最新多路数据采集系统本科
《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文

《基于单片机和LabVIEW的多路数据采集系统设计》篇一一、引言在现代化工业和科技应用中,数据采集扮演着举足轻重的角色。
为了满足多路数据的高效、准确采集需求,本文提出了一种基于单片机和LabVIEW的多路数据采集系统设计。
该系统设计旨在实现多通道、高精度的数据采集,为工业自动化、科研实验等领域提供可靠的解决方案。
二、系统设计概述本系统设计以单片机为核心控制器,结合LabVIEW软件进行数据采集、处理和显示。
系统采用模块化设计,包括数据采集模块、数据处理模块、数据传输模块以及LabVIEW上位机显示模块。
通过各模块的协同工作,实现多路数据的实时采集和监控。
三、硬件设计1. 单片机选型及配置系统采用高性能单片机作为核心控制器,具有高速运算、低功耗等特点。
单片机配置包括时钟电路、复位电路、存储器等,以满足系统运行需求。
2. 数据采集模块设计数据采集模块负责从传感器中获取数据。
本系统采用多路复用技术,实现多个传感器数据的并行采集。
同时,采用高精度ADC(模数转换器)对传感器数据进行转换,以保证数据精度。
3. 数据传输模块设计数据传输模块负责将采集到的数据传输至单片机。
本系统采用串口通信或SPI通信等方式进行数据传输,以保证数据传输的稳定性和实时性。
四、软件设计1. 单片机程序设计单片机程序采用C语言编写,实现对传感器数据的采集、处理和传输等功能。
程序采用中断方式接收数据,避免因主程序繁忙而导致的漏采现象。
2. LabVIEW上位机程序设计LabVIEW是一种基于图形化编程的语言,适用于数据采集系统的上位机程序设计。
本系统采用LabVIEW编写上位机程序,实现对数据的实时显示、存储和分析等功能。
同时,LabVIEW程序还具有友好的人机交互界面,方便用户进行操作和监控。
五、系统实现及测试1. 系统实现根据硬件和软件设计,完成多路数据采集系统的搭建和调试。
通过实际测试,验证系统的稳定性和可靠性。
2. 系统测试对系统进行实际测试,包括多路数据采集的准确性、实时性以及系统的稳定性等方面。
基于FPGA和USB20的多路音频信号采集系统

基于FPGA和USB20的多路音频信号采集系统【摘要】本文介绍了一种基于FPGA与USB2.0的多路音频信号采集系统。
采用XILINX公司的FPGA为控制芯片,以USB2.0为接口实现FPGA和PC机之间的高速数据传输。
通过软硬件技术的结合实现了对多路音频模拟信号的采集。
并介绍了固件(fireware)和USB设备驱动软件的开发。
【关键词】USB;FPGA;音频信号采集1概述本文设计了一种多路音频信号采集系统,该系统单位时间内采集的海量数据需要在规定时间内快速传回PC,采用通用串行总线USB2.0接口,它是一种标准的总线接口,有较高的传输速率(USB2.0总线规范理论速率480Mbit/s),并且具有即插即用和易扩展的特性。
2硬件设计2.1多路音频信号采集系统结构多路音频信号采集系统框图如图1所示。
系统主要由A/D转换模块、FPGA驱动和控制模块及USB2.0接口传输模块3部分组成。
本文拟为16路的模拟音频信号采集方案,因所采用的音频AD芯片PCM3000可对两路模拟音频信号进行模/数转换,故需采用8片PCM3000将16路模拟音频数字化后得到8路速率为2.304Mbit/s的串行数据输出送至FPGA内。
在FPGA内经数字复接模块按8:1复接成1路18.432Mbit/s高速数字信号后缓存在XC3S400内部配置的FIFO中。
然后判断当FIFO中的数据达到512B时,向USB2.0控制器中同步写入数据。
由于USB设置为AUTO-IN模式,可以直接把FIFO中数据自动传输到PC上位机硬盘文件中,因而可完成音频信号的采集、传输及存储。
