Fisher线性判别

合集下载

模式识别FISHER线性判别实验

模式识别FISHER线性判别实验

模式识别FISHER线性判别实验
人工知能领域中的模式识别是计算机实现人类识别物体的能力的一种
技术。

它的主要目的是根据给定模式的样本及其特征,自动识别出新的样
本的特征并做出判断。

其中最著名的技术之一就是FISHER线性判别法。

FISHER线性判别法基于正态分布理论,通过计算样本的统计特征来
分类,它是一种基于参数的最优分类算法。

算法的基本思想是通过计算两
个类别的最大类间差异度,以及最小类内差异度,来有效地分类样本。


体而言,FISHER线性判别法即求出一个线性超平面,使这个超平面把样
本区分开来,使样本离类中心向量之间的距离最大,同时使类中心向量之
间的距离最小。

FISHER线性判别法的具体实现过程如下:
1.准备好建立模型所需要的所有数据:训练样本集,其样本特征与对
应的类标号。

2.确定每个类的类中心向量c_1,c_2,…,c_m,其中m为类的数目。

3.根据类中心向量求出类间离散度矩阵S_b和类内离散度矩阵S_w。

4.将S_b与S_w相除,得到S_b/S_w,从而求出矩阵的最大特征值
λ_1及最小特征值λ_n。

5.将最大特征值λ_1进行特征值分解,求出其特征向量w,求出判
定函数:
f(x)=w·x+w_0。

6.根据判定函数,将样本进行分类。

线性判别分析

线性判别分析
线性判别分析(LDA)
介绍
线性判别分析(Linear Discriminant Analysis, LDA),也 叫做Fisher线性判别(Fisher Linear Discriminant ,FLD), 是模式识别的经典算法,1936年由Ronald Fisher首次提出, 并在1996年由Belhumeur引入模式识别和人工智能领域。
LDA
对于N(N>2)分类的问题,就可以直接写出以下的结论:
这同样是一个求特征值的问题,求出的第i大的特征向量,即为 对应的Wi。
LDA在人脸识别中的应用
要应用方法
K-L变换 奇异值分解 基于主成分分析 Fisher线性判别方法
主要应用方法
K-L变换
为了得到彩色人脸图像的主分量特征灰度图像,可以采用Ohta[3]等人提 出的最优基来模拟K-L变换方法,从而得到新的包含了彩色图像的绝大多 数特征信息的主分量特征图像.
LDA
LDA与PCA(主成分分析)都是常用的降维技术。PCA主要是从 特征的协方差角度,去找到比较好的投影方式。LDA更多的是 考虑了标注,即希望投影后不同类别之间数据点的距离更大, 同一类别的数据点更紧凑。
下面给出一个例子,说明LDA的目标:
可以看到两个类别,一个绿色类别,一个红色类别。左图是两个 类别的原始数据,现在要求将数据从二维降维到一维。直接投影 到x1轴或者x2轴,不同类别之间 会有重复,导致分类效果下降。 右图映射到的直线就是用LDA方法计算得到的,可以看到,红色 类别和绿色类别在映射之后之间的距离是最大的,而且每个类别 内 部点的离散程度是最小的(或者说聚集程度是最大的)。
LDA
假设用来区分二分类的直线(投影函数)为: LDA分类的一个目标是使得不同类别之间的距离越远越好,同 一类别之中的距离越近越好,所以我们需要定义几个关键的值:

判别分析公式Fisher线性判别二次判别

判别分析公式Fisher线性判别二次判别

判别分析公式Fisher线性判别二次判别判别分析是一种常用的数据分析方法,用于根据已知的类别信息,将样本数据划分到不同的类别中。

Fisher线性判别和二次判别是两种常见的判别分析方法,在实际应用中具有广泛的应用价值。

一、Fisher线性判别Fisher线性判别是一种基于线性变换的判别分析方法,该方法通过寻找一个合适的投影方向,将样本数据投影到一条直线上,在保持类别间离散度最大和类别内离散度最小的原则下实现判别。

