最小二乘法原理及应用【文献综述】
最小二乘法的原理及其应用

最小二乘法的原理及其应用一、研究背景在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。
其中,最小二乘法是一种最基本、最重要的计算技巧与方法。
它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。
随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。
本文着重讨论最小二乘法在化学生产以及系统识别中的应用。
二、最小二乘法的原理人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。
如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。
为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型,q个相关变量或p个附加的相关变量去拟和。
通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。
参数x是为了使所选择的函数模型同观测值y相匹配。
(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。
其目标是合适地选择参数,使函数模型最好的拟合观测值。
一般情况下,观测值远多于所选择的参数。
其次的问题是怎样判断不同拟合的质量。
高斯和勒让德的方法是,假设测量误差的平均值为0。
令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。
人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。
除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。
确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。
并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。
用函数表示为:用欧几里得度量表达为:最小化问题的精度,依赖于所选择的函数模型。
最小二乘法综述及举例

最小二乘法综述及算例一最小二乘法的历史简介1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。
经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。
随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。
时年24岁的高斯也计算了谷神星的轨道。
奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
经过两百余年后,最小二乘法已广泛应用与科学实验和工程技术中,随着现代电子计算机的普及与发展,这个方法更加显示出其强大的生命力。
二最小二乘法原理最小二乘法的基本原理是:成对等精度测得的一组数据),...,2,1(,n i y x i i =,是找出一条最佳的拟合曲线,似的这条曲线上的个点的值与测量值的差的平方和在所有拟合曲线中最小。
设物理量y 与1个变量l x x x ,...,2,1间的依赖关系式为:)(,...,1,0;,...,2,1n l a a a x x x f y =。
其中n a a a ,...,1,0是n +l 个待定参数,记()21∑=-=mi i i y vs 其中 是测量值, 是由己求得的n a a a ,...,1,0以及实验点),...,2,1)(,...,(;,2,1m i v x x x i il i i =得出的函数值)(,...,1,0;,...,2,1n il i i a a a x x x f y =。
在设计实验时, 为了减小误差, 常进行多点测量, 使方程式个数大于待定参数的个数, 此时构成的方程组称为矛盾方程组。
通过最小二乘法转化后的方程组称为正规方程组(此时方程式的个数与待定参数的个数相等) 。
我们可以通过正规方程组求出a最小二乘法又称曲线拟合, 所谓“ 拟合” 即不要求所作的曲线完全通过所有的数据点, 只要求所得的曲线能反映数据的基本趋势。
【文献综述】最小二乘法的原理和应用

【文献综述】最小二乘法的原理和应用文献综述数学与应用数学最小二乘法的原理和应用一、国内外状况天文学自古代至18世纪是应用数学中最发达的领域。
观测和数学天文学给出了建立数学模型及数据拟合的最初例子,在此种意义下,天文学家就是最初的数理统计学家。
天文学的问题逐渐引导到算术平均,以及参数模型中的种种估计方法,以最小二乘法为顶峰。
1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。
经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。
随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。
时年24岁的高斯也计算了谷神星的轨道。
奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。
高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
勒让德是法国军事学校的教授,曾任多界政府委员,后来成了多科工艺学校的总监,直至1833年逝世。
有记载最小二乘法最早出现在勒让德1805年发表的论著《计算彗星轨道的新方法》附录中。
他在该书中描述了最小二乘法的思想、具体做法及其优点。
勒让德的成功在于它从一个新的角度来看待这个问题,不像其前辈那样致力于找出几个方程(个数等于未知数的个数)再去求解,而是考虑误差在整体上的平衡。
从某种意义讲,最小二乘法是一个处理观测值的纯粹代数方法。
要将其应用于统计推断问题就需要考虑观测值的误差,确定误差分布的函数形式。
勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。
1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-莫卡夫定理。
最小二乘法是提供“观测组合”的主要工具之一,它依据对某事件的大量观测而获得“最佳”结果或“最可能”表现形式。
如已知两变量为线性关系y=a+dx,对其进行n(n>2)次观测而获得n对数据,若将这n对数据代入方程求解a 、b 之值则无确定解。
最小二乘法原理及其简单应用

