纳米陶瓷基复合材料
纳米复合材料2

应用:可以制备氮化硅或碳化硅基纳米复合材 料。 优点:(1)陶瓷基体几乎无收缩; (2)纳米晶须或纤维的体积分量可以相当 大; (3)大多数陶瓷的反应烧结温度低于陶瓷 的常规烧结温度,因此可以避免纳米晶须或纤 维的损坏。
例:反应烧结法制备SiCw/Si3N4纳米复合材料: 原料:硅粉,SiCw, 步骤: 成型:用一般方法, 预氮化:在N2+H2的气氛下预氮化1-1.5h,氮化温度 为1180~1210℃。预氮化后有一定的强度,可进行机 械加工,以达到所需尺寸。 氮化:在1350~1450℃氮化18-36h,使所有硅都变 成氮化硅,得到尺寸精确的SiCw/Si3N4纳米复合材料。 特点:反应烧结时硅与氮发生反应,使体积增加22%, 这使得制品致密,而尺寸却很少变化。
主要化学反应:
XRD分析:只有TiB2和Ti(C,N)两相组成,并 且化学分析测得的组成与理论配比相近。 成分可调:TiB2与Ti(C,N)两相含量的比例, 以及Ti(C,N)中C、N含量的比例。可以在较宽 范围内调整TiB2/Ti(C,N)纳米复合材料的性能。
晶内型结构:图5.19表明,深色相为TiB2,浅色 相为Ti(C,N)。在TiB2颗粒内部分散着几十纳 米的Ti(C,N)晶粒。在Ti(C,N)颗粒内部分散 着纳米级的TiB2晶粒。这证明TiB2/Ti(C,N)纳 米复合材料的复合方式为晶内型。 性质:硬度HV=25GPa,抗折强度435MPa,电阻 率ρ=l5.9μΩ· cm。 断裂方式:穿晶断裂 采用反应热压法制备的TiB2/Ti(C,N)纳米复合 材料的晶界强度很高,这是由于TiB2与Ti(C,N) 之间的相互纳米分散,改善了复合材料的性能 的缘故。
浸渍原理:毛细作用 假设条件:预制体中孔隙呈一束束有规则间隔的 平行通道 浸渍高度:
纳米陶瓷基复合材料

CNTs /陶瓷基复合材料
如何将碳纳米管均匀分散在基体中
CNTs /陶瓷 基复合材料 工艺问题
如何使碳纳米管在高温烧结时结构不受破坏
碳纳米管目前产量小、成本大,不能满足研究需要
对CNTs进行表面改性方法
表面活性剂包括憎水基 和亲水基两部分,提高 了碳纳米管在水中的溶 解性能
一种是在CNTs溶液中添加表面活性剂 不引入杂质的前提下在 管壁产生各种官能团, 从而改善碳纳米管的分 散性 (氧化) 另外一种表面改性的方法是对CNTs进行表面氧化处理。
按基体与分散 相粒径的大小
微米级晶粒构成 的基体与纳米级 分散相的复合
纳米级晶粒的 基体与纳米级 分散相复合
晶内型(纳米粒子主要分布于基体晶粒内 部) 晶间型(纳米粒子主要分布于基体晶粒间)
按纳米级增强相在基体 陶瓷结构中所处的位置
混合型(晶内型与晶间型同时存在) 纳米/纳米型(基体陶瓷晶粒也保持纳米 级尺度)
• 采用传统球磨的方法可以制备复合粉体,如李爱民等制备的 CNTs/HAP材瓷粉体与催化剂混合,然后利用 CVD法制备CNTs,这样就可使CNTs与基体在预成型件中均匀 混合。Xia等人利用这种办法制备了CNTs/Al2O3复合材料。他 们以多孔氧化铝作阳极板,将钴、镍催化剂沉积在该基体上, 然后利用CVD法制备CNTs,使其附于基体孔壁,从而制备出 以涂层形式单向排列于基体的碳纳米管,氧化铝复合材料 。
(二)复合粉末法
复合粉末法是通过化学、物理过程直接制取基体与纳米相均匀 分散(混合)的复合粉末,再将复合粉末热压烧结制备纳米陶瓷 复合材料的一种方法。制备复合粉末的方法有溶胶—凝胶法和 化学气相沉积法。 (三)液相分散包裹法 超声振动、分 散剂及调整pH 将纳米粉末 调整工艺参数,无沉淀、团聚 等使体系冻结、凝胶或聚合 分散于基体 破坏粉末团聚 溶液
