大学物理习题课1
大学物理稳恒磁场习题课

S
当 S 很小时,可得
B2S B1S 0
B1
B2
B
有 B2 B1 ,即同一条磁感应线上的
B
相等
如再在该磁场中做一有向矩形安培环路 abcda , ☆ bc 、 让 ab 、cd 与磁感应线平行, da 与磁感应线垂直。 / 设沿 ab 段磁感应强度为 B ,沿 cd 段磁感应强度为 B , 由磁感应线疏密不均匀可知 , 磁感应强度沿该回路的线积分为 / B d l B ab B cd 0
也就不能推出 H d S 0
S
r 都相等,
。
因此,一般说来,不能得出 通过以闭合曲线 L 为边界的各曲面的通量均相等的结论
例如,一永磁棒,设棒内 M 为一常值,
对以 L 为边界的二曲面 S1 和S2 ,有
☆
S1
B dS B dS
S2
M 的方向与外磁场方向相反
Pm 为无矩分子在外磁场中出则的附加磁矩,
磁场强度 引入磁场强度辅助矢量 H
H
B
☆
在各向同性均匀介质中 M m H
m 称为磁化率,是一个纯数。
0
M
顺磁质中
m 1,抗磁质中 m 1 。 H 和 B 的关系为
T
)
2.毕奥一萨伐尔定律
电流元
电流元
☆
Idl
是矢量, 与
大小等于电流 I
导线元长度 dl 的乘积,
方向沿电流正方向。
毕奥一萨伐尔定律 电流元 Idl 在
P 点产生的磁感应强度为
0 4 107 N A2
0 Idl r 0 Idl r ˆ dB 3 2 4 r 4 r
大学物理课后习题1第一章答案

习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理课后习题全解及辅导

列平衡方程:
(2)研究AB(二力杆),受力如图:
可知:
(3)研究O1B杆,受力分析,画受力图:
列平衡方程:
第三章
习题3-1.求图示平面力系的合成结果,长度单位为m。
解:(1)取O点为简化中心,求平面力系的主矢:
求平面力系对O点的主矩:
(2)合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
由图知:
(2)研究铰C,受力分析,画力三角形:
由图知:
习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
解:(1)研究滑块A,受力分析,画力三角形:
由图知:
研究AB杆(二力杆)和滑块B,受力分析,画力三角形:
(2)由力三角形得:
(3)列平衡方程:
由(2)、(3)得:
(4)求摩擦系数:
习题5-3.尖劈顶重装置如图所示,尖劈A的顶角为α,在B块上受重物Q的作用,A、B块间的摩擦系数为f(其他有滚珠处表示光滑);求:(1)顶起重物所需力P之值;(2)取支力P后能保证自锁的顶角α之值。
解:属平面汇交力系;
合力大小和方向:
习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
(2)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。求撑杆BC所受的力。
第一章质点运动学习题课

质点运动学
30
物理学
第五版
第一章习题课
9 一质点在半径为0.10m的圆周上运动,设t=0时 质点位于x轴上,其角速度为ω=12t2。试求
质点运动学
23
物理学
第五版
第一章习题课 5 一小轿车作直线运动,刹车时速度为v0,刹车 后其加速度与速度成正比而反向,即a=-kv,k 为正常量。
试求
(1)刹车后轿车的速度与时间的函数关系
(2)刹车后轿车最多能行多远?
解:
dv 1 kt 由 a kv kv dv kdt v Ce (1) dt v
(3) v R 25 1 25m s
1
a R m s 2
质点运动学
29
物理学
第五版
第一章习题课 8 一质点沿半径为R的圆周运动,质点所经过的弧 长与时间的关系为s=bt+ct2/2,其中b,c为常量, 且Rc>b2。 求切向加速度与法向加速度大小相等之前所经历的 时间 解:
答案:B
质点运动学
4
物理学
第五版
第一章习题课
4 如图所示,湖中有一小船,有人用绳绕过岸上一 定高度处的定滑轮拉湖中的船向岸边运动.设该人 以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率 为v,则小船作( )
质点运动学
5
物理学
第五版
第一章习题课
v0 (A) 匀加速运动, v cos
(B) 匀减速运动,
第一章习题课
大学物理课后习题答案