2.2USB2.0芯片结构及应用USB2.0接口芯片选用CYPRESS公司的EZ-USBFX2(CY7C6801356脚SOPP)。
FX2定义了7个端点。
其中EP0IN&OUT、EPlIN、EPlOUT是64byte的端点缓存,只能由FX2的固件访问,支持块、中断和同步传输;EP2、EP4、EP6和EP8是高带宽、大缓冲端点缓冲区,无需固件干涉即可同片外设备进行高带宽数据传输,在高速模式下,EP4、EP8都是512字节的双缓存,而EP2、EP6可以由固件来配置成512或1024字节的多重缓存。
基于STM32单片机的多路数据采集系统设计毕业设计

基于STM32单片机的多路数据采集系统设计毕业设计摘要:本篇设计主要以STM32单片机为核心,设计了一个多路数据采集系统。
该系统能够实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
设计中使用了STM32单片机的AD转换功能实现模拟量信号的采集,使用GPIO口实现数字量信号的采集,通过串口与上位机进行通信。
经过实验验证,该系统能够稳定地采集多路数据,并实现远程数据传输和控制功能,具有较高的可靠性和实用性。
关键词:STM32单片机,数据采集,模拟量信号,数字量信号,上位机通信一、引言随着科技的发展,数据采集系统在工业控制、环境监测、生物医学等领域得到了广泛的应用。
数据采集系统可以将现实世界中的模拟量信号和数字量信号转换为数字信号,并进行处理和存储。
针对这一需求,本文设计了一个基于STM32单片机的多路数据采集系统。
二、设计思路本系统的设计思路是通过STM32单片机实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
该系统采用了模块化设计方法,将系统分为采集模块、显示模块和通信模块。
1.采集模块采集模块通过STM32单片机的AD转换功能实现模拟量信号的采集,通过GPIO口实现数字量信号的采集。
通过在程序中设置采样频率和采样精度,可以对不同类型的信号进行稳定和准确的采集。
2.显示模块显示模块通过LCD显示屏显示采集到的数据。
通过程序设计,可以实现数据的实时显示和曲线绘制,使得用户可以直观地观察到采集数据的变化。
3.通信模块通信模块通过串口与上位机进行通信。
上位机通过串口发送控制命令给STM32单片机,实现对系统的远程控制。
同时,STM32单片机可以将采集到的数据通过串口发送给上位机,实现数据的远程传输。
三、实验结果与分析通过实验验证,本系统能够稳定地采集多路模拟量和数字量信号,并通过串口与上位机进行通信。
系统能够将采集到的数据实时显示在LCD屏幕上,并通过串口传输给上位机。
基于STC12c5a60s2多路数据采集系统

该模块工作在远距离终端,作为模拟待采样的信号源,产生正弦波。对于该 模块有以下两种方案:
方案一:采用ICL8038集成芯片。构成三角波发生器及正弦整形电路。该IC 电路属于积分型施密特压控多谐振荡器,工作范围0.001HZ~300KHZ,完全可 以达到设计要求。
方案二:LC正弦波振荡器。有电容三点式和电感三点式振荡器以及克拉波和 西勒振荡器
1.2.2 系统各模块的最终方案
根据以上方案,结合器件和实现条件等因素,确定如下方案: (1).利用ICL8038集成芯片来作为正弦波信号的产生器。
(2)F/V变换模块采用LM331频压变换器。 (3).采用双单片机STC12C5A60S2来实完成信号的采集与处理。 (4).单片机之间的通信选取RS-485的通信标准。 (5).显示模块的选用LCD1602液晶显示。 小结:这一部分主要介绍了整个系统的构思,以及各个模块的方案比较与选择。
(5)显示模块 该模块在主控端,用于显示接收到的数据。 方案一:采用数码管显示; 方案二:采用 LCD 液晶显示; 方案一要额外增加锁存器等驱动电路,而且不稳定,调试较为麻烦;而方案
二中LCD则具有功耗小、平面直角显示以及影象稳定不闪烁,可视面积大,画面 效果好,抗干扰能力强等特点。所以选用方案二。
