交通规划第七章交通分配Lecture 07
交通分配

动态模型的分类
(1)根据描述交通流方法的不同,可将动态交通分配模型分为仿真模型和分析模型。
仿真模型中,交通流过程用仿真络的运行来代替,其路段特性,如费用、走行时间等通过计算机模拟的动态 络加载获得。基于分析的动态交通分配模型则是通过数学函数关系来描述路的动态特性。仿真模型从分析、模拟 出行者的出行选择行为出发,便于集成各种控制策略,分析各个控制策略的效用,同时,使用这种方法不必求出 各路段特性函数的具体形式,也不必对模型的参数进行辨识,这是其优点所在。但仿真模型分析能力差,不能从 模型本身分析其解的收敛性,以及模型的精度和灵敏度。因此基于仿真模型的动态交通分配模型更适于工程应用。 分析模型结构严谨、逻辑严密是其优点所在,但是分析模型为止仍然缺乏行之有效的算法。并且由于交通系统本 身的复杂性和不确定性使得无法用一个简单的数学形式来精确描述络的所有动态特性。在建立分析模型过程中, 还往往对模型本身附加了许多理解化的条件,所以分析模型还停留在理论研究阶段,更适用于学术探讨。
动态
动态交通分配是在交通供给情况以及交通需求状态已知的条件下,分析其最优的交通流量分布模式,通过一 定的控制手段和诱导策略在空间、时间尺度上重新合理配置人们已经产生的需求,从而使交通路得以高效运 行。
图1交通控制、诱导与分配之间的关系图图1为交通控制、诱导与分配之间的关系图:此图表明了动态交通分 配模型在交通诱导与控制中的位置。由图可以看出,动态交通分配为交通流管理与控制、动态路线诱导等提供了 依据,而交通与诱导则是动态交通分配的实现过程。交通控制通过改变路口的信号配时方案来改变车流的时间分 布;而动态路线诱导则通过信息提供、车载诱导系统等非强制性手段改变车流的空间分布。
动态模型分析简述
动态交通分配是在交通供给状况以及交通需求状况均为已知的条件下,分析其最优的交通流量分布模式,从而 为交通流管理、动态路线引导等提供依据。因此,动态交通分配的首要前提是对每时每刻产生的出行需求用其分 布的正确把握,在确知动态时变交通需求的基础之上,再对其进行正确的分配。由于交通出行的目的性决定了OD 矩阵在动态交通分配中的重要作用,因此在分配中假定OD矩阵是可以获取的已知确定量。除了已知时变交通需求 以外,路结构和动态特性也是必需的。在动态交通分配模型中,出于模型建立和求解的需要,往往假定路段旅行 时间和路段流出率是路段流量的函数,还假定路段之中产生车辆发生在路段末端节点,路段之中吸收车辆发生在 路段始端节点,这样车辆的吸收与产生只发生在节点处,路段之中不吸收和产生车辆。
交通规划 第七章 交通分配

• Smock函数
• Overguard函数
• 英国交通部函数
• ……
(3) 交叉口阻抗延误函数
公路交叉口:阻抗比重较小,可以忽略; 城市道路交口:由于比重大,必须考虑。
•不分流向类:交叉口各个流向的阻抗基本相同,或
没有明显规律性流向差别,交叉口阻抗为常数。
tw
0 .9
T (1 -λ )2 2 (1 -λ X )
第七章 交通分配
主要内容
概述 非均衡模型 均衡模型 其他模型 思考与回顾
主题一
概述
主要内容
基本概念 交通网络的计算机表示 交通分配基本原理
一、基本概念
P202-
交通分配 交通阻抗 交通路径
1、交通分配
定义 基本数据 分配过程 分类
(1) 定义
交通分配(Traffic Assignment),又称交通 流分配,是把i、j交通区间的分布(OD)交 通量,按照一定规则,分配到道路网上各条 道路上,并计算各路段交通流量的过程。
3、路径
路段(Link)
交通网络图上,任何两个相邻节点间的交通连线。
路径(Route/Path)
任一OD对之间,出行者选择的一系列连通的有序路 段。(一对OD点之间可能有多条路径)
最短路径(The Shortest Path)
某OD对之间的所有路径中,总阻抗最小的那条路径。 (一个OD对之间可能有多条最短路径)
A:按照路网状态(是否均衡)分类