其判别函数的计算公式如下:Fisher(x) = W^T * x其中,Fisher(x)表示Fisher判别函数,W表示投影方向的权重向量,x表示样本数据。

具体来说,Fisher线性判别的步骤如下:1. 计算类别内离散度矩阵Sw和类别间离散度矩阵Sb;2. 计算Fisher准则函数J(W),即J(W) = W^T * Sb * W / (W^T * Sw * W);3. 求解Fisher准则函数的最大值对应的投影方向W;4. 将样本数据投影到求得的最优投影方向上。

二、二次判别二次判别是基于高斯分布的判别分析方法,将样本数据当作高斯分布的观测值,通过估计每个类别的均值向量和协方差矩阵,计算样本数据属于每个类别的概率,并根据概率大小进行判别。

二次判别的判别函数的计算公式如下:Quadratic(x) = log(P(Ck)) - 0.5 * (x - μk)^T * Σk^-1 * (x - μk)其中,Quadratic(x)表示二次判别函数,P(Ck)表示类别Ck的先验概率,x表示样本数据,μk表示类别Ck的均值向量,Σk表示类别Ck的协方差矩阵。

具体来说,二次判别的步骤如下:1. 估计每个类别的均值向量μk和协方差矩阵Σk;2. 计算每个类别的先验概率P(Ck);3. 计算判别函数Quadratic(x);4. 将样本数据划分到概率最大的类别中。

判别分析公式Fisher线性判别和二次判别是常见的判别分析方法,它们通过对样本数据的投影或概率计算,实现对样本数据的判别。

实验二Fisher线性判别分类器

实验二Fisher线性判别分类器

实验二 Fisher 线性判别分类器本实验旨在让同学进一步了解分类器的设计概念,理解并掌握用Fisher 准则函数确定线性决策面方法的原理及方法,并用于实际的数据分类。

一、实验原理线性判别函数的一般形式可表示成0()T g w =+X W X 其中12d x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ X 12d w w w ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭W 根据Fisher 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W 的函数为:2122212()()F m m J S S -=+ W *112()W S -=-W m m上面的公式是使用Fisher 准则求最佳法线向量的解,该式比较重要。

另外,该式这种形式的运算,我们称为线性变换,其中12-m m 是一个向量,1-WS 是W S 的逆矩阵,如12-m m 是d 维,W S 和1-W S 都是d ×d 维,得到的*W 也是一个d 维的向量。

向量*W 就是使Fisher 准则函数)(W J F 达极大值的解,也就是按Fisher 准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量*W 的各分量值是对原d 维特征向量求加权和的权值。

以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fisher 准则函数极大的d 维向量*W 的计算方法,但是判别函数中的另一项0W 尚未确定,一般可采用以下几种方法确定0W ,如2~~210m m W +-= 或者 m N N m N m N W ~~~2122110=++-= 或当1)(ωp 与2)(ωp 已知时可用[]⎥⎦⎤⎢⎣⎡-+-+=2)(/)(ln 2~~2121210N N p p m m W ωω ……当W 0确定之后,则可按以下规则分类,2010ωω∈→->∈→->X w X W X w X W T T二、实验内容已知有两类数据1ω和2ω,1ω中数据点的坐标对应一一如下:数据:x 1 =0.2331 1.5207 0.6499 0.7757 1.0524 1.19740.2908 0.2518 0.6682 0.5622 0.9023 0.1333-0.5431 0.9407 -0.2126 0.0507 -0.0810 0.73150.3345 1.0650 -0.0247 0.1043 0.3122 0.66550.5838 1.1653 1.2653 0.8137 -0.3399 0.51520.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099y 1=2.3385 2.1946 1.6730 1.6365 1.7844 2.01552.0681 2.1213 2.4797 1.5118 1.9692 1.83401.87042.2948 1.7714 2.3939 1.5648 1.93292.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604 z1=0.5338 0.8514 1.0831 0.4164 1.1176 0.55360.6071 0.4439 0.4928 0.5901 1.0927 1.07561.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548 数据点的对应的三维坐标为2x2 =1.4010 1.23012.0814 1.1655 1.3740 1.1829 1.7632 1.9739 2.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.2614 2.0071 2.1831 1.79091.3322 1.1466 1.7087 1.59202.9353 1.46642.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414 y2 =1.0298 0.9611 0.9154 1.4901 0.8200 0.9399 1.1405 1.0678 0.8050 1.2889 1.4601 1.4334 0.7091 1.2942 1.3744 0.9387 1.2266 1.18330.8798 0.5592 0.5150 0.9983 0.9120 0.71261.2833 1.1029 1.2680 0.7140 1.2446 1.3392 1.1808 0.5503 1.4708 1.1435 0.7679 1.1288 z2 =0.6210 1.3656 0.5498 0.6708 0.8932 1.43420.9508 0.7324 0.5784 1.4943 1.0915 0.76441.2159 1.3049 1.1408 0.9398 0.6197 0.66031.3928 1.4084 0.6909 0.8400 0.5381 1.37290.7731 0.7319 1.3439 0.8142 0.9586 0.73790.7548 0.7393 0.6739 0.8651 1.3699 1.1458三、实验要求1) 请把数据作为样本,根据Fisher 选择投影方向W 的原则,使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,求出评价投影方向W 的函数,并求使)(w J F 取极大值的*w 。

