最小二乘法原理

合集下载

最小二乘法定义

最小二乘法定义

最小二乘法定义最小二乘法(Least Squares Method,简称LS)是指在数学中一种最常见的数据拟合方法,它是一种统计学意义上的估计方法,用来找出未知变量和已知变量之间的关系,其中模型参数是通过最小化数据集误差的平方和来估计的。

一、定义:最小二乘法(Least Squares Method)是指在数学中最常见的数据拟合方法,它是一种统计学意义上的估计方法,用来确定未知变量与已知变量之间的关系,其中模型参数是通过最小化数据集误差的平方和来估计的。

二、基本原理:最小二乘法的基本原理是利用数据点与一个被称为“模型函数”的预设函数之间的差异,来从中估计出模型函数的参数。

具体来说,这一差异可以以误差的平方和来衡量,最小二乘法就是最小这一平方和的方法。

三、步骤:1. 构造未知变量的模型函数,其中当需要拟合的参数数目大于等于给定数据点的个数时,就会导致一定的形式多项式模型函数有正解;2. 求解模型函数的最小平方误差的最优解,即求解参数的数值;3. 根据最优解找出最小平方误差的值;4. 对模型函数进行评价,判断是否尽可能地满足数据点;5. 若满足,则用找出的模型函数来预报未来的参数变化情况。

四、应用:1. 拟合统计图形:通过最小二乘法,可以得到曲线拟合的参数,绘制出统计图形的曲线,用来剖析统计数据;2. 回归分析:可以用最小二乘法预测变量和另一变量之间的关系,如:股票收益与股价价格之间的关系,从而得到有用的分析结果;3. 模型拟合:最小二乘法可以估计精确数据模型参数,这些模型参数可与实验数据相同;4. 图像分析:最小二乘法可用于分析图像特征,如:平面图像的特征提取与比较,目标图像分类,等;5. 信号处理:最小二乘法的应用也可扩展到信号处理领域,用该方法对信号和噪声之间的关系进行拟合,来消除信号中的噪声。

最小二乘法原理

最小二乘法原理

最小二乘法原理1. 概念 最小二乘法多项式曲线拟合,根据给定的m 个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。

2. 原理给定数据点pi(xi,yi),其中i=1,2,…,m 。

求近似曲线y= φ(x)。

并且使得近似曲线与y=f(x)的偏差最小。

近似曲线在点pi 处的偏差δi= φ(xi)-yi ,i=1,2,...,m 。

常见的曲线拟合方法:1. 是偏差绝对值最小11min (x )y m mi i i i i φδφ===-∑∑ 2. 是最大的偏差绝对值最小min max (x )y i i i iφδϕ=- 3. 是偏差平方和最小2211min ((x )y )m mii i i i φδϕ===-∑∑ 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。

推导过程:1. 设拟合多项式为:01...k k y a a x a x =+++2. 各点到这条曲线的距离之和,即偏差平方和如下:22011(...)m k i i k i i R y a a x a x =⎡⎤=-+++⎣⎦∑ 3. 为了求得符合条件的a 值,对等式右边求ak 偏导数,因而我们得到了:0112(...)0m k i k i i y a a x a x =⎡⎤--+++=⎣⎦∑0112(...)0m k ik i i y a a x a x x =⎡⎤--+++=⎣⎦∑……..0112( 0k k i k i i y a a x a x x =⎡⎤--+++=⎣⎦∑4. 将等式简化一下,得到下面的式子01111...n n nki k ii i i i a n a x a x y ===+++=∑∑∑ 21011111...n n n nk i ik i i i i i i i a x a x a x y x +====+++=∑∑∑∑ ……12011111...n n n nkk k k ii k i i i i i i i a x a x a x y x +====+++=∑∑∑∑ 5. 把这些等式表示成矩阵形式,就可以得到下面的矩阵:11102111111121111.........n n n k i i i i i i n n n n k i i i i i i i i i n n n n k k k k k i i i i i i i i i n x x y a a x x x x y a x x x x y ===+====+====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑∑∑∑∑∑ 6. 将这个范德蒙矩阵化简后得到:011112221...1...1...k k k k n n n a y x x a y x x a y x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦。