纳米颗粒增强陶瓷基复合材料的制备与性能研究

纳米颗粒增强陶瓷基复合材料的制备与性能研究陶瓷基复合材料是一种在陶瓷基体中加入强化相,以提高材料性能的复合材料。
近年来,纳米技术的发展为制备纳米颗粒增强陶瓷基复合材料提供了新的途径。
本文将重点研究纳米颗粒增强陶瓷基复合材料的制备方法以及其性能。
一、纳米颗粒增强陶瓷基复合材料的制备方法1. 真空浸渍法真空浸渍法是一种常用的制备纳米颗粒增强陶瓷基复合材料的方法。
该方法通过将纳米颗粒悬浮在有机溶剂中,利用真空浸渍将纳米颗粒均匀分布在陶瓷基体上,然后通过热处理使纳米颗粒与基体结合成复合材料。
2. 溶胶-凝胶法溶胶-凝胶法是另一种常用的制备纳米颗粒增强陶瓷基复合材料的方法。
该方法通过将纳米颗粒溶解在溶胶中,然后通过凝胶化、干燥和热处理等步骤使纳米颗粒与陶瓷基体结合成复合材料。
二、纳米颗粒增强陶瓷基复合材料的性能研究1. 机械性能纳米颗粒的加入可以显著提高陶瓷基复合材料的硬度、强度和韧性。
纳米颗粒与基体间的界面作用能够有效阻止裂纹扩展,提高材料的疲劳寿命和抗冲击性能。
2. 热稳定性纳米颗粒增强的陶瓷基复合材料具有较好的热稳定性。
纳米颗粒的加入可以提高材料的热传导性能,使得材料在高温环境下保持较好的强度和硬度。
3. 导电性能纳米颗粒增强的陶瓷基复合材料通常具有优异的导电性能。
纳米颗粒的加入可以增加材料的导电性能,使得复合材料在电子器件等应用领域具有广泛的应用前景。
4. 生物相容性纳米颗粒增强的陶瓷基复合材料在生物医学领域具有良好的生物相容性。
纳米颗粒的加入可以提高材料的生物相容性,使得复合材料在人工骨骼、修复组织等方面具有广泛的应用潜力。
结论纳米颗粒增强陶瓷基复合材料是一种具有广阔应用前景的新型材料。
本文重点研究了纳米颗粒增强陶瓷基复合材料的制备方法以及其性能。
通过合理选择制备方法和纳米颗粒的选择,可以制备出具有优异性能的纳米颗粒增强陶瓷基复合材料,为材料科学领域的发展提供了新的思路和方法。
随着纳米技术的进一步发展和应用,纳米颗粒增强陶瓷基复合材料将在各个领域展现出更加广阔的应用前景。
纳米颗粒增强陶瓷复合材料的力学性能研究

纳米颗粒增强陶瓷复合材料的力学性能研究纳米材料的出现和应用给材料科学领域带来了巨大的革命,尤其是在复合材料方面。
其中,纳米颗粒增强陶瓷复合材料因其独特的力学性能备受关注。
本文将探讨纳米颗粒对陶瓷复合材料力学性能的增强作用,并分析其机理。
1. 纳米颗粒强化效应纳米颗粒作为增强材料能够显著提高陶瓷复合材料的强度和硬度。
这是由于纳米颗粒尺寸较小,具有更高的比表面积和较大的界面能,能够有效阻拦晶界滑移以及裂纹扩展,增强材料的断裂韧性。
另外,纳米颗粒还能够改变陶瓷复合材料的晶体结构,使其具备更好的导电性和光学性能。
2. 纳米颗粒增强机制纳米颗粒增强陶瓷复合材料的机制主要可以从界面相容性、晶体结构和微观应力场几个方面解释。
首先,纳米颗粒与陶瓷基体之间的界面能够增加复合材料的界面相容性,使得陶瓷基体更好地吸附纳米颗粒,从而增强界面的结合强度。
其次,纳米颗粒的晶粒尺寸比陶瓷基体小得多,这种尺寸差异将在晶界上产生一定的应力场,限制晶界滑移和晶体的扩散。
最后,纳米颗粒与陶瓷基体的相互作用还可以通过增强材料的界面钳制效应,使得裂纹扩展受到限制。
3. 纳米颗粒增强陶瓷复合材料的应用纳米颗粒增强陶瓷复合材料已经被广泛应用于多个领域。
其中最具代表性的是陶瓷基复合材料,如碳化硅增强陶瓷复合材料、氧化铝增强陶瓷复合材料等。