Fisher线性判别

Fisher线性判别

3·4 Fisher线性判别多维 Þ Fisher变换 Þ 利于分类的一维对于线性判别函数( 3-4-1)可以认为是矢量在以为方向的轴上的投影的倍。

这里,视作特征空间中的以为分量的一个维矢量希望所求的使投影后,同类模式密聚,不同类模式相距较远。

求权矢量Þ 求满足上述目标的投影轴的方向和在一维空间中确定判别规则。

从另一方面讲,也是降维,特征提取与选择等问题的需要。

(R.A.Fisher,1936)下面我们用表示待求的。

图 (3-4-1) 二维模式向一维空间投影示意图(1)Fisher准则函数对两类问题,设给定维训练模式,其中有个和个模式分属类和类。

为方便,各类的模式又可分别记为和,于是,各类模式均值矢量为( 3-4-2)各类类内离差阵和总的类内离差阵分别为( 3-4-3)( 3-4-4)我们取类间离差阵为( 3-4-5)作变换,维矢量在以矢量为方向的轴上进行投影( 3-4-6)变换后在一维空间中各类模式的均值为( 3-4-7)类内离差度和总的类内离差度为( 3-4-8)( 3-4-9)类间离差度为( 3-4-10)我们希望经投影后,类内离差度越小越好,类间离差度越大越好,根据这个目标作准则函数( 3-4-11)称之为Fisher准则函数。

我们的目标是,求使最大。

(2)Fisher变换将标量对矢量微分并令其为零矢量,注意到的分子、分母均为标量,利用二次型关于矢量微分的公式可得( 3-4-12)令可得当时,通常是非奇异的,于是有( 3-4-13)上式表明是矩阵相应于本征值的本征矢量。

对于两类问题,的秩为1,因此只有一个非零本征值,它所对应的本征矢量称为Fisher最佳鉴别矢量。

由式( 3-4-13)有( 3-4-14)上式右边后两项因子的乘积为一标量,令其为,于是可得式中为一标量因子。

这个标量因子不改变轴的方向,可以取为1,于是有( 3-4-15)此时的是使Fisher准则函数取最大值时的解,即是维空间到一维空间投影轴的最佳方向,( 3-4-16)称为Fisher变换函数。

Fisher线性判别原理(实例论证解析)

Fisher线性判别原理(实例论证解析)

Fisher 线性判别原理原始数据:111212122212p p n n np n px x x x x x X x x x ⨯⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 寻找关于X 的线性组合,使得Y Xa =,其中121p p a a a a ⨯⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦为p 维列向量。

使得111212111212222211221p p p p n n p np n n a x a x a x y a x a x a x y Y Xa a x a x a x y ⨯+++⎡⎤⎡⎤⎢⎥⎢⎥+++⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦⎣⎦对于Y 中的每个分量来说,离差平方和为:22211()nniii i y y yny ==-=-∑∑令11111n n n H I n⨯⨯'=-,则有:[][][][]121212121212100101011(111)0011111111111111n n n n n n y y Y HY y y y n y n n n y y y y y n nn y nn n y y y y y y y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤---⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥---⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥=---⎢⎥⎢⎣⎦22211()n nii i i y ny y y ==⎥=-=-∑∑而21()()nii y y Y HY Xa HXa a X HXa a Ta ='''''-====∑若n 个原始数据X 来自J 个不同的组,每个组有j n 个数据,12++J n n n n +=。