STC12C5A60S2系列单片机ADC(A/D转换器)的结构如下图所示。
A/D 转 换 结 束 后 , 最 终 的 转 换 结 果 保 存 到 ADC 转 换 结 果 寄 存 器 ADC_RES 和 ADC_RESL,同时,置位ADC控制寄存器ADC_CONTR中的A/D转换结束标志位ADC_FLAG, 以供程序查询或发出中断申请。模拟通道的选择控制由ADC控制寄存器ADC_CONTR 中的CHS2 ~ CHS0确定。
多路数据采集系统设计

多路数据采集系统设计多路数据采集系统是一种用于采集多个信号源数据的系统。
它通常由采集器、信号源、传输线路、收集器和处理器等组成。
在多路数据采集系统中,采集器是一个关键组件,它负责接收和处理来自多个信号源的数据。
采集器可以是硬件设备,也可以是软件程序。
硬件采集器通常具有多个输入端口,可以同时接收多个信号源的数据,并将其转换为数字信号。
而软件采集器则可以通过计算机的输入设备接收数据。
采集器还可以进行数据处理和存储,以确保数据的质量和实时性。
信号源是指传感器、仪器仪表或其他设备,它们产生或接收数据并将其传输到采集器。
信号源可以是各种类型的传感器,例如温度传感器、压力传感器、光传感器等。
传输线路是将信号源和采集器连接起来的通道,可以是有线连接或无线连接。
其中,有线连接通常使用数据线或网络电缆,而无线连接通常使用无线电或红外线进行信号传输。
收集器是一个用于接收和存储来自采集器的数据的设备。
它可以是计算机、数据存储设备或远程服务器等。
收集器通常具有大容量存储设备,以便可以保存大量的数据。
它还可以进行数据压缩和加密,以确保数据的安全性和可靠性。
处理器是对采集的数据进行处理和分析的设备。
处理器可以是计算机、嵌入式系统或专用的数据处理设备。
它负责对数据进行处理、转换和分析,以提取有用的信息。
处理器还可以根据用户的需求进行实时监测和报警,以及生成报表和图表等输出。
多路数据采集系统广泛应用于各个领域,例如工业自动化、环境监测、医疗健康等。
在工业自动化领域,多路数据采集系统可以用于监测生产设备的运行状态和产品质量,实现智能化控制和优化生产过程。
在环境监测领域,多路数据采集系统可以用于监测空气质量、水质和土壤等环境参数,以提供科学依据和决策支持。
在医疗健康领域,多路数据采集系统可以用于监测患者的生理参数,例如心率、血压和血糖等,以帮助医生进行诊断和治疗。
总之,多路数据采集系统是一种实时监测和数据处理的工具,它可以帮助我们获得准确的数据和有用的信息,以支持决策和优化。
多路数据采集系统毕业设计

多路数据采集系统毕业设计第一章绪论1.1课题研究背景和意义数据采集是指将位移、流量、温度、压力等模拟量采集、转换成数字量后,再由计算机进行存储、处理、显示或打印。
数据采集技术是信息科学的一个重要组成部分,信号处理技术、计算机技术,传感器技术是现代检测技术的基础。
数据采集技术则正是这些技术的先导,也是信息进行可靠传输,正确处理的基础。
在工业生产中,对生产现场的工艺参数进行采集、监视和记录,这样能提高产品的质量、降低成本。
在科学实验中,对应用数据进行实时采集,这样获得大量的动态信息,是研究物理过程动态变化的有效手段,也是获取科学奥秘的重要手段之一。
设计数据采集系统目的,就是把传感器输出的模拟信号转换成计算机能识别的数字信号,并把数字信号送入计算机,计算机将计算得到的数据加以利用观察,这样就实现对某些物理量的监视,数据采集系统性能的好坏,取决于它的精度和速度,在精度保证的条件下提高采样速度,满足实时采集、实时处理和实时控制的要求[1]。
数据采集常用的方式有在PC机,也可以在工控机内安装数据采集卡,如RS-422卡、RS-485卡及A/D卡;或专门的采集设备,包括PCI、PXI、PCMCIA、USB,无线以及火线FireWire接口等,可用于台式PC机、便携式电脑以及联网的应用系统中[2]。