——平衡模型:用户平衡法、系统平衡法。 ——非平衡模型:最短路、概率多路径法等。
B:按照出行线路是否固定:
——线路固定:公交网、轨道网等。 ——线路不固定:道路网、公路网等。
C:按照分配目的分类
交通规划07-2分配

步3:向前计算路段流量 从r点开始,按s(i)的下降顺序依次考虑每个节点i,计算 进入它的所有路段流量,对路段(i,j),进入它的流量为:
第四节
非均衡分配方法
若i r
w(i, j ) q rs w(i, m) m O j x(i, j ) x(l , i ) w(i, j ) l w(i, m) I j mO j
a
第四节
其他分配方法
r, s
平衡分配过程中应该满足交通流守恒的条件,用公式 可以表示为:
kWrs rs f k qrs
径路交通量和路段交通量之间应该满足如下的条件:
xa f krs ars ,k
r s k rs ck ta xa ars ,k a
a L
1-d
1
1-d
1
图a、b,三条路径的阻抗都是1,由Logit模型,这三条路径 被选中的概率均为1/3,它们分配的流量也相同。 但图b,当d很大,接近1时,1、2路径重叠路段很长,极限 情况下,认为合成一条路径。则它与路径3的选择概率各为1/2, 上面两条路径各为1/4。 模型反映不出图b的情况:1、2路径的相关性(重合路径)。
⑨
8
9
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
0
∞
2
0
运用矩阵迭代法求最小阻抗
设Oi为离开节点i的路段另一端点的集合 设Ii为进入点i的路段的另一个端点的集合
1 , j) 1 w(i② ③ 若L(i,j) q js rs w ( m , j ) m I j r=3,s=3 r=2,s=4 r=4,s=2 0.368 1 0 x(i, j ) 1 ⑤ w(i1 , j) ⑥ 若i r L(i, j ) ④ x ( j , m ) 其它情况 i I m w(i, j ) L(i, j ) w(m,ji) w ( m , j ) 其它情况 o W(i,j) j r=5,s=2 r=6,s=0 mI r=4,s=4 0 1 mI j 1 0.368 0.368 1 1 ⑦ ⑧ ⑨
《交通量分配》课件

05
交通量分配的实践应用
城市交通规划中的应用
交通量调查
通过调查城市各区域之间的交通需求,了解不同路段的交通流量 和流向。
交通模型建立
根据调查数据,建立交通分配模型,预测不同路段上的交通量。
优化交通布局
根据交通分配结果,优化城市道路网络布局,提高道路使用效率 。
高速公路建设中的应用
高速公路建设规划
详细描述
随机用户均衡法假设用户对路径的选择是随 机的,基于概率分布将总交通量分配到各个 路径上。这种方法适用于不确定性和随机性 较大的交通情况,能够提供一种概率意义上 的最优解。
03
交通量分配模型
平衡分配模型
平衡分配模型是一种经典的交通量分配模型,它 假设所有路径上的交通量都相等,即各路径上的 流量达到平衡状态。
共享出行
鼓励共享单车、共享汽车等共享出行方式的发展,提高出行效率, 减少交通拥堵和排放。
多模式交通信息平台
建立多模式交通信息平台,提供多种交通方式的查询、预订和支付服 务,方便用户选择最合适的出行方式。
绿色出行和低碳交通的考虑
绿色出行宣传
加强绿色出行理念的宣 传和教育,鼓励市民选 择公共交通、步行、骑 行等低碳出行方式。
自动驾驶车辆
通过人工智能技术,实现自动驾驶车辆的研发和 应用,减少人为驾驶错误和交通拥堵。
3
智能停车系统
利用大数据和人工智能技术,实现停车位预约、 导航和自动泊车等功能,提高停车效率和便利性 。
多模式交通一体化考虑
综合交通枢纽
建设集多种交通方式于一体的综合交通枢纽,实现不同交通方式之 间的无最优的原则,通过迭代 算法来分配交通量。
VS
详细描述
用户均衡法考虑了用户对路径的选择和偏 好,通过迭代计算每条路径的效用(如行 程时间)和用户选择概率,最终达到用户 最优的交通量分配结果。这种方法能够反 映实际交通情况,但计算复杂度较高。