i=1
i=1
aij xj +
2
m
m
aijai,j+1 xj+1+ … +
aijain xn=
aijbi (j=1,2, … n)
i=1
ห้องสมุดไป่ตู้
i=1
i=1
a11x1+a12x2+ … +a1nxn-b1=0 a21x1+a22x2+ … +a2nxn-b2=0
…………
这就是方程组 ⑵ 。 不难看出方程组 ⑵ 的系数矩阵为 ATA (AT 表示 A 的转置矩阵 ), 由 A 列满秩知 |ATA|≠0 , 故 ⑵ 有唯一解 。 必要性得证 。 充 分 性 : 设 X 是 方 程 组 (2 )2.2 的 解 , 由 xj( j =1,2,...,n) 满 足 方 程 组 2.2 , 也就是满足 ⑷ 式 , 再由于 A 列满秩 ,aij(i =1 ,2 ,... ,m) 不全为零 , 故 ⑶
Y=AX=x1α1+x2α2+ … +xnαn
是所要求的向量 , 则
试根据以上数据确定 S0 和 v 、g. 解 现在要用五个实验点拟合的是二次多项式 (n=5,m=21 ) 即 S=a0+a1t+a2t2 有最小二乘法的曲线拟合原理知
C=B-Y=B-AX
必须垂直于子空间 L(α1,α2, … ,αn) 。 为此只需而且必须 (C,α1)=(C,α2)= … =(C,αs)=0 根据矩阵乘法规则 , 上述一串等式可以写成矩阵相乘的式子 , 即
a a a
…
2 2 2 2 2 2 2 2 2 2
+ … +x
最小二乘法的原理及其应用

最小二乘法的原理及其应用1. 最小二乘法的原理最小二乘法是一种常用的数学优化方法,其原理是通过最小化残差平方和来寻找数据的最佳拟合线或曲线。
当数据存在随机误差时,最小二乘法可以有效地估计模型参数。
最小二乘法的基本原理可以概括为以下几个步骤:1.首先,假设模型的形式,如线性模型:y=mx+b。
2.然后,定义一个衡量模型拟合程度的误差函数,通常采用残差的平方和:$E(m, b) = \\sum_{i=1}^{n} (y_i - (mx_i + b))^2$。
3.接下来,根据最小二乘法的原理,我们需要通过对误差函数求偏导数,得出使误差函数最小化的模型参数。
4.最后,通过优化算法,如梯度下降法等,迭代地调整模型参数,使误差函数达到最小值,从而获得最佳拟合模型。
最小二乘法的原理非常简单和直观,因此被广泛应用于各个领域,如统计学、经济学、工程学等。
2. 最小二乘法的应用最小二乘法在实际问题中有着广泛的应用,下面将介绍其中的几个应用场景。
2.1 线性回归线性回归是最小二乘法最常见的应用之一。
在线性回归中,最小二乘法用于估计自变量与因变量之间的线性关系。
通过最小化残差平方和,我们可以找到一条最佳拟合直线,从而对未知的因变量进行预测。
线性回归广泛应用于经济学、社会学等领域,帮助研究者探索变量之间的相互关系。
2.2 曲线拟合最小二乘法还可以用于曲线拟合。
当我们需要拟合一个非线性模型时,可以通过最小二乘法来估计参数。
通过选择适当的模型形式和误差函数,可以得到最佳拟合曲线,从而准确地描述数据的变化趋势。
曲线拟合在信号处理、图像处理等领域具有重要的应用。
2.3 数据降维数据降维是指将高维度的数据转化为低维度表示,以便于可视化和分析。
最小二乘法可以用于主成分分析(PCA)等降维方法中。
通过寻找投影方向,使得在低维度空间中的数据点到其投影点的平均距离最小化,可以实现数据的有效降维。
2.4 系统辨识在控制工程中,最小二乘法经常被用于系统辨识。
最小二乘法的应用及原理解析