这些复合材料在航空航天、汽车制造、电子设备等领域中发挥了重要作用。
此外,纳米颗粒增强陶瓷复合材料还可用于涂层材料、生物医学器械等方面。
4. 纳米颗粒与陶瓷基体的相互作用纳米颗粒与陶瓷基体之间的相互作用对于纳米颗粒增强陶瓷复合材料的力学性能至关重要。
研究发现,纳米颗粒的分散均匀性、界面结合强度以及晶粒尺寸等因素都会影响纳米颗粒增强效果。
因此,如何控制纳米颗粒在陶瓷基体中的分布以及界面的结合强度成为了研究的重点。
目前,研究者们通过改变纳米颗粒的形状、大小、表面修饰等手段来实现对其分散以及与陶瓷基体之间的相互作用的调控。
陶瓷基复合材料的发展

陶瓷基复合材料的发展
陶瓷基复合材料是一种由陶瓷基体和其他添加材料组成的复合材料。
它具有陶瓷的高温稳定性、硬度和耐磨性,并融合了其他材料的特性,如金属的导电性、塑料的韧性和纤维增强材料的强度。
陶瓷基复合材料的发展可以追溯到20世纪60年代以来。
最早的陶瓷基复合材料主要是在纳米
级陶瓷颗粒中添加金属、碳纤维等材料,以提高其韧度和抗断裂性能。
随着技术的进步,新的复合材料和制备方法被开发出来,陶瓷基复合材料的性能不断提高。
目前,陶瓷基复合材料在多个领域得到了广泛应用。
例如,陶瓷基复合材料在航空航天领域中应用于发动机喷嘴、热障涂层等高温部件,具有出色的高温性能和耐腐蚀性能。
在汽车工业中,陶瓷基复合材料可以用于发动机零部件、刹车片等耐磨部件,提高其耐久性和性能。
此外,陶瓷基复合材料还在电子、光学、医疗等领域中发挥重要作用。
例如,陶瓷基复合材料可以制备用于高频电子器件的介质材料,具有低介电损耗和高绝缘性能。
在光学领域,陶瓷基复合材料可用于制备高精度光学元件,如反射镜和透镜,具有优良的光学性能和耐磨性。
未来,陶瓷基复合材料的发展趋势将主要集中在提高材料性能和制备工艺的改进上。
随着纳米技术和3D打印技术的发展,将更高性能的添加材料引入陶瓷基复合材料中,有望进一步提高
其力学性能、导电性能和耐磨性能。
纳米复合陶瓷涂料标准

纳米复合陶瓷涂料标准纳米复合陶瓷涂料标准纳米复合陶瓷涂料是一种应用纳米技术和陶瓷材料组成的涂料,具有优异的耐磨、耐候、防腐蚀和耐高温等特性。
针对纳米复合陶瓷涂料,制定了一系列的标准,以保证其质量和使用效果。
纳米复合陶瓷涂料标准要求其材料成分符合相关行业标准。
涂料的主要成分是纳米颗粒和陶瓷基材,纳米颗粒的粒径要求在10纳米至100纳米之间,粒径大小直接影响涂层的性能,过大或过小的颗粒都会对涂层的效果产生负面影响。
陶瓷基材要求具有高温稳定性、硬度高、磨损率低等特点,这些性能可以保证涂层在高温、高压、高速运动等条件下仍能保持良好的性能。
纳米复合陶瓷涂料标准要求其使用寿命长且在一定的环境条件下能够保持稳定。
涂料的使用寿命是指涂层在正常使用条件下能够保持良好的功能和外观的时间。
标准要求涂料在恶劣环境下,如高温、强酸碱等条件下具有良好的耐久性和耐腐蚀性。
此外,标准还规定了涂料的防水、防污染、防紫外线等性能,以保证涂层的长期使用效果。
纳米复合陶瓷涂料标准要求其施工方便,具有良好的可操作性。
标准规定了涂料的粘度、涂装厚度、固化时间等参数,保证施工时涂料的流动性良好,容易涂装。
此外,标准还规定了涂料干燥时间、固化时间等,用于保证涂层在一定时间内能够达到最佳的性能表现。
纳米复合陶瓷涂料标准还要求对产品进行严格的质量监控和测试。
标准规定了涂层的耐磨性、耐候性、耐化学性等测试方法,以确保涂料符合要求。
同时,标准还要求涂料生产商在产品销售后要提供相关的技术支持和售后服务,以解决消费者在使用过程中的问题。
纳米复合陶瓷涂料标准的制定将有助于规范涂料市场,保证产品质量,并为用户提供良好的使用体验。