交通规划分配精讲共39页文档

▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
39
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
交通规划分配精讲
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
交通分配方法-分配

动态交通分配
根据实时交通流信息和预测结果, 动态调整交通分配方案,提高道 路通行效率。
基于人工智能的交通分配
01
人工智能技术应用
运用深度学习、强化学习等人工 智能技术,实现交通分配的自动 化和智能化。
02
交通模式识别
03
智能路径规划
随着环境保护意识的提高,如何在交通分配中考虑环境因素,如减少尾气排放、降低噪音等,将成为未来研究的重要 课题。
多目标交通分配
在实际交通场景中,往往需要考虑多个目标,如时间最短、费用最少、舒适度最高等。如何设计多目标 交通分配算法,平衡不同目标间的冲突和矛盾,将是未来研究的重要方向。
THANKS
感谢观看
06
总结与展望
研究成果总结
01
交通分配方法理论体系
本文构建了完整的交通分配方法理论体系,包括交通网络建模、交通流
分配、算法设计和性能评估等方面。
02 03
高效算法设计
针对大规模交通网络和复杂交通场景,设计了高效的交通分配算法,如 基于最短路径的分配算法、基于多路径的分配算法等,提高了交通分配 的准确性和效率。
容量限制分配法
原理
在交通分配过程中考虑道 路的通行能力限制,确保 分配结果符合实际交通情 况。
优点
能够反映道路通行能力对 交通分配的影响,提高分 配结果的准确性。
缺点
计算复杂度高,需要获取 详细的道路通行能力数据。
04
先进交通分配技术
基于GIS的交通分配
GIS技术应用
利用GIS强大的空间数据处理和分析功能,实现交通网络建模和路 径规划。
系统最优原则
基本交通分配模型课件

元胞自动机的优缺点
元胞自动机法的优点在于能够模拟真 实世界的复杂性和动态性,适用于处 理大规模和复杂的交通网络。此外, 元胞自动机法还具有规则简单、易于 实现等优点。
VS
动态规划法
动态规划法是一种通过将问题分解为子问题并求解最优子 问题的策略来求解最优化问题的方法。在交通分配问题中 ,动态规划法可用于求解多阶段行驶时间和成本的分配方 案。
动态规划法的优点在于能够处理具有重叠子问题和最优子 结构的问题。然而,对于大规模问题,动态规划法可能存 在计算复杂度高和存储需求大的问题。
元胞自动机是由元胞(即格点或单元 )组成的离散空间,每个元胞具有有 限的状态集合,并根据一定的规则与 相邻元胞相互作用进行状态更新。
元胞自动机的基本原理包括局部性、 并行性和自组织性,这些特性使得元 胞自动机能够模拟复杂的系统行为。
2 元胞自动机的步骤
元胞自动机的实现步骤通常包括初始化、规则设定、迭代更新和结果分析等阶段。在交通分配问题中 ,元胞自动机首先需要对道路网络进行离散化处理,然后根据车辆的行驶规则进行迭代更新,最后对 结果进行分析和优化。
其他参数
如天气条件、路况等,这些参 数可能会影响交通分配的结果
。
变量
01
02
03
04
流量变量
表示各路段上的交通流量,是 交通分配模型的主要输出变量
。
时间变量
表示各路段上的旅行时间,是 描述交通流量的重要变量。
路径变量
表示各路径上的交通流量,是 描述交通流分布的重要变量。
成本变量
表示各路径上的总成本,包括 时间成本和费用成本等,是描 述交通流分布的重要变量。
交通分配模型交通系统工程课件

第七章交通分配在传统交通规划中交通分配曾是四阶段交通预测的最后一步,在现代交通规划中它是方案设计的理论基础。
最优化理论、图论、计算机技术的发展,为交通分配模型和算法的研究和开发提供了坚实的基础。
