钢结构节点设计计算书

合集下载

钢结构计算书范本

钢结构计算书范本

钢结构计算书范本摘要:一、钢结构计算书的概述1.钢结构计算书的定义与作用2.钢结构计算书的内容与结构二、钢结构计算书的编制流程1.确定钢结构工程设计要求2.钢结构材料的选择与计算3.钢结构构件的计算与分析4.钢结构连接件的计算与分析5.钢结构节点的设计与计算6.钢结构施工图的绘制与审核三、钢结构计算书的具体要求1.计算书的规范与标准2.计算书的准确性与完整性3.计算书的可读性与可操作性四、钢结构计算书范例1.范例一:轻钢厂房结构计算书2.范例二:钢结构桥梁计算书3.范例三:高层钢结构建筑计算书正文:钢结构计算书是钢结构工程设计、施工中必不可少的文件,它对保证钢结构工程的安全性、稳定性及经济性具有至关重要的作用。

本文将对钢结构计算书的概述、编制流程、具体要求及范例进行详细阐述。

一、钢结构计算书的概述钢结构计算书是在钢结构工程设计、施工过程中,依据国家相关规范、标准,对钢结构构件、连接件及节点进行强度、刚度、稳定性等方面的计算与分析的书面文件。

它主要包括钢结构工程设计要求、材料选择与计算、构件计算与分析、连接件计算与分析、节点设计与计算、施工图绘制等内容。

二、钢结构计算书的编制流程钢结构计算书的编制流程主要包括以下几个方面:1.确定钢结构工程设计要求:根据工程类型、用途、荷载条件等因素,明确钢结构工程的设计要求。

2.钢结构材料的选择与计算:根据设计要求,选择合适的钢结构材料,并进行材料规格、数量等方面的计算。

3.钢结构构件的计算与分析:对钢结构构件进行强度、刚度、稳定性等方面的计算与分析,确保构件在荷载作用下的安全性能。

4.钢结构连接件的计算与分析:对钢结构连接件进行强度、刚度、稳定性等方面的计算与分析,确保连接件在荷载作用下的安全性能。

5.钢结构节点的设计与计算:对钢结构节点进行强度、刚度、稳定性等方面的设计及计算,确保节点在荷载作用下的安全性能。

6.钢结构施工图的绘制与审核:根据计算结果,绘制钢结构施工图,并进行审核,确保施工图的准确性、完整性及可操作性。

钢结构节点域计算书

钢结构节点域计算书

BH500x500x70x28梁-梁刚性拼接设计验算
一、工程名称: 二、节点连接方式:翼缘和腹板全部采用摩擦型高强度螺栓连接 三、节点域屈服承载力验算:
柱腹板抗剪强度设计值f v= 查表得梁翼缘钢材的屈服强度f ay= 左侧梁翼缘全塑性模量W左f 左侧梁腹板全塑性模量W左w= 左侧梁腹板全塑性模量Wpb1= 左侧梁Mpb1 查表得梁翼缘钢材的屈服强度f ay= 右侧梁翼缘全塑性模量W右f= 右侧梁腹板全塑性模量W右w= 右侧梁腹板全塑性模量Wpb2= 右侧梁Mpb2 节点域体积Vp= ψ ψ (Mpb1+Mpb2)/Vp= (4/3)fv= 145.000 325.000 9,240,000 3,422,500 9,369,779 3,045,178,175 345.000 0 0 9,369,799 3,045,184,675 22,999,200 0.7 185.365 193.333 Mpa Mpa mm3 mm3 mm3 1,604,990
Mpa mm3 mm3 mm3 2764090705 mm3 Mpa Mpa
算螺栓群Σ xi2(mm2)=
0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0 腹板螺栓群Σ yi(mm)= 0 腹板螺栓群Σ xi2(mm2)= 0 腹板螺栓群Σ yi2(mm2)= 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