最小二乘法的应用及原理解析最小二乘法,英文称为 Least Squares Method,是一种经典的数学优化技术,广泛应用于数据拟合、信号处理、机器学习、统计分析等领域。
本文将从应用角度出发,介绍最小二乘法的基本原理、优缺点以及实际应用中的具体操作流程。
一、最小二乘法的基本原理最小二乘法的基本思路是:已知一组样本数据(x1,y1),(x2,y2),...(xn,yn),要求找到一条曲线(如直线、多项式等),使得该曲线与样本数据的误差平方和最小。
其数学表示式为:$min {\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$其中,$\hat{y}_i$是曲线在$x_i$处的预测值,代表曲线对样本数据的拟合程度。
显然,当误差平方和最小时,该曲线与样本数据的拟合效果最好,也就是最小二乘法的优化目标。
最小二乘法的求解方法有多种,比较常用的有矩阵求导法、正规方程法、QR分解法等。
这里以正规方程法为例进行介绍。
正规方程法的思路是:将目标函数中的误差平方和展开,取它的一阶导数为零,求得最优解的系数矩阵。
具体过程如下:1.将样本数据表示为矩阵形式,即 $X=[1,x_1,x_2,...,x_n]^T$。
2.构建方程组 $X^TX\beta=X^TY$,其中$\beta=[\beta_0,\beta_1,...,\beta_p]$是待求系数矩阵。
3.求解方程组,得到最优解的系数矩阵 $\beta$。
最小二乘法的优点是:对于线性问题,最小二乘法是一种解析解,可以求得精确解。
同时,最小二乘法易于理解、简单易用,可以快速拟合实际数据,避免过度拟合和欠拟合。
二、最小二乘法的优缺点最小二乘法虽然有很好的拟合效果,但是也存在一些不足之处:1.对异常值敏感。
最小二乘法基于误差平方和的最小化,如果样本中存在离群值或噪声,会对最终结果产生较大影响,导致拟合结果不准确。
2.对线性假设敏感。
最小二乘法只适用于线性问题,如果样本数据的真实规律是非线性的,则拟合效果会大打折扣。
最小二乘法的原理及其应用

最小二乘法的原理及其应用一、研究背景在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。
其中,最小二乘法是一种最基本、最重要的计算技巧与方法。
它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。
随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。
本文着重讨论最小二乘法在化学生产以及系统识别中的应用。
二、最小二乘法的原理人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。
如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。
为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型,q个相关变量或p个附加的相关变量去拟和。
通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。
参数x是为了使所选择的函数模型同观测值y相匹配。
(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。
其目标是合适地选择参数,使函数模型最好的拟合观测值。
一般情况下,观测值远多于所选择的参数。
其次的问题是怎样判断不同拟合的质量。
高斯和勒让德的方法是,假设测量误差的平均值为0。
令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。
人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。
除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。
确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。
并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。
用函数表示为:用欧几里得度量表达为:最小化问题的精度,依赖于所选择的函数模型。
最小二乘法的原理和应用