将X ,Y 重新标记为:111(1)(1)(1)11121(1)(1)(1)21222(1)(1)(1)12()()()11121()()()21222()()()12J J J pp n n n p J J J p J J J p J J J n n n p n p x x x x x x x x x X x x x x x x x x x ⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1(1)1(1)2(1)()1()2()J n J J J n y y y Y y y y ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,Y Xa = 其中(j)表示其属于第j 组的数据。

fisher判别函数

fisher判别函数

Fisher判别函数,也称为线性判别函数(Linear Discriminant Function),是一种经典的模式识别方法。

它通过将样本投影到一维或低维空间,将不同类别的样本尽可能地区分开来。

一、算法原理:Fisher判别函数基于以下两个假设:1.假设每个类别的样本都服从高斯分布;2.假设不同类别的样本具有相同的协方差矩阵。

Fisher判别函数的目标是找到一个投影方向,使得同一类别的样本在该方向上的投影尽可能紧密,而不同类别的样本在该方向上的投影尽可能分开。

算法步骤如下:(1)计算类内散度矩阵(Within-class Scatter Matrix)Sw,表示每个类别内样本之间的差异。

Sw = Σi=1 to N (Xi - Mi)(Xi - Mi)ᵀ,其中Xi 表示属于类别i 的样本集合,Mi 表示类别i 的样本均值。

(2)计算类间散度矩阵(Between-class Scatter Matrix)Sb,表示不同类别之间样本之间的差异。

Sb = Σi=1 to C Ni(Mi - M)(Mi - M)ᵀ,其中 C 表示类别总数,Ni 表示类别i 中的样本数量,M 表示所有样本的均值。

(3)计算总散度矩阵(Total Scatter Matrix)St,表示所有样本之间的差异。

St =Σi=1 to N (Xi - M)(Xi - M)ᵀ(4)计算投影方向向量w,使得投影后的样本能够最大程度地分开不同类别。

w= arg max(w) (wᵀSb w) / (wᵀSw w),其中w 表示投影方向向量。

(5)根据选择的投影方向向量w,对样本进行投影。

y = wᵀx,其中y 表示投影后的样本,x 表示原始样本。

(6)通过设置一个阈值或使用其他分类算法(如感知机、支持向量机等),将投影后的样本进行分类。

二、优点和局限性:Fisher判别函数具有以下优点:•考虑了类别内和类别间的差异,能够在低维空间中有效地区分不同类别的样本。

Fisher线性判别分析实验(模式识别与人工智能原理实验1)

Fisher线性判别分析实验(模式识别与人工智能原理实验1)

F i s h e r线性判别分析实验(模式识别与人工智能原理实验1)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN实验1 Fisher 线性判别分析实验一、摘要Fisher 线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。

Fisher 线性判别分析,就是通过给定的训练数据,确定投影方向W 和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。

二、算法的基本原理及流程图 1 基本原理(1)W 的确定各类样本均值向量mi样本类内离散度矩阵i S 和总类内离散度矩阵w S12w S S S =+样本类间离散度矩阵b S在投影后的一维空间中,各类样本均值T i i m '= W m 。

样本类内离散度和总类内离散度 T T i i w w S ' = W S W S ' = W S W 。

样本类间离散度T b b S ' = W S W 。

Fisher 准则函数满足两个性质:·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。

·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。

根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W :-1w 12W = S (m - m ) 。

(2)阈值的确定实验中采取的方法:012y = (m ' + m ') / 2。

(3)Fisher 线性判别的决策规则T x S (x m)(x m ), 1,2ii ii X i ∈=--=∑T1212S (m m )(m m )b =--对于某一个未知类别的样本向量x,如果y=W T·x>y0,则x∈w1;否则x∈w2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档