钢结构设计计算书模板(完整版).doc

钢结构设计计算书模板(完整版).doc

钢结构设计计算书模板(完整版).doc 模板一:一、引言1.1 编制目的1.2 适合范围1.3 参考文件1.4 术语和定义二、设计基本要求2.1 构件荷载2.2 材料性能参数2.3 抗震设计参数2.4 稳定分析要求2.5 设计方法与规范三、结构荷载计算与抗震设防3.1 永久荷载计算3.2 变动活荷载计算3.3 风荷载计算3.4 地震荷载设计四、钢结构稳定性计算4.1 弯曲构件稳定性计算4.2 抗扭构件稳定性计算4.3 桁架稳定性计算4.4 纵向受压构件稳定性计算五、钢结构设计计算5.1 钢框架结构设计计算5.2 钢桁架结构设计计算5.3 钢梁设计计算5.4 钢柱设计计算六、连接设计与计算6.1 框架节点设计与计算6.2 梁柱连接设计与计算6.3 钢板连接设计与计算附录一:设计图纸附录二:设计计算表格附件:1. 钢结构设计荷载计算表格2. 结构稳定性计算程序代码3. 抗震设计参数表格法律名词及注释:1. 施工总承包合同:指由建设单位委托给总承包单位进行工程施工,包括承包义务、承包地点、承包价格等细则的协议。

2. 建设工程法:指中华人民共和国法律关于建设工程的规定,其中包括建设工程的设计、施工、验收等方面的规章。

3. 建造设计报告:指用于描述建造设计方案的文档,其中包括建造构造、设备配置等设计要求。

模板二:一、引言1.1 编制目的1.2 适合范围1.3 参考文件1.4 术语和定义二、设计基本要求2.1 结构强度2.2 振动与舒适性要求2.3 对称性和定位要求2.4 材料要求2.5 工作性能要求三、荷载计算与分析3.1 永久荷载计算3.2 变动活荷载计算3.3 风荷载计算3.4 地震荷载设计四、结构设计计算4.1 结构分析4.2 框架结构设计计算4.3 桁架结构设计计算4.4 平面刚性连接设计计算五、钢结构节点设计5.1 立柱与梁的节点设计5.2 钢板连接设计5.3 焊接节点设计5.4 螺栓连接设计六、稳定性计算6.1 弯曲构件稳定性计算6.2 抗扭构件稳定性计算6.3 梁柱系统的整体稳定性计算附录一:设计图纸附录二:设计计算表格附件:1. 结构设计荷载计算表格2. 结构分析与设计计算软件3. 结构稳定性计算程序代码法律名词及注释:1. 建造法:指中华人民共和国法律关于建造方面的规定,其中包括建造设计、施工、防火等方面的规章。

钢结构计算书

钢结构计算书

钢结构计算书一、构件受力类别轴心受拉构件强度计算。

二、强度验算:1.轴心受拉构件的强度,可按下式计算:式中:N──轴心拉力或轴心压力,取N=132.00(kN);A n──净截面面积,取A n=8300.00(mm2);轴心受拉构件的强度σ=N/A n=132.00×103/8300.00=15.904(N/mm2);f──钢材的抗拉强度设计值,取f=215.00(N/mm2);由于轴心受拉构件强度σ= 15.904N/mm2≤承载力设计值f=215.00 N/mm2,故满足要求!2.摩擦型高强螺栓连接处的强度,按下式计算,取最大值:式中:N──轴心拉力或轴心压力,取N=132.00(kN);A n──净截面面积,取A n=8300.00(mm2);A──构件的毛截面面积,取A=8300.00(mm2);f──钢材的抗拉强度设计值,取f=215.00(N/mm2);n──在节点或拼接处,构件一端连接的高强螺栓数目,取n=8;n1──所计算截面(最处列螺栓处)上高强螺栓数目;取n1=10。