通过几十年的发展,可以说,交通分配是交通规划的诸问题中被国内外学者研究得最深入、取得研究成果最多的内容。
本章准备介绍交通分配的基本概念、方法和模型,对近年来国内外新的研究成果中比较实用的一些内容也作分析。
§7.1 概述所谓交通分配是指将各分区之间出行分布量分配到交通网络的各条边上去的工作过程。
具体地,有以下几项交通分配工作:①可以是将现状PA量在现状交通网络上的分配,以分析目前交通网络的运行状况,如果有某些路段的交通量观测值,还可以将这些观测值与在相应路段的分配结果进行比较,以检验四阶段预测模型的精度。
②也可以是规划年PA分布预测值在现状交通网络上的分配,以发现对规划年的交通需求来说,现状交通网络的缺陷,为后面交通网络的规划设计提供依据。
③还可以是规划年PA分布预测值在规划交通网络上的分配,以评价交通网络规划方案的优劣。
就交通分配的工作特点来说,可以分做两类:交通工具的运行线路固定类型和运行线路不固定类型。
前者有:城市公共交通网、城市轨道交通网,这些是集体旅客运输;后者有:城市道路网、公路网、高速公路网,这一般是指个体旅客运输或货物运输,这类网络中,车辆是自由选择运行路径的。
对于前者,虽然交通工具(如公共汽车)的线路是限定的,但作为个体的旅客来说,如果某两点之间有多条线路或多种交通工具,他可以选择不同线路上的交通工具、或同一线路上的运行速度或交通费用不同交通工具。
因此,如果将旅客看作是交通元的话,这仍然是一个自由选择运行“路径”的问题,只不过这里的交通元指旅客,“路径”的意义也广泛一些而已,其中包含着对交通工具的选择。
对于城市道路网来说,这里要特别指出的三点:一、由于道路的主要承载对象是车辆,交通分配中的出行分布量一般是指机动车,以pcu为单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 2.033
x2 2.467
n
t1 14.13, t2 10.08
S x ti xi 53,592 veh.min
i 1
Compare UE and SO Solutions • User equilibrium
Beckmann Transformation Model
如何证明上述Beckmann模型的解符合Wardrop第一平衡原理?
应用KKT条件求解上述模型,其结果即Wardrop第一 平衡原理!
系统最优 SO
Example 1
Example (UE)
Two routes connect a city and a suburb. During the peak-hour morning commute, a total of 4,500 vehicles travel from the suburb to the city. Route 1 has a 60-mph speed limit and is 6 miles long. Route 2 is half as long with a 45-mph speed limit. The HPFs for the route 1 & 2 are as follows: •Route 1 HPF increases at the rate of 4 minutes for every additional 1,000 vehicles per hour. t1 = 6 + 4x1 •Route 2 HPF increases as the square of volume of vehicles in thousands per hour. t2 = 4 + x22
BPR function
t t0* 1 * V C
revised BPR function
Davidson function
Davidson, K. B. A flow–travel time relationship for use in transportation planning. Proc. 3rd ARRB Conf. 3 (1), pp.183-194, 1966.