数据采集系统起始于20世纪50年代,1956年美国首先研究了用在军事上的测试系统,目标是测试中不依靠相关的测试文件,由非成熟人员进行操作,并且测试任务是测试设备高速自动完成的。
近年来,数据采集及应用受到了人们越来越广泛的关注,数据采集系统也有了迅速的发展,数据采集系统也朝着微型化、小型化、便携式,低电压、低功耗发展。
当前市场出售的小型数据采集器相当于一个功能齐全计算机。
这些数据采集器功能强大,能够实现实时数据采集、处理的自动化设备。
具备实时采集、自动存储、即时显示、即时反馈、自动处理、自动传输功能[;不仅能保证现场数据的实时性、真实性、有效性、可用性,而且能很方便输入计算机,应用在各个领域。
《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文

《基于单片机和LabVIEW的多路数据采集系统设计》篇一一、引言随着科技的发展,多路数据采集系统在工业、医疗、环境监测等领域的应用越来越广泛。
为了满足多路数据的高效、准确采集需求,本文提出了一种基于单片机和LabVIEW的多路数据采集系统设计。
该系统设计旨在实现多路信号的同时采集、处理及实时监控,以适应复杂多变的应用环境。
二、系统概述本系统采用单片机作为核心控制器,结合LabVIEW软件进行数据采集和处理。
系统由多个传感器模块、单片机控制器、数据传输模块以及上位机软件组成。
传感器模块负责实时监测各种物理量,如温度、湿度、压力等,并将采集到的数据传输给单片机控制器。
单片机控制器对数据进行处理和存储,并通过数据传输模块将数据发送至上位机软件进行进一步的处理和显示。
三、硬件设计1. 传感器模块:传感器模块采用高精度、高稳定性的传感器,如温度传感器、湿度传感器等,实现对物理量的实时监测。
传感器模块的输出为数字信号或模拟信号,方便与单片机进行通信。
2. 单片机控制器:采用具有高速处理能力的单片机作为核心控制器,实现对数据的快速处理和存储。
单片机与传感器模块和数据传输模块进行通信,实现数据的实时采集和传输。
3. 数据传输模块:数据传输模块采用无线或有线的方式,将单片机控制器的数据传输至上位机软件。
无线传输方式具有灵活性高、安装方便等优点,但需要考虑信号干扰和传输距离的问题;有线传输方式则具有传输速度快、稳定性好等优点。
四、软件设计1. 单片机程序设计:单片机程序采用C语言编写,实现对传感器数据的实时采集、处理和存储。
同时,程序还需要与上位机软件进行通信,实现数据的实时传输。
2. LabVIEW程序设计:LabVIEW程序采用图形化编程语言编写,实现对单片机传输的数据进行实时处理和显示。
同时,LabVIEW程序还可以实现对数据的存储、分析和报警等功能。
五、系统实现1. 数据采集:传感器模块实时监测各种物理量,并将采集到的数据传输给单片机控制器。
基于STM32单片机的多路数据采集系统设计

基于STM32单片机的多路数据采集系统设计概述:多路数据采集系统是一种用于采集和处理多种传感器信号的系统。
基于STM32单片机的多路数据采集系统具有低功耗、高精度、稳定可靠的特点,广泛应用于工业控制、环境监测和医疗设备等领域。
本文将介绍基于STM32单片机的多路数据采集系统的设计方案及实现方法。
设计方案:1.系统硬件设计:系统硬件由STM32单片机、多路模拟输入通道、数模转换器(ADC)和相关模拟电路组成。
其中,多路模拟输入通道可以通过模拟开关电路实现多通道选通;ADC负责将模拟信号转换为数字信号;STM32单片机负责控制和处理这些数字信号。
2.系统软件设计:系统软件可以采用裸机编程或者使用基于STM32的开发平台来进行开发。
其中,主要包括数据采集控制、数据转换、数据处理和数据存储等功能。
具体实现方法如下:-数据采集控制:配置STM32单片机的ADC模块,设置采集通道和相关参数,启动数据采集。
-数据转换:ADC将模拟信号转换为相应的数字量,并通过DMA等方式将数据传输到内存中。
-数据处理:根据实际需求对采集到的数据进行预处理,包括滤波、放大、校准等操作。