σ=(1-0.5×10/8)×132.00×103/8300.00=5.964(N/mm2);式中:N──轴心拉力或轴心压力,取N=132.00(kN);A──构件的毛截面面积,取A=8300.00(mm2);σ=N/A=132.00×103/8300.00=15.904(N/mm2);由于轴心受拉构件强度σ= 15.904N/mm2≤承载力设计值f=215.00 N/mm2,故满足要求!3、受拉构件的长细比,可按下式计算:l──构件的计算长度,取l=3000.00 mm;i──构件的回转半径,取i=182.00 mm;λ──构件的长细比, λ= l/i= 3000.00/182.00 =16.484;[λ]──构件的允许长细比,取[λ]= 150.00 ;构件的长细比λ= 16.484 ≤[λ] = 150.00,满足要求;。

钢结构设计计算书

钢结构设计计算书

钢结构设计计算书⼀、设计资料1、某车间的跨度27m,柱距为6m,⼚房总长度为240m,屋⾯采⽤1.5m*6m的预应⼒钢筋混凝⼟⼤型屋⾯板(屋⾯板不考虑作为⽀撑⽤),屋⾯的坡度为i=1/102、屋⾯永久荷载标准值为2.8kN/m(不含屋架⾃重),屋⾯可变荷载标准值为0.5kN/m,屋架采⽤梯形钢屋架,其屋架⽀承于钢筋混凝⼟柱顶3、屋架的计算跨度:lo=27-2*0.15=26.7m4、屋架的中间⾼度:h=3.340m5、在26.7m的两端⾼度为:ho=2.005m6、在27m轴线处端部⾼度为:ho=1.990m7、混凝⼟强度等级为C25,钢材采⽤Q235-B级,焊条采⽤E43型,⼿⼯焊8、车间的柱⽹布置图如下:柱⽹布置图备注:某车间所设计的屋盖⽆吊车、⽆天窗、⽆振动设备,不必进⾏有关这些的计算。

⼆、结构形式与布置屋架形式及尺⼨如下图所⽰屋架⽀撑布置图请见A3图纸。

三、荷载计算永久荷载:预应⼒钢筋混凝⼟⼤型屋⾯板:2.8*1.35=3.782/m kN 屋架和⽀撑⾃重:(0.12+0.011*27)*1.35=0.562/m kN 总计:4.342/m kN 可变荷载:0.5*1.4=0.72/m kN 总计:0.72/m kN 设计屋架时,应考虑以下3种荷载组合:(1)第⼀种荷载组合:全跨永久荷载及可变荷载: F=(4.34+0.7)*1.5*6=45.36 kN(2)第⼆种荷载组合:全跨永久荷载+半跨可变荷载:全跨节点永久荷载:1F =4.34*1.5*6=39.06kN 半跨节点可变荷载:2F =0.7*1.5*6=6.3kN(3)第三种荷载组合:全跨屋架包括⽀撑+半跨屋⾯⾃重+半跨屋⾯活荷载:全跨节点屋⾯⾃重:3F =0.56*1.5*6=5.04kN半跨节点屋⾯板⾃重及活荷载:4F =(3.78+0.7)*1.5*6=40.32kN备注:上述三种荷载组合,其中(1)、(2)种组合为使⽤阶段荷载情况,(3)为施⼯阶段荷载情况。

钢结构课程设计计算书

钢结构课程设计计算书

钢结构课程设计计算书⼀由设计任务书可知:⼚房总长为120m,柱距6m,跨度为24m,屋架端部⾼度为2m,车间内设有两台中级⼯作制吊车,该地区冬季最低温度为-22℃。