标准的不断完善和更新,也将不断促进纳米复合陶瓷涂料的技术创新和应用拓展。
陶瓷基复合材料综述

陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。
陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。
一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。
其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。
二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。
其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。
高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。
高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。
化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。
三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。
其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。
此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。
在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。
此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。
综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。
通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。
由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。
纳米科技在陶瓷材料中的应用与研究进展

纳米科技在陶瓷材料中的应用与研究进展概述纳米科技作为一种前沿技术,已经在众多领域展示出了巨大的潜力,并开始在陶瓷材料领域得到广泛的应用。
纳米材料具有独特的物理、化学和力学性质,使其在陶瓷制备与应用方面具备了很多优势。
本文将重点介绍纳米科技在陶瓷材料方面的应用和研究进展。
一、纳米颗粒填充增强材料纳米颗粒填充材料是指通过添加纳米尺度的颗粒来增强陶瓷材料的性能。
由于纳米材料具有高比表面积、较小的颗粒尺寸和较大的界面活性,因此可以提高陶瓷材料的力学性能、热稳定性和尺寸稳定性。
同时,纳米颗粒还能改善陶瓷材料的导电性和磁性。
例如,通过控制添加纳米颗粒的种类、尺寸和含量,可以显著提高陶瓷材料的强度、硬度和韧性,从而提高其在实际应用中的性能。
二、纳米涂层技术纳米涂层技术是指将纳米材料制备成薄膜或涂层覆盖在陶瓷材料表面,以增强陶瓷材料的性能。
纳米涂层可以提供良好的抗氧化、抗磨损和耐腐蚀性能。
此外,纳米涂层还可以调控陶瓷材料的光学、电学和热学性质,改善其表面质量和增加其多功能性。
如纳米钛涂层可以提高陶瓷的耐磨损性和耐高温性能,纳米硅涂层可以提高陶瓷的透明性和生物相容性。