最小二乘法的原理和应用最小二乘法是一种常见的数学统计方法,常用于数据分析、回归分析和预测模型的建立。
听起来有些抽象,但如果您掌握了最小二乘法,您将能够更好地理解许多现代技术的工作原理。
一、最小二乘法的原理所谓“最小二乘法”,是指根据离散点的数据,以一条最佳直线来逼近这些点,这条直线被称为“回归线”,这个过程也叫做“回归分析”。
当然,如果数据呈非线性关系,类似的曲线模型也可以使用最小二乘法来拟合。
那么,最小二乘法到底是如何工作的呢?它的基本思路是,根据实际数据的偏差,通过数学方法,找到一条最佳的回归线,这条线距离所有数据点的距离之和最小。
也就是说,最小二乘法的目标是尽可能地减少偏差,使回归线的拟合效果越来越好。
那么,如何计算这个距离之和呢?具体来说,我们可以使用误差平方和这个指标。
误差平方和是指所有数据点与回归线之间的距离平方和,也就是所有偏差的平方之和。
这可以通过计算最小二乘法函数来实现。
二、最小二乘法的应用最小二乘法是一种非常广泛应用的数学方法,尤其是在数据分析、回归分析和预测建模方面。
无论是商业分析,还是学术研究,都可以使用最小二乘法来处理真实的数据,并获得更准确的结果。
其中,最常见的应用之一就是从数据中预测未来趋势。
我们可以使用最小二乘法模型来分析可预测的变化趋势、发现趋势异常,甚至拟合出完善的预测模型,为未来的计划和决策提供直观的信息支持。
在市场营销和销售方面尤为突出。
此外,最小二乘法还可以用于估计相应变量的效应。
例如,在经济学上,我们可以使用最小二乘法来分析支出、收入和利率之间的关系,进而预测未来的经济走势。
另外,最小二乘法还可以给强大的机器学习算法提供支持。
例如,在图像识别和自然语言处理领域,我们可以使用最小二乘法来训练神经网络,或优化线性回归模型,进而实现更准确、更稳定的机器学习算法。
总之,最小二乘法是一种非常重要的数学方法,适用于许多领域,其原理和应用仅仅是数学的一小部分。
如果您能掌握它的高级应用,比如说自动建模和自动预测等,您将能够在数据分析和决策中站得更高,走得更远。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文文献综述
信息与计算科学
最小二乘法的原理及应用
一、国内外状况
国际统计学会第56届大会于2007年8月22-29日在美丽的大西洋海滨城市、葡萄牙首都里斯本如期召开。
应大会组委会的邀请,以会长李德水为团长的中国统计学会代表团一行29人注册参加了这次大会。
北京市统计学会、山东省统计学会,分别组团参加了这次大会。
中国统计界(不含港澳台地区)共有58名代表参加了这次盛会。
本届大会的特邀论文会议共涉及94个主题,每个主题一般至少有3-5位代表做学术演讲和讨论。
通过对大会论文按研究内容进行归纳,特邀论文大致可以分为四类:即数理统计,经济、社会统计和官方统计,统计教育和统计应用。
数理统计方面。
数理统计作为统计科学的一个重要部分,特别是随机过程和回归分析依然展现着古老理论的活力,一直受到统计界的重视并吸引着众多的研究者。
本届大会也不例外。
二、进展情况
数理统计学19世纪的数理统计学史, 就是最小二乘法向各个应用领域拓展的历史席卷了统计大部分应用的几个分支——相关回归分析, 方差分析和线性模型理论等, 其灵魂都在于最小二乘法; 不少近代的统计学研究是在此法的基础上衍生出来, 作为其进一步发展或纠正其不足之处而采取的对策, 这包括回归分析中一系列修正最小二乘法而导致的估计方法。
数理统计学的发展大致可分 3 个时期。
① 20 世纪以前。
这个时期又可分成两段,大致上可以把高斯和勒让德关于最小二乘法用于观测数据的误差分析的工作作为分界线,前段属萌芽时期,基本上没有超出描述性统计量的范围。
后一阶段可算作是数理统计学的幼年阶段。
首先,强调了推断的地位,而摆脱了单纯描述的性质。
由于高斯等的工作揭示了最小二乘法的重要性,学者们普遍认为,在实际问题中遇见的几乎所有的连续变量,都可以满意地用最小二乘法来刻画。
这种观点使关于最小二乘法得到了深入的发展,②20世纪初到第二次世界大战结束。
这是数理统计学蓬勃发展达到成熟的时期。
许多重要的基本观点和方法,以及数理统计学的主要分支学科,都是在这个时期建立和发展起来的。
这个时期的成就,包含了至今仍在广泛使用的大多数统计方法。
在其发展中,以英国统计学家、生物学家费希尔为代表的英国学派起了主导作用。
③战后时期。
这一时期中,数理统计学在应用和理论两方面继续获得很大的进展。
三、研究方向
数理统计方法在工农业生产、自然科学和技术科学以及社会经济领域中都有涉及而最小二乘法在这些领域内都有广泛的应用。
我从学习最小二乘法,最小二乘法拟合,Matlab实现,在它们的基础上加上自己得出的一些结论。
以便我们更好、更清楚理解最小二乘法崇高地位。
四、存在问题
国家统计部门的数据质量后认为,公众不喜欢枯燥的统计数字。
因此,他们建议采取各种措施,加强数据生产者和使用者之间的联系。
学生在学习数理统计学中的最小二乘法,要让他们了解其历史背景及学习的意义来调动学生的积极性。
并且要求学生能够更好的学习重要的理论知识,
五、参考依据
[1]邹乐强,最小二乘法原理及其简单应用[J] 河南:职校论坛 2010, (23)
[2]施吉林刘淑珍;计算机数值方法(第三版)[M],北京:高等教育出版社,2009. 103-104
[3]施吉林刘淑珍;计算机数值方法(第三版)[M],北京:高等教育出版社,2009. 105-106
[4]施吉林刘淑珍;计算机数值方法(第三版)[M],北京:高等教育出版社,2009. 107-108
[5] 高富德.最小二乘法的初等证明[J].玉溪师专学报,1989,4:1-2.
[6]丁丽娟. 数值计算方法[M] . 北京:北京理工大学出版社,1997 :127 - 130.
[7]庄楚强,吴亚森. 应用数理统计基础[M] . 广州:华南理工大学出版社,2000.
[8]罗批,郭继昌,李锵,等. 基于偏最小二乘回归建模的
探讨[J ] . 天津大学学报. 2002 ,35 (6) :783 - 786.
[9] 杜天玉,蔡波,王吉,陈振雄.最小二乘法及其在Matla中的应用[J].福建厦门:
[10]王可等.基于Matlab实现最小二乘曲线拟合[J].北京广播学院学报,2005,12(2):52~56.
[11]王武义, 徐定杰, 陈键翼. 误差原理与数据处理[M ] . 哈尔滨: 哈尔滨工业大
学出版社, 2002.。