暂不考虑地震设防。

屋⾯采⽤1.5m×6.0m预应⼒⼤型屋⾯板,屋⾯坡度为i=1:10。

卷材防⽔层⾯(上铺120mm 泡沫混凝⼟保温层和三毡四油防⽔层)。

屋⾯活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。

屋架采⽤梯形钢屋架,钢屋架简⽀于钢筋混凝⼟柱上,混凝⼟强度等级C20.⼆选材:根据该地区温度及荷载性质,钢材采⽤Q235-C。

其设计强度为215KN/㎡,焊条采⽤E43型,⼿⼯焊接,构件采⽤钢板及热轧钢筋,构件与⽀撑的连接⽤M20普通螺栓。

屋架的计算跨度L。

=24000-2×150=23700,端部⾼度:h=2000mm(轴线处),h=2150(计算跨度处)。

三结构形式与布置:屋架形式及⼏何尺⼨见图1所⽰:图1屋架⽀撑布置见图2所⽰:图2四荷载与内⼒计算:1.荷载计算:活荷载于雪荷载不会同时出现,故取两者较⼤的活荷载计算。

永久荷载标准值:防⽔层(三毡四油上铺⼩⽯⼦)0.35KN/㎡找平层(20mm厚⽔泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝⼟0.25 KN/㎡预应⼒混凝⼟⼤型屋⾯板 1.4 KN/㎡钢屋架和⽀撑⾃重0.12+0.011×24=0.384 KN/㎡总计:2.784 KN/㎡可变荷载标准值:雪荷载<屋⾯活荷载(取两者较⼤值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸⼒,起卸载作⽤,⼀般不予考虑。

总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合:设计屋架时应考虑以下三种组合:组合⼀全跨永久荷载+全跨可变荷载屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN组合⼆全跨永久荷载+半跨可变荷载屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KNP2=1.68KN/㎡×1.5×6=15.12KN组合三全跨屋架及⽀撑⾃重+半跨⼤型屋⾯板⾃重+半跨屋⾯活荷载屋架上弦荷载P3=0.384KN/㎡×1.2×1.5×6=4.15KNP4=(1.4×1.2+0.7×1.4)×1.5×6=23.94KN3,内⼒计算:⾸先求出杆件内⼒系数,即单位荷载作⽤下的杆件内⼒,荷载布置如图3所⽰。

钢结构节点计算

钢结构节点计算

“梁梁拼接全螺栓刚接”节点计算书====================================================================计算软件:MTS钢结构设计系列软件MTSTool v3.5.0.0计算时间:2012年12月02日16:53:51==================================================================== H1100梁梁拼接全螺栓刚接一. 节点基本资料节点类型为:梁梁拼接全螺栓刚接梁截面:H-1100*400*20*34,材料:Q235左边梁截面:H-1100*400*20*34,材料:Q235腹板螺栓群:10.9级-M20螺栓群并列布置:10行;行间距70mm;2列;列间距70mm;螺栓群列边距:50 mm,行边距50 mm翼缘螺栓群:10.9级-M20螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;螺栓群列边距:45 mm,行边距50 mm腹板连接板:730 mm×345 mm,厚:16 mm翼缘上部连接板:605 mm×400 mm,厚:22 mm翼缘下部连接板:605 mm×170 mm,厚:24 mm梁梁腹板间距为:a=5mm节点前视图如下:节点下视图如下:二. 荷载信息设计内力:组合工况内力设计值工况N(kN) Vx(kN) My(kN·m) 抗震组合工况1 0.0 115.4 152.3 否组合工况2 0.0 135.4 172.3 是三. 验算结果一览验算项数值限值结果承担剪力(kN) 6.77 最大126 满足列边距(mm) 50 最小33 满足列边距(mm) 50 最大88 满足外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足行边距(mm) 50 最小44 满足行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足净截面剪应力比0.066 1 满足净截面正应力比0.000 1 满足净面积(cm^2) 163 最小162 满足承担剪力(kN) 8.93 最大140 满足极限受剪(kN·m) 9450 最小7670 满足列边距(mm) 45 最小44 满足列边距(mm) 45 最大88 满足外排列间距(mm) 70 最大176 满足中排列间距(mm) 70 最大352 满足列间距(mm) 70 最小66 满足行边距(mm) 50 最小33 满足行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足中排行间距(mm) 70 最大352 满足行间距(mm) 70 最小66 满足净截面剪应力比0.000 1 满足净截面正应力比0.021 1 满足净面积(cm^2) 129 最小106 满足净抵抗矩(cm^3) 13981 最小13969 满足抗弯承载力(kN·m) 6485.0 最小6055.8 满足抗剪承载力(kN) 3516.1 最小2813.2 满足孔洞削弱率(%) 21.71% 最大25% 满足四. 梁梁腹板螺栓群验算1 螺栓群受力计算控制工况:组合工况2,N=0 kN;V x=135.4 kN;M y=172.3 kN·m;2 腹板螺栓群承载力计算列向剪力:V=135.4 kN螺栓采用:10.9级-M20螺栓群并列布置:10行;行间距70mm;2列;列间距70mm;螺栓群列边距:50 mm,行边距50 mm螺栓受剪面个数为2个连接板材料类型为Q235螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.45×155=125.55kN计算右上角边缘螺栓承受的力:N v=135.4/20=6.77 kNN h=0 kN螺栓群对中心的坐标平方和:S=∑x2+∑y2=833000 mm2N mx=0 kNN my=0 kNN=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+0)2+(0+6.77)2]0.5=6.77 kN≤125.55,满足3 腹板螺栓群构造检查列边距为50,最小限值为33,满足!列边距为50,最大限值为88,满足!外排列间距为70,最大限值为176,满足!中排列间距为70,最大限值为352,满足!列间距为70,最小限值为66,满足!行边距为50,最小限值为44,满足!行边距为50,最大限值为88,满足!外排行间距为70,最大限值为176,满足!中排行间距为70,最大限值为352,满足!行间距为70,最小限值为66,满足!。