最小二乘法原理

最小二乘法原理
最小二乘法原理
最小二乘法原理:等精度测量的有限测量系列,寻求一个真值, 最小二乘法原理 使得误差的平方和达到最小。
xi 现在来证明 证明,只有按公式(1-16) x = ∑ n = x0 计算得到 证明 i =1 的最佳估计值,才具有最小的残差(或偏差)平方和。
n
设有一独立等精度的测量列xi(i=1,2,…,n),其残差为 vi = xi − x 残差的平方和为:
2 2 i =1 i =1
n
2
n
2
= n x + n x − 2n • x • x = n( x − + x − 2 • x • x) = n( x − x) 2 > 0
所以
n n
2
由此证明了: 算术平均值具有残差平 方和最小值的特性
∑ d <∑ v
2 i =1 i i =1
2
n
i

∑ vi 为最小值。
8
d i = x i − x ,则残差的平方和为
n
∑d
i =1
2 i
= ∑ ( xi − x ) = ∑ ( xi − 2xi x + x )
2 2 i =1
n
n
n
2
i =1
= ∑ xi − 2 x ∑ xi + n x
2 i =1 n i =1
2
n
2
2 1 n = ∑ xi − 2n • x • ∑ xi + n x n i =1 i =1
= ∑ xi − 2n • x • x + n x
2 i =1
n
2
(1: i =1 m
m
xi ∑ n+k i =1

第5章最小二乘法

第5章最小二乘法

(5-37) 这正是不等精度测量时加权算术平均值原理所给出的结果。
对于等精度测量有
则由最小二乘法所确定的估计量为
此式与等精度测量时算术平均值原理给出的结果相同。 由此可见,最小二乘法原理与算术平均值原理
是一致的,算术平均值原理可以看做是最小二乘 法原理的特例。
第三节 精度估计
用矩阵表示的正规方程与等精度测量情况类似,可表示为

(5-27)
上述正规方程又可写成 (5-28)
该方程的解,即参数的最小二乘法处理为 (5-29)

则有
(5-30)
例5—2
• 某测量过程有误差方程式及相应的标准差如下:
试求x1,x2的最小二乘法处理正规方程的解。 解: (1)首先确定各式的权
(2)用表格计算给出正规方程常数项和系数
三、线性参数最小二乘法的正规方程
为了获得更可取的结果,测量次数n总要多于未 知参数的数目t,即所得误差方程式的数目总是要 多于未知数的数目。因而直接用一般解代数方程 的方法是无法求解这些未知参数的。
最小二乘法则可以将误差方程转化为有确定解 的代数方程组(其方程式数目正好等于未知数的个 数),从而可求解出这些未知参数。这个有确定解 的代数方程组称为最小二乘法估计的正规方程(或 称为法方程)。
将ti,li,值代人上式,可得残余误差为
(二)不等精度测量数据的精度估计
不等精度测量数据的精度估计与等精度测量数据的精 度估计相似,只是公式中的残余误差平方和变为加权的 残余误差平方和,测量数据的单位权方差的无偏估计为
(5-44) 通常习惯写成
测量数据的单位权标准差为
(5-45)
(5-46)
二、最小二乘估计量的精度估计
1.线性参数的最小二乘法处理的基 本程序

最小二乘法

最小二乘法

最小二乘法1. 最小二乘法原理:最小二乘法是常用的线性拟合方法,原理和计算公式简述如下:假定线性关系为y kx b =+,做N 次实验得到'i i y kx b =+,式中与假定关系比较误差为,'21()N i i i W yy ==-∑。

为了使W 值最小,应有0,0WWk b ∂∂==∂∂。

于是得到求解k 、b 的方程式为,211111NN N i i i i i i i N N i ii i k x b x x y k x bN y =====+=+=∑∑∑∑∑,计算求得斜率k 与截距b 的值。

2. 数据处理:电压值经过运放输出到AD 转换器,然后由AD 转换得到一个数值。

在这个过程中,从0.0000到10.0000间隔1.0000取一个值共11个输入值,对应这11个输入值有11个最终的输出值。

依据这11组不同的数据,我们可以依据最小二乘法来求得一个线性关系:y = k*x + b 。

3. 程序设计:(1) 从文本文件中读取输入输出值。

文本文件的格式为:两列数据,第一列为输入数据,第二列为输出数据。

(2) 对于数据利用最小二乘法进行计算求得直线的斜率和截距。

具体步骤为:1)计算输入x 数组的叠加和xtotal 和平方和xsqua ;计算输出y 数组的叠加和ytotal 和平方和ysqua ,以及xy 乘积的叠加和xymul ;2)计算sxx=xsqua-xtotal*xtotal/11,syy=ysqua-ytotal-ytotal,sxy=xmul-xtotal*ytotal/11;3)计算斜率k 和截距b 。

xaver=xtotal/11,yaver=ytotal/11,k=sxy/sxx,b=yaver-k*xaver 。

(3) 计算误差百分比。

具体步骤为:1)计算输入x 条件下的输出拟和值yy[I]=k*x[I]+b ;2)计算拟和值与测量值的差值diff[I]=yy[I]-y[I];3)计算误差百分比per[I]=diff[I]/y[I]。