一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
以时间t 为变量,写出质点位置矢量的表示式;计算第1秒内质点的位移;计算0t = s 时刻到4t = s 时刻内的平均速度;求出质点速度矢量表示式,计算4t = s 时质点的速度;计算0t = s 到4t = s 内质点的平均加速度;求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和解:23d d 23++==t t txv 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x 将t =3s 代入证1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一力作用下,物体A 从静止开始均匀加速的下滑,在∆t= s 内下降的距离h= m 。
求物体开始下降后3s 末,轮一点的切向加速度与法向加速度。
解:物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s3='t 切向加速度,即在s 3='t 时的法向加速度为1—10 一电梯以21.2m s -的加速度下其中以乘客在电梯开始下降后0.5s 时用手在离电梯底板1.5m 高处释放以小球,求此小球落到底板上所需的时地面下降的距离。
大学物理习题课1

v 0 与水平方向夹角
19.如图所示,小球沿固定的光滑的 1/4圆弧从A点由静止开始下滑,圆弧半 径为R,则小球在A点处的切向加速度 at =______________________,小球 在B点处的法向加速度 an =_______________________.
θ
A R
B
三.计算题
t 0 .96 0 mg , t 0 .20 1 9 .8 0 .96 1s
此后合力为 第2秒内冲量
I
t 0 .96 mg
t 0 .96 0 .14 1 9 .8 dt
2 1
1 t 0 .412 dt
2
1 2
t
2 2 1
(B)
(C)
a g sin
a g
a 4 g (1 cos ) g sin
2 2 2 2
(D) . [ ] 4. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现 在在绳端挂一质量为m的重物,飞轮的角加速度 为 .如果以拉力2mg代替重物拉绳时,飞轮的角加 速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ ]
二.填空题 13.如图所示,质量为m的小球系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O点.开始时弹 簧在水平位置A,处于自然状态,原长为l0.小球由 位置A释放,下落到O点正下方位置B时,弹簧的长度 为l,则小球到达B点时的速度大小为v=____
O l0 A k l m
O′
P
B m
Q R
R
F
F Ft
2 n
2
s 2 as 1 R
大学物理课后习题及答案(1-4章)含步骤解