节点计算书

节点计算书

节点计算书钢材弹性模量E=206x103N/mm2;剪变模量G=79x103N/mm2;线膨胀系数α=12x10-6 /℃;质量密度ρ=7850kg/m3。

表1 钢材强度设计值1恒荷载钢结构自重由程序自动统计计算,结构自重×1.1来考虑节点重量。

平台面恒荷载:0.75kN/m22活荷载平台活荷载:2.5kN/m2 按最大面积考虑,2.5×1.3×4.5=14.7KN,大于给定的4KN的承载能力。

节点模型图根据图纸内容,选取最大跨度下最宽的楼板计算。

即4500×1300的楼板。

按照每两件预埋铁承担一块楼板考虑,角铁的长度选定为与楼板宽度一致,中间与预埋铁焊接,两端考虑为自由,此状态最为不利。

划分网格图施加约束图预埋铁以及螺杆与混凝土粘结在一起,考虑为固结。

施加荷载图施加荷载,按照最重一块楼板计算。

楼板与角钢接触面以内为自由端。

在楼板荷载与角铁作用时荷载主要作用在距离角钢最内侧的接触线上。

梅塞斯应力图剪应力图梅塞斯应变图焊缝计算:1、剪力计算。

单个预埋板所受剪力为10KN,焊缝高度8mm,焊缝长度140mm,上下两条焊缝。

σ=F/A=10000/(140×8×0.7×2)=7MPa。

2、弯矩计算。

预埋铁外侧所受荷载为均布荷载σ=F/A=1×8.5×600×600/(2×8×8×140)=86MPa。

√(σ12+3τ12)=87.3 MPa焊缝满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

vp = dc ⋅ db ⋅tc
筑龙网
dc , tc − 分别为节点域柱腹板的高度和厚度
db − 横梁节点域高度
τ = ≤ 3 Μb1 +Μb2
fv
4 vp
r
=
3 × 290 ×103 ×103 4 560 × 560 ×14
= 66.05Ν / mm2
<
fv r
= 125Ν / mm2
故满足要求。
⑸ 螺栓处腹板强度验算:
Ν t < 0.4Ρ = 0.4 × 225 = 90ΚΝ
0.4 p ewtw
=
0.4× 225×103 103×10
= 100.2Ν / mm2
<
f
= 215Ν / mm2
故强度满足要求.
=
91.1ΚΝ
筑龙网
Ν
b t
=
0.8 p
=
0.8 × 225
= 180ΚΝ
则受力最大螺栓的拉力和剪力为:
Νt
=
Μy1
∑ m yi2
=
334.6 ×106 × 300 2 × 2(1102 + 2202 + 3002 )
= 166.7ΚΝ
Νv
=
V n
=
149.3 12
= 12.44ΚΝ<来自f= 215Ν / mm2
故强度满足要求.
2. 横梁屋脊拼接节点
采用 10.9 级 Μ22 高强螺栓进行拼接,如图:
筑龙网
连接处传递的内力 Μ E = 290ΚΝ ⋅ m ⑴ 端板厚度的确定
t≥
= 6efΝ t bf