最小二乘法的原理

最小二乘法的原理

最小二乘法的原理
最小二乘法是一种统计学中常用的参数估计方法,用于拟合数据并找到最适合数据的数学模型。

其原理是通过最小化实际观测值与预测值之间的误差平方和,来确定模型参数的取值。

具体而言,假设有一组数据点,其中每个数据点包括自变量(即输入值)和因变量(即输出值)的配对。

我们要找到一条最佳拟合曲线(或者直线),使得曲线上的预测值尽可能接近实际观测值。

而最小二乘法的目标就是使得残差的平方和最小化。

假设要拟合的模型为一个一次多项式:y = β0 + β1*x,其中β0和β1是待估计的参数,x是自变量,y是因变量。

我们要找到
最优的β0和β1,使得拟合曲线的误差最小。

为了使用最小二乘法,我们首先需要构建一个误差函数。

对于每个数据点,误差函数定义为实际观测值与预测值之间的差,即e = y - (β0 + β1*x)。

我们的目标是最小化所有误差的平方和,即最小化Sum(e^2)。

通过对误差函数求导,并令导数为0,可以得到最小二乘法的
正规方程组。

解这个方程组可以得到最优的参数估计值,即
β0和β1的取值。

最终,通过最小二乘法,我们可以得到一条最佳拟合曲线(或直线),使得曲线的预测值与实际观测值的误差最小。

这条拟
合曲线可以用于预测新的因变量值,或者理解自变量与因变量之间的关系。

最小二乘法的基本原理

最小二乘法的基本原理

最小二乘法的基本原理
最小二乘法(Least Square Method,LSM)是一种数学优化方法,根据一组观测值,找到最能够复合观测值的模型参数。

它是求解最优化问题的重要方法之一,可以用于拟合曲线、拟合非线性函数等。

一、基本原理
(1)最小二乘法依据一组观测值的误差的平方和最小找到参数的最优解,即最小化误差的函数。

(2)为了求解最小量,假设需要估计的参数维度为n,那么应该在总共的m个观测值中找到n个能够最小二乘值的参数。

(3)具体的求解方法为,由所有的数值计算最小和可能性最大的可能性,从而求得最佳拟合参数。

二、优点
(1)最小二乘法最大的优点就是可以准确测量拟合实际数据的结果。

(2)有效利用活跃度原则让处理内容变得简单,操作计算量少。

(3)可以有效地节省计算过程,提高计算效率,使用计算机完成全部计算任务。

(4)具有实用性,可以根据应用的不同情况来自动判断最优的拟合参数,比如用最小二乘法来拟合异常值时,就可以调整参数获得更好的拟合效果,而本没有定义可以解决问题。

三、缺点
(1)对于(多维)曲线拟合问题,最小二乘法计算时特别容易陷入局部最小值,可能得到估计量的质量没有较优的实现;
(2)要求数据具有正态分布特性;
(3)数据中存在外源噪声,则必须使用其它估计方法;
(4)最小二乘法的结果只对数据有效,对机器学习的泛化能力较弱。