-数据存储:将处理后的数据存储到外部存储器(如SD卡)或者通过通信接口(如UART、USB)发送到上位机进行进一步处理和分析。
实现方法:1.硬件实现:按照设计方案,选择适应的STM32单片机、模拟开关电路和ADC芯片,完成硬件电路的设计和布局。
在设计时要注意信号的良好地线与电源隔离。
2.软件实现:(1)搭建开发环境:选择适合的开发板和开发软件(如Keil MDK),配置开发环境。
(2)编写初始化程序:初始化STM32单片机的GPIO口、ADC和DMA等模块,配置系统时钟和相关中断。
(3)编写数据采集程序:设置采集参数,例如采样频率、触发方式等。
通过ADC的DMA功能,实现数据的连续采集。
(4)编写数据处理程序:根据实际需求,对采集到的数据进行预处理,例如滤波、放大、校准等操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多路数据采集系统本科学号:########河南大学民生学院毕业论文( 2013 届)年级 09级专业班级河南大学民生学院学生姓名 ######指导教师姓名 ######指导教师职称副教授论文完成时间河南大学民生学院教务部二○一三年印制河南大学民生学院本科生毕业论文(设计、创作)承诺书说明:学生毕业论文(设计、创作)如有保密等要求,请在备注中明确,承诺内容第2 条即以备注为准。
河南大学民生学院2013 届毕业论文(设计、创作)任务书指导教师签名年月日2013 届毕业论文(设计、创作)中期检查表2013 届毕业论文(设计、创作)综合成绩表(一)河南大学民生学院2013 届毕业论文(设计、创作)综合成绩表(二)备注:一、论文的质量评定,应包括对论文的语言表达、结构层次、逻辑性理论分析、设计计算、数据处理、分析和概括能力及在论文中是否有新的见解或创造性成果等做出评价。
从论文来看学生掌握本专业基础理论和基本技能的程度。
二、成绩评定采用结构评分法,即由指导教师、评阅教师和答辩委员会分别给分(以百分计),评阅教师得分乘以20%加上指导教师得分乘以20%加上答辩委员会得分乘以60%既综合成绩。
评估等级按优、良、中、差划分,优90~100分;良76~89分;中60~75分;差60分以下。
三、评分由专业教研室或院组织答辩委员会(不少于5人),根据指导教师和答辩委员意见决定每个学生的分数,在有争议时,应由答辩委员会进行表决。
四、毕业论文答辩工作结束后,各专业应于6月20日前向教务部推荐优秀论文以汇编成册,推荐的篇数为按当年学院毕业生人数的1.5%篇。
五、各专业亦可根据本专业的不同情况,制定相应的具有自己特色内容的表格。
六、书写格式的要求(必须用钢笔书写):1、目录;2、内容提要须书写200左右汉字,开题报告(文科除外)的内容要根据不同专业的课题任务要求,阐述查阅文献、文案论证、解题思路、工作步骤等;3、正文(含引言、结论等);4、参考文献(或资料)。
河南大学民生学院本科毕业生毕业论文(设计)答辩记录表答辩时间:答辩地点:目录摘要 (9)ABSTRACT (10)第1章绪论 (1)1.1 课题来源 (1)1.2 课题背景 (1)1.3 国内外在该方向的研究现状及分析 (2)1.3.1 国内在该方向的研究现状 (2)1.3.2 国外在该方向的研究现状 (3)1.4 该课题研究的主要内容 (3)第2章数据采集系统的设计 (5)2.1 数据采集系统 (5)2.2 数据采集的目的 (5)2.3 数据采集系统框图 (5)2.3.1 主要芯片 (6)2.3.2涉及到的软件 (7)2.4 基本功能要求 (7)第3章硬件设计 (8)3.1 系统框图 (8)3.2 单片机最小系统 (8)3.3 PCF8591芯片 (9)3.3.1 IIC串行总线 (9)3.3.2 PCF8591 AD转换的应用 (13)3.4 LCD1602器件 (14)3.4 单片机外围电路图 (15)第4章软件设计 (16)4.1 主程序 (16)4.1.1 主程序流程图 (16)4.1.2 LCD1602与PCF8591程序流程图 (17)4.1.3 数据处理程序流程图 (18)4.1.4 按键检测程序流程图 (19)4.2 上位机程序介绍 (20)4.2.1 Visual C++ 6.0 (20)4.2.2 MSComm控件[9] (20)4.2 硬件与软件调试 (21)结论 (22)参考文献 (23)摘要目前,数据采集系统广泛应用在科研、教育、工业、水利等众多领域。