三、纳米陶瓷基复合材料纳米陶瓷基复合材料是指在传统陶瓷基质中添加纳米材料而形成的复合材料。
纳米颗粒在复合材料中可以作为增强相,提高陶瓷基质的力学性能。
同时,添加适量的纳米材料可以改善复合材料的断裂韧性和热稳定性。
例如,添加纳米碳化硅颗粒可以显著提高陶瓷基复合材料的强度、硬度和抗磨损性能。
纳米陶瓷基复合材料还可以通过调控纳米颗粒的种类和含量来实现多种性能的可调控性。
四、纳米陶瓷自修复技术纳米陶瓷自修复技术是指利用纳米材料在陶瓷材料断裂或损伤时自动形成新的结构,以修复或增强陶瓷材料的性能。
纳米颗粒可以在局部区域形成纳米尺度的晶界或纳米颗粒,从而实现裂纹的自修复。
此外,添加适量的纳米材料还可以增强陶瓷材料的断裂韧性,通过吸收和扩散裂纹应力来防止裂纹延伸。
纳米陶瓷自修复技术能够提高陶瓷材料的寿命和可靠性,减少由于外界环境和外力引起的陶瓷材料的损伤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)液相分散包裹法
超声振动、分 散剂及调整pH
将纳米粉末 分散于基体
溶液
破坏粉末团聚
调整工艺参数,无沉淀、团聚 等使体系冻结、凝胶或聚合
经一定热处理制 得均匀分散的复合位生成法
工艺:首先将基体粉末分散于含有可生成纳米相组分的先驱体 溶液中,经干燥、浓缩、成型坯件,最后在热处理或挠结过程 生成纳米相粒子,成为纳米陶瓷复合材料。
优点:纳米相在基体中分布均匀 纳米粒子不存在团聚问题
可编辑ppt
11
纳米陶瓷复合材料的烧结
(一)常压饶结
将无团聚的纳米相粉末与基体原料粉末分散、混合后,在室温 下模压成坯件,然后在常压和一定温度下挠结使其致密化,这 种制备纳米陶瓷复合材料的工艺林为常压烧结 。
可编辑ppt
15
可编辑ppt
16
CNTs /陶瓷基复合材料
如何将碳纳米管均匀分散在基体中
CNTs /陶瓷 基复合材料 工艺问题
如何使碳纳米管在高温烧结时结构不受破坏 碳纳米管目前产量小、成本大,不能满足研究需要
可编辑ppt
17
对CNTs进行表面改性方法
表面活性剂包括憎水基 和亲水基两部分,提高 了碳纳米管在水中的溶
可编辑ppt
13
研究潮流
• 复合材料的烧结通常采用传统的热压烧结和气氛保护烧结,但一 些研究中发现采用这些方法烧结时碳纳米管的结构会遭到破坏。 最新研究中倾向于采用等离子体烧结潮,这种方法热效率较高, 可以在低温下、短时间内完成烧结,因此碳管的结构保存完好。
可编辑ppt
14
引言
自从1991年日本Iijima发现碳纳米管 以来,CNTs以其独特的结构和性能 引起广泛关注,全球范围内展开了 CNTs的研究热潮。迄今,每年都有 大量有关CNTs的研究文献涌现出来, 研究领域包括CNTs制备工艺和生长 机理、CNTs的结构和性能、CNTs 的应用三方面。随着CNTs制备工艺 与生长机理以及结构与性能表征这 两方面研究的不断深入和进步,近 年来,CNTs的应用开始成为研究的 热点。
可编辑ppt
4
纳米陶瓷复合材料的制备工艺流程
• 与一般颗粒增强陶瓷基复合材料的工艺流程(即制粉一 混合一成型坯件一烧结)基本相同。
• 差别:它的第二相是纳米级的,这就造成了纳米陶瓷 复合材料在原料粉末分散与混合工序上的特殊性。另 外。当纳米陶瓷复合材料的第二相不是预先制好后揍 人,而是通过一定热处理条件,在坯件烧结过程中由 基质晶析出纳米晶(第二相),即通过原位生长得。其 制备工艺也与一般颗粒增强陶瓷基复合材料的相应过 程有所差别 。
按基体与分散 相粒径的大小
微米级晶粒构成 的基体与纳米级 分散相的复合
纳米级晶粒的 基体与纳米级 分散相复合