最小二乘法原理

最小二乘法原理

最小二乘法(也称为最小二乘法)是一种数学优化技术。

它通过最小化误差平方和来找到数据的最佳函数匹配。

使用最小二乘法,可以容易地获得未知数据,并且可以最小化这些获得的数据与实际数据之间的误差平方和。

最小二乘法也可以用于曲线拟合。

其他优化问题也可以通过最小二乘法通过最小化能量或最大化熵来表达。

801年,意大利天文学家Giuseppe Piazi发现了第一颗小行星谷神星。

经过40天的跟踪观察,皮亚齐失去了谷神星的位置,因为谷神星移到了太阳后面。

此后,全世界的科学家开始使用Piazi的观测数据来搜索Ceres,但是根据大多数人的计算结果,搜索Ceres并没有结果。

高斯,然后24,也计算了谷神星的轨道。

奥地利天文学家海因里希·阿尔伯斯(Heinrich Albers)根据高斯计算出的轨道重新发现了谷神星。

高斯使用的最小二乘方法发表于1809年的《天体运动理论》一书中。

法国科学家让·德(Jean de)于1806年独立发明了“最小二乘法”,但它尚不为人所知,因为它是全世界所不知道的。

勒让德(Legendre)与高斯(Gauss)有争议,他是谁首先提出了最小二乘法原理。

1829年,高斯证明最小二乘法的优化效果优于其他方法,因此被称为高斯-马尔可夫定理。

最小二乘法由最简单的一维线性模型解释。

什么是线性模型?在监督学习中,如果预测变量是离散的,则称其为分类(例如决策树,支持向量机等),如果预测变量是连续的,则称其为Return。

在收益分析中,如果仅包含一个自变量和一个因变量,并且它们之间的关系可以近似地由一条直线表示,则该收益分析称为一维线性收益分析。

如果收益分析包括两个或多个自变量,并且因变量和自变量之间存在线性关系,则称为多元线性收益分析。

对于二维空间,线性是一条直线;对于三维空间线性度是一个平面,对于多维空间线性度是一个超平面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最小二乘法
最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具。

最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

最小二乘法公式:
设拟合直线的公式为
,
其中:拟合直线的斜率为:
;计算出斜率后,根据
和已经确定的斜率k,利用待定系数法求出截距b。

在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y 直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

Y计= a0 + a1 X (式1-1)
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)&sup2;〕最小为“优化判据”。

令: φ= ∑(Yi - Y计)&sup2; (式1-2)
把(式1-1)代入(式1-2)中得:
φ= ∑(Yi - a0 - a1 Xi)2 (式1-3)
当∑(Yi-Y计)&sup2;最小时,可用函数φ对a0、a1求偏导数,令这两个偏导数等于零。

(式1-4)
(式1-5)
亦即
m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7)
得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:
a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。

在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于1 越好;“F”的绝对值越大越好;“S”越趋近于0 越好。

R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。

微积分应用课题一最小二乘法
从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求与之间近似成线性关系时的经验公式. 假定实验测得变量之间的个数
据, , …, , 则在平面上, 可以得到个点, 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为与
之间近似为一线性函数, 下面介绍求解步骤.
考虑函数, 其中和是待定常数. 如果在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记, 它反映了用直线来描述, 时, 计算值与实际值产生的偏差. 当然要求偏差越小越好, 但由于可正可负, 因此不能认为总偏差时, 函数就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定中的常数和, 使为最小. 用这种方法确定系数, 的方法称为最小二乘法.
由极值原理得, 即
解此联立方程得
(*)
问题I 为研究某一化学反应过程中, 温度℃)对产品得率(%)的影响, 测得数据如下:
温度℃)
100 110 120 130 140 150 160 170 180 190
得率(%)
45 51 54 61 66 70 74 78 85 89
(1) 利用“ListPlot”函数, 绘出数据的散点图(采用格式: ListPlot[{ , , …, }, Prolog->AbsolutePointSize[3]] );
(2) 利用“Line”函数, 将散点连接起来, 注意观察有何特征? (采用格式: Show[Graphics[Line[{ , , …, }]] , Axes->True ]) ;
(3) 根据公式(*), 利用“Apply”函数及集合的有关运算编写一个小的程序, 求经验公式;
(程序编写思路为: 任意给定两个集合A (此处表示温度)、B(此处表示得率), 由公式(*)可定义两个二元函数(集合A和B为其变量)分别表示和 . 集合A元素求和: Apply[Plus,A] 表示将加法施加到集合A上, 即各元素相加, 例如Apply[Plus,{1,2,3}]=6;Length[A]表示集合A 元素的个数, 即为n; A.B表示两集合元素相乘相加;A*B表示集合A与B元素对应相乘得到的新的集合.)
(4) 在同一张图中显示直线及散点图;
(5) 估计温度为200时产品得率.
然而, 不少实际问题的观测数据, , …, 的散点图明显地不能用线性关系来描叙, 但确实散落在某一曲线近旁, 这时可以根据散点图的轮廓和实际经验, 选一条曲线来近似表达与的相互关系.
问题II 下表是美国旧轿车价格的调查资料, 今以表示轿车的使用年数, (美元)表示相应的平均价格, 求与之间的关系。

相关文档
最新文档