,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
大学物理热学习题课

dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:
Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0 Ey sin d(sin ) 0 0 4 0 R
y
dq
d Ex O d E d Ey
R
d
x
0 i 故O点的场强为: E E x i 4 0 R
2
X
Ex dEx
2 0 ( x 2 轴线上 x 处产生场强关于轴 线对称 E 0 在 x 处取一电荷元 dq/=2 dx ,它受的电场力为
dF Ex dq 2 0 ( x 2 R 2 )3 2
12 Rxdx
12 R 1 1 F dF [ 2 ] 2 12 2 0 R (l R )
Pe E 3 4 0 r
E
r0 2 0 r
d
i
叠加原理
E Ei
E 2 0
当b→0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式, 场强公式变为 -------- ③ E 2 0 a 这正是带电直线的场强公式.
(2)②也可以化为
arctan(b / 2d ) Ez 2 0 d b / 2d
当b→0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式, 场强公式变为
dx
2 0 (b / 2 a x)
其方向沿x轴正向.
由于每条无限长直线在P点的产生的场强方向相同,所以 P点产生的场强为
E 2 0
1 dx b/2a x b / 2
b/2
b/2
ln(b / 2 a x) 2 0 b / 2 b -------- ① ln(1 ) 2 0 a 场强方向沿x轴正向.
1 R 0
x
2 dE
X
解:设坐标原点在圆 环中心,X轴沿圆环轴 线方向如图,在圆环 上取一电荷元 :dq = 1 d ,它在轴线上 x 处产生场强
1dl dE 4 0 ( x 2 R 2 )
1 xdl dEx 2 2 32 4 0 ( x R )
R
0
1 dq’ x dx
1 1 r0 E E E i i 20 x r0 x 20 x(r0 x)
E E
o x
p
x
o
E p
E
E
p
E
x
o
x
r0
x
x
r0
r0
1 1 r0 E E E i i 20 x r0 x 20 x( r0 x )
b Ez d arctan( ) 2 0 0 2d arctan( b / 2 d )
arctan( b / 2 d )
--------- ②, 场强方向沿z轴正向.
[讨论] (1)薄板单位长度上电荷为λ = σb, ① 式的场强可化为 E
ln(1 b / a) 2 0 a b/a
Ez
2 0 d
这是带电直线的场强公式.
当b→∞时,可得
Ez 2 0
--------- ④ 这是无限大带电平面所产生的场强公式.
讨论 理想模型 点电荷
r >> d
l
d
Q
r
r
r r
E
Q 4 0 r
2
r0
电偶极子 r >>
Pe
l
无限长 带电线 r << L L 无限大 带电面 r << d
Ex
求出 E的大小,并指明方向。
Q
dE x
Ey
Q
dE y
Ez
dE
Q
z
1. 半径为R的带电细圆环,其电荷线密度为= 0cos,式中0为一常数, 为半径R与x轴所成的夹角,如图所示.试求环心O处的电场强度.
解:在任意角 处取微小电量dq =dl,它在O点 产生的场强为: 0co s d dq dl dE 4 0 R 2 4 0 R 2 4 0 R 它沿x、y轴上的二个分量为: dEx=-dEcos , dEy=-dEsin 对各分量分别求和
2.两条无限长平行直导线相距为r0,均匀带有等量异号电荷,电 荷线密度为。(1)求两导线构成的平面上任一点的电场强度 (设该点到其中一线的垂直距离为x);(2)求每一根导线上 单位长度导线受到另一根导线上电荷作用的电场力。 分析:( 1)在两导线构成的平面上 任一点的电场强度为两导线单独在 此所激发的电场的叠加。 (2)由F = qE,单位长度导线所受 o 的电场力等于另一根导线在该导线 处的电场强度来乘以单位长度导线 所带电的量,即:F = E应该注意: 式中的电场强度 E 是除去自身电荷 外其它电荷的合电场强度。
p
x
x
r0
解:(1)设点P在两导线构成的平面上,E+、E-分别表示正、负 带电导线在P点的电场强度,则有 E E E
E
o x
p
x
o
E p
E
p
x
r0
x
x
o
x
r0
r0
1 1 r0 E E E i i 20 x r0 x 20 x( r0 x) 1 1 r0 E E E i i 20 x x r0 20 x( x r0 )
体电荷密度 电荷密度
r
dE
P
面电荷密度
线电荷密度
dq dV dq dS
dS
dq dl
dl
解题步骤:
1.把带电体看作是由许多个电荷元dq组成,dq
dV
dS dl
dq视为点电荷,从库仑定律求出 dE ;
2. 因各电荷元产生的 dE 方向不一定相同,
建立适当的坐标系,求分量dEx ,dEy ,dEz , 3.积分:
习题讨论课1 真空中的静电场
矢量场
E Ei
i
场强叠加原理
点电荷系场强
i n E
i 1
4 0 ri
qi
3
ri
若带电体可看作是电荷连续分布的,如图示
把带电体看作是由许多个电荷元组成,
dq
Q
dV
然后利用场强叠加原理。 dq E dE r 2 0 Q Q 4 0 r
沿X轴正向
12.7 一宽为b的无限长均匀带电平面薄板,其电荷密度为σ.试 求:(1)平板所在平面内,距薄板边缘为a处的场强.
解:(1)建立坐标系.在平面薄板上取一 宽度为dx的带电直线,电荷的线密度为 dλ = σd x,根据无限长直线带电线的场强公式
dE d 2 0 r
y b O dx a P x
(2 )设 F+ 、F- 分别表示正、负带电 导线单位长度所受的电场力,则有
E
o
E
F E
2 i 2 0 r0
2 F E i 20r0
x
r0
相互作用力大小相等,方向相反,两导线相互吸引。
3 半径为 R 、电荷线密度为 1 的一个均匀带电圆 环,在其轴线上放一长为 、电荷线密度 为 2 的 均匀带电直线段,该线段的一端处于圆环中心处, 如图所示,求该直线段受到的电场力。
(2)通过薄板几何中心的垂直线上与薄板距离为d处的场强. x dx 为了便于观察,将薄板旋转建立 坐标系.仍然在平面薄板上取一 r 宽度为dx的带电直线,电荷的线 z 密度仍然为dλ = σd x,带电直线 O d Qθ dE 在Q点产生的场强为 b y d dx dE 2 0 r 2 0 (d 2 x 2 )1 2 x = d tanθ,则dx = ddθ/cos2θ dd d dE 因此 2 2 0 d sec cos 2 0 cos 沿z轴方向的分量为 dEz dE cos d 2 0 积分得