Lecture 07
路径选择
Route Choice
内容:
路网节点的描述 无约束和有约束优化方法 最短路径
关联矩阵
Route Choice the route choice (traffic assignment) problem
is to find the flow (and traffic time) on each of
有约束非线性规划问题
有约束非线性规划问题
有约束非线性规划问题
Incidence Matrix (关联矩阵)
Incidence Matrix (关联矩阵)
1-5
2-5
Incidence Matrix (关联矩阵)
Link Performance Function
Route 1
City
Route 2
Suburb
Apply Wardrop 1st principle 6 + 4x1 = 4 + x22 x1 + x2 = 4.5 Substituting and solving: 6 + 4x1 = 4 + (4.5 – x1)2 6 + 4x1 = 4 + 20.25 – 9x1 + x12 x12 – 13x1 + 18.25 = 0 x1 = 1.6 or 11.4 (total is 4.5 so x1 = 1.6 or 1,600 vehicles) x2 = 4.5 – 1.6 = 2.9 or 2,900 vehicles Check answer: t1 = 6 + 4(1.6) = 12.4 minutes t2 = 4 + (2.9)2 = 12.4 minutes
x1 x2 4.5
x13 4.53 2 2 S x 6 x1 2 x 18 4 x1 4.5 x1 4.5 x1 3 3
2 1
for a minimum :
dS 6 4 x1 4 20.25 9 x1 x12 0 dx
simplifyin : x12 13x1 18.25 0 Same equation as before g
Principles of Route Choice
0-1分配法
增量分配法
二次加权分配法
均衡分配方法
用户最优 UO__review & redefine
UE, user equilibrium No traveler can improve his/her travel time by unilaterally changing routes. It was formally proposed by J. G. Wardrop in 1952
Example (SO)
Two routes connect a city and a suburb. During the peak-hour morning commute, a total of 4,500 vehicles travel from the suburb to the city. Route 1 has a 60-mph speed limit and is 6 miles long. Route 2 is half as long with a 45-mph speed limit. The HPFs for the route 1 & 2 are as follows: •Route 1 HPF increases at the rate of 4 minutes for every additional 1,000 vehicles per hour. t1 = 6 + 4x1 •Route 2 HPF increases as the square of volume of vehicles in thousands per hour. t2 = 4 + x22
Route 1
City
Route 2
Suburb
Apply Beckmann Model
1. Formulate the SO equation
2 S x ti xi 6 4 x1 x1 4 x2 x2 n i 1 3 6(4.5 x2 ) 4(4.5 x2 ) 2 4 x2 x2
Akcelik function
Akcelik, R. Travel time functions for transport planning purposes: Davidson’s function, its time dependent form and an alternative travel time function”, Australian Road Research, 21(3), pp. 49-59, 1991.
无约束非线性规划问题
有约束非线性规划问题
Second Berkeley Symposium on Mathematical Statistics and Probability Date: July 31-August 12, 1950
有约束非线性规划问题
Harold William Kuhn (born 1925) is an American mathematician. A Professor-Emeritus of Mathematics at Princeton University. Albert William Tucker (28 Nov. 1905 – 25 Jan. 1995) was a Canadian mathematician. former chair of Princeton University's Mathematics Department. William Karush (1 Mar. 1917 – 22 Feb. 1997) was a professor emeritus of California State University at Northridge and is a mathematician best known for his contribution to Karush– Kuhn–Tucker conditions.
Lloyd Stowell Shapley (born June 2, 1923) is a distinguished American mathematician and economist. He is a Professor Emeritus UCLA, affiliated with departments of Mathematics and Economics.
2.
Minimize the SO function
3 S ( x) 6(4.5 x2 ) 4(4.5 x2 ) 2 4 x2 x2 3 27 2 x2 4(4.5 x2 ) 2 x2
3.
Solve the minimized function dS 2 4 2 4.5 x2 1 3x22 0 dx
John Forbes Nash, Jr. (born June 13, 1928) is an American mathematician. Serving as a Senior Research Mathematician at Princeton University during the latter part of his life, he shared the 1994 Nobel Memorial Prize in Economic Sciences.