6×40×225×103 300×205
= 29.6mm
4 3
fv
r
=
334.6×106 560×14×680
=
62.76Ν / mm2
<
4 3
×
120
= 166.76Ν / mm2
故满足要求
⑷ 螺栓处腹板强度验算:
Νt = 166.7ΚΝ > 0.4Ρ = 0.4 × 225 = 90ΚΝ
Ν t2 ewtw
= 166.7×103 103×10
= 115.6Ν / mm2
拉剪共同作用下受力最大螺栓的承载力验算:
+ = + = 1 = Νv
Νt
6.48 128.9
Ν
b v
Ν
b t
76.95
152
1.0
故承载力满足要求。
⑶ 梁柱节点域的剪力
vp = dc ⋅ db ⋅tc
dc , tc − 分别为节点域柱腹板的高度和厚度
db − 横梁节点域高度
τ = ≤ Μb1 +Μb2 vp
节点设计
1.梁柱拼接节点 横梁和柱的连接采用 10.9 级 Μ 24 高强螺栓进行连接,构件接触面采 用喷砂,
筑龙网
摩擦面抗滑移系数 µ = 0.45 ,每个高强螺栓的预拉力 P=225KN,连接
处传递内力值。(M=334.6KN , V=149.3KN) ⑴ 端板厚度的确定:
= 0.03 + 0.803 = 0.833 < 1.0
故承载力满足要求。
⑶ 连接板计算:
连接板近似的按固结梁计算:(如图)
Μ
=
1 8
ql 2
=
1 8
×144.5 × 2 × 220 ×10−3
=
7.95ΚΝ
⋅m
所需连接板的厚度:
t=
6Μ bf
=
6×7.95×106 220×205
= 32.5mm
所以取 t=35mm. ⑷ 梁柱节点域的剪应力验算:
取 t=35 ㎜
因梁翼缘厚度只有 12 ㎜,不能满足 35 ㎜的需求,故在螺栓拉力最
部位的螺栓间设加劲肋。
⑵ 梁柱节点的强度:
单个高强螺栓的受剪受拉承载力设计值为:
Ν
b v
=
0.9n f
µΡ
=
0.9 ×1× 0.45 × 225
=
91.125ΚΝ
筑龙网
Ν
b t
=
0.8 p
=
0.8 × 225
= 180ΚΝ
则受力最大螺栓的拉力和剪力为:
Μ y1
290×106 ×300
Ν = ∑ = = 144.5ΚΝ t
m yi2
2×2×(1102 +2202 +3002 )
Nv
=
34.1 = 2.8KN 12
拉剪共同作用下受力最大螺栓的承载力验算:
Nt
N
b t
+
Nv
N
b v
=
2.8 + 144.5 91.125 180
t≥
= 6efΝ t bf
6 × 40 × 225 ×103 = 29.6mm 300 × 205
取 t=35 ㎜
因柱翼缘厚度只有 12 ㎜,不能满足 35 ㎜的需求,故在螺栓拉力最
部位的螺栓间设加劲肋。
⑵ 梁柱节点的强度 单个高强螺栓的受剪受拉承载力设计值为:
Ν
b v
=
0.9n f
µΡ
=
0.9 ×1× 0.45 × 225
相关文档
最新文档