可编辑ppt
3
晶内型(纳米粒子主要分布于基体晶粒内部)
按纳米级增强相在基体 陶瓷结构中所处的位置
晶间型(纳米粒子主要分布于基体晶粒间) 混合型(晶内型与晶间型同时存在)
纳米/纳米型(基体陶瓷晶粒也保持纳米 级尺度)
优点:常压挠结工艺简单,不需要特殊设备
解决方法:可 掺人一种或多 种稳定化粉体
缺点:常压烧结过程中晶粒快速长大,并容易 形成孔洞,因此制品不 够致密。
可编辑ppt
12
(二)应力有助烧结
定义: 将无团聚的粉体在一定压力下挠结,称为应力有助饶结 优点:高致密度的纳米陶瓷复合材料 缺点:设备复杂,成本增高
可编辑ppt
1
前言
• 著名的诺贝尔奖获得者Feynman在六十年代就曾预言:如果我 们能对物体微小规模上的排列加以某种控制,我们就能使物体 得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的 变化。
可编辑ppt
2
纳米陶瓷复合材料定义:是指通过有效的分散、复合而使异相纳 米颗粒均匀弥散地保留在基体陶瓷结构之中的一类材料。
振动球磨利用高频振动产生的球 对球的冲击来粉碎粒子与混料
可编辑ppt
7
搅动球磨亦称高能球磨。 它利用内壁不带齿的搅动 球磨机进行粒子粉碎与混
料。
气流粉碎的缺点是由于物料与气流 充分接触,粉碎后物料吸附的
气体较多,增加了粉末使用前排除 吸附气体的工序
可编辑ppt
8
机械混合分散法的不足:
(一)不能保证两相组分的分散均匀性,球磨本身不能避免纳 米粒子的团聚。
(二)干燥过程中,已分散粒子的团聚和沉降会进一步造成不 均匀性。
改善的方法:
(一)在机械混合分散的基础上辅以大功率超声波振动以破坏 粒子间的团聚;
(二)调整体系的PH值使基体和纳米相粉末分散后的悬浮颗粒 的双电层结构具有静电稳定性;使用适当的分散剂(也称助磨 剂)。
可编辑ppt
9
(二)复合粉末法
复合粉末法是通过化学、物理过程直接制取基体与纳米相均匀
可编辑ppt
5
按照纳米粒子的 分散或形成方式
机械混合分散法
复合粉末法
液相分散包裹法
原位生长法
可编辑ppt
6
纳米粒子的分散与制粒
(一)机械混合分散法 ——先分别制备基体粉末和纳米相粉末, 然后将它们进行混合球磨。球磨是一种机械粉碎方法,同时能 将基体原料粉末与纳米相原料粉末混合。通常有滚动球磨、振 动球磨、搅动(高能)球磨和气流粉碎等。
首先分别使用阴、阳离子分散剂分散多壁碳纳米管与氧化 铝,制备出相应的稳定悬浮液。然后将氧化铝悬浮液逐滴 加入到碳纳米管悬浮液中,利用静电吸附剂得到沉淀。得 到的沉淀洗涤、干燥后即可得到混合均匀的复合粉体。
可编辑ppt
19
• Setmg等人,用了一种全新的方法来制备CNTs/Al2O3 复合材料他们首先用HF酸、硝酸和硫酸对碳纳米管进 行表面氧化处理,去除制备过程中残余的催化粒子并 引人大量官能团。然后将处理过的碳纳米管置于去离 子水中超声分散,获得分散均匀的悬浮液。接着将 A1(NO3)3·9H20加入到该悬浮液中,并超声分散。混 合溶液加热蒸发水分、结晶后得到粉体,该粉体经预 煅烧和等离子烧结后即可获得复合材料
解性能
一种是在CNTs溶液中添加表面活性剂
不引入杂质的前提下在 管壁产生各种官能团, 从而改善碳纳米管的分
散性 (氧化)
另外一种表面改性的方法是对CNTs进行表面氧化处理。
可编辑ppt
18
CNTs /陶瓷基复合材料制备工艺
碳纳米管通过表面改性得到稳定悬浮液后,制备复合粉体通常 采用胶体法、溶胶—凝胶法或杂凝聚法。 孙静等人采用胶体法制备了多壁碳纳米管/氧化铝复合材料。