本系统基于89C52单片机,采用PCF8591串行AD芯片,完成对多路模拟信号的数据采集,并由LCD1602把数据显示出来。
本系统带有按键输入,可通过按键实现转换通道的选择。
在windows桌面环境下,使用Visual C++可视化软件开发工具,调用MSComm控件,开发一个集存储与显示的上位机程序,以便用计算机对大量数据的处理。
关键词89C52 ;PCF8591;LCD1602 ;Visual C++ ;MSComm控件ABSTRACTAt present, the data acquisition system is widely used in scientific research, education, industry, water conservancy, and many other fields. This system based on 89C52, using serial AD chip PCF8591, complete the multi-channel analog signal data acquisition, and data by the LCD1602 display. With pressed key input, the system can be realized through key conversion channel choice. In Windows desktop environments, the use of Visual c + + visualization software development tools, invoke the MSComm control, develop a set of storage and display PC programs, so that the handling of large amounts of data by computer.Keywords: 89C52; PCF8591; LCD1602; Visual C++; MSComm第1章绪论本章主要介绍数据采集系统历史及发展,让我们对数据采集系统有个初步了解。
1.1 课题来源自定题目。
1.2 课题背景近年来,数据采集及其应用受到了人们越来越广泛的关注,数据采集系统也有了迅速的发展,它可以广泛的应用于各种领域。
数据采集系统起始于20世纪50年代,1956年美国首先研究了用在军事上的测试系统,日标是测试中不依靠相关的测试文件,由非成熟人员进行操作,并且测试任务是由测试设备高速自动控制完成的。
由于该种数据采集测试系统具有高速性和一定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。
大概在60年代后期,国内外就有成套的数据采集设备和系统多属于专用的系统。
[1]20世纪70年代后期,随着微型机的发展,诞生了采集器、仪表同计算机溶为一体的数据采集系统。
由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因而获得了惊人的发展。
从70年代起,数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,一类是.工业现场数据采集系统。
[1]20世纪80年代随着计算机的普及应用,数据采集系统得到了很大的发展,开始出现了通用的数据采集与自动测试系统。
