损耗大,任何一只SCR击穿,都会使晶闸管整体损坏;对冷却要求严格,设备造价、建设施工及运行维护费用很高,对维护人员要专门培训以提高维护水平;占地面积大,产生谐波等
35kV及以下系统,与FC/MSC/TSC配合
磁控可调电抗器
MCR
采用直流励磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,改变电抗器感抗电流,以投入的电抗器感性无功容量变化来补偿系统容性无功