该阶段的数据采集系统主要有两类,一类以仪表仪器和采集器、通用接口总线和计算机组成。
这类系统主要应用于实验室,在工业生产现场也有一定的应用。
第二类以数据采集卡、标准总线和计算机构成,这一类在工业现场应用较多。
20世纪80年代后期,数据采集发生了很大的变化,工业计算机、单片机和大规模集成电路的组合,用软件管理,使系统的成本减低,体积变小,功能成倍增加,数据处理能力大大加强。
[1] 20世纪90年代至今,在国际上技术先进的国家,数据采集系统己成功的运用到军事、航空电子设备及宇航技术、工业等领域。
由于集成电路制造技术的不断提高,出现了高性能、高可靠的单片机数据采集系统(DAS)。
数据采集技术已经成为一种专门的技术,在工业领域得到了广泛的应用。
该阶段的数据采集系统采用模块式结构,根据不同的应用要求,通过简单的增加和更改模块,井结合系统编程,就可扩展或修改系统,迅速组成一个新的系统。
[1]尽管现在以微机为核心的可编程数据采集与处理采集技术的发展方向得到了迅速的发展,而且组成一个数据采集系统只需要一块数据采集卡,把它插在微机的扩展槽内并辅以应用软件,就能实现数据采集功能,但这井不会对基于单片机为核心的数据采集系统产生影响。
相较于数据采集板卡成本和功能的限制,单片机其多功能、高效率、高性能、低电压、低功耗、低价格等优点,而单片机又其有精度较高、转换速度快、能够对多点同时进行采集,因此能够开发出能满足实际应用要求的、电路结构简单的、可靠性高的数据采集系统。
这就使得以单片机为核心的数据采集系统在许多领域得到了广泛的应用。
1.3 国内外在该方向的研究现状及分析数据采集系统是通过采集传感器输出的模拟信号并转换成数字信号,并进行析、处理、传输、显示、存储和显示。
它起始于20世纪中期,在过去的几十年里,随着信息领域各种技术的发展,在数据采集方面的技术也取得了长足的进步,采集数据的信息化是日前社会的发展主流方向。
各种领域都用到了数据采集,在石油勘探、科学实验、飞机飞行、地震数据采集、卫星遥感成像、无人机、舰载传感器系统领域已经得到应用。
[1]早期,对于大部分制造业企业,测量仪器的自动数据采集一直是个令人烦恼的事情,即使仪器已经具有RS232/485等接口,但仍然在使用一边测量,一边手工记录到纸张,最后再输入到PC中处理的方式,不但工作繁重,同时也无法保证数据的准确性,常常管理人员得到的数据已经是滞后了一两天的数据;而对于现场的不良产品信息及相关的产量数据,如何实现高效率、简洁、实时的数据采集更是一大难题。
由研究人员研发的生产现场实时数据采集系统解决了这一问题,整个系统采用分布式结构,软、硬件均采用了模块化设计。
数据采集部分采用自行开发的带光隔离的RS-485网,通信效率高,安全性好,结构简单。
后台系统可根据实际被监控系统规模大小及要求,构成485网、Novell网及Windows NT网等分布式网络。
由于软、硬件均为分布式、模块化结构,因而便于系统升级、维护,且根据需要组成不同的系统。
.数据处理在Windows NT平台上采用Visual C++语言编程,处理能力强、速度快、界面友好,可实现网络数据共享。
[2]我国的数字地震观测系统主要采用TDE-124C型地震数据采集系统。
近年来,又成功研制了动态范围更大、线性度更高,.兼容性更强、低功耗可靠性的TDE-3240型地震数据采集系统。
该数据采集对地震计输出的电信号模拟放大后送至A/D数字化,A/D采用同时采样,采样数据经DSP数字滤波处理后,变成数字地震信号。
该数据采集系统具备24位A/D转换芯片,采样率有50HZ,100HZ,200HZ。
[1]由美国PASCO公司生产的“科学工作室”是将数据采集应用于物理实验的崭新系统,它由3部分组成:(1)传感器:利用先进的传感技术可实时采集技术可实时采集物理实验中各物理量的数据;(2)计算机接口:将来自传感器的数据信号输入计算机,采样速率最高为25万次/S;(3)软件:中文及英文的应用软件。