流体力学
流体力学

绪 论在学习流体力学这门课程之前,本绪论将主要回答以下几个问题:什么是流体力学?它的主要研究内容是什么?为什么要学习流体力学?流体力学的发展历史、研究方法,以及怎样学好流体力学?使同学们对流体力学有一个大致的了解,帮助学生在以后的学习中掌握流体力学的主要脉络和学习方法。
一、流体力学的概念及其研究内容流体力学(fluid mechanics)是力学的一个独立分支。
它是研究流体的平衡和流体的机械运动规律及其在工程实际中应用的一门学科。
流体力学的研究对象是流体,包括液体和气体。
在力学研究中,根据研究对象的不同,一般可分为:以受力后不变形的绝对刚体为研究对象的理论力学;以受力后产生微小变形的固体为研究对象的固体力学;以受力后产生较大变形的流体为研究对象的流体力学。
流体是气体和液体的总称。
在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学与人类日常生活和生产事业密切相关。
它是一门应用较广的科学,航空航天、水运工程、流体机械、给水排水、水利工程、化学工程、气象预报以及环境保护等学科均以流体力学为其重要的理论基础。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。
20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。
航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相联的。
这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。
渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。
燃烧离不开气体,燃烧过程中涉及到许多有化学反应和热能变化的流体力学问题是物理―化学流体动力学的内容之一。
爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。
沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。
工程流体力学课件-第一章

二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学

第十一讲流体力学我们通常所说的流体包括了气体和液体。
流体具有形状和大小可以改变的特征,这一点和弹性体是类似的,然而,流体仅仅具备何种压缩弹性,例如,用力推动活塞可以压缩密闭气缸中的气体,在撤消外力后,气体将恢复原状,将活塞推出;但流体不具备抵抗形状改变的弹性,在力的作用下,流体因流动而发生形状的改变,,撤消外力后,流体并不恢复原来的形状,流体的这种性质称为流动性。
流体力学的任务在于研究流体流动的规律以及它与固体之间的相互作用。
一、理想流体无论是气体还是流体都是可以压缩的,只不过在通常的情况下,气体较容易被压缩,而液体难以被压缩。
但是,在一定的条件下,我们常常把流动着的流体看着是不可压缩的,这一点对于液体是比较好理解的,因为在对液体加压时,其何种的改变是极其微小的,是可以忽略的;我们之所以把流动着的气体也看作是不可压缩的,是因为气体的密度小,即使压力差不大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀,这样使得流动的气体中各处的密度密度不随时间发生明显的变化,这样,气体的可压缩性便可以不必考虑。
不过,当气流的速度接近或超过声速时,因气体的运动造成的各处的密度不均匀的差别不及消失,这时气体的可压缩性会变得非常的明显,不能再看作是不可压缩的。
总之,在一定的问题中,若可不考虑气体的可压缩性,便可将它抽象为不可压缩的理想模型,反之,则需看作是可压缩的液体。
液体都的或多或少的粘性,在静止液体中,粘性无法表现,在流体流动时,,将明显地表现出粘性。
所谓粘性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力,如河流中心的水流速度较快,由于粘性,靠近河岸的水几乎不动。
在研究流体时,若流体的流动性是主要的,粘性居于次要地位时,可认为流体完全没有粘性,这样的理想模型叫做非粘性流体,若粘性起着重要的作用,则需将流体看作粘性流体。
如果在流体的运动过程中,流体的可压缩性和粘性都处于极为次要的地位,就可以把流体看作是理想流体。
流体力学名词解释

1、流体:在静力平衡时,不能承受拉力或剪力的物体。
2、连续介质:由无穷多个、无穷小的、紧密毗邻、连绵不断的流体质点所组成的一种绝无间隙的连续介质。
3、流体的黏性:流体运动时,其内部质点沿接触面相对运动,产生的内摩擦力以阻抗流体变形的性质。
4、流体的压缩性:温度一定时,流体的体积随压强的增加而缩小的特性。
5、流体的膨胀性:压强一定时,流体的体积随温度的升高而增大的特性。
6、不可压缩流体:将流体的压缩系数和膨胀系数都看做零,称作不可压缩流体。
/密度等于常数的流体,称作不可压缩流体。
7、可压缩流体:流体的压缩系数和膨胀系数不等于零,称作可压缩流体。
/密度不等于常数的流体,称作可压缩流体。
8、质量力:指与流体微团质量大小有关并且集中作用在微团质量中心上的力。
9、表面力:指与流体表面积有关且分布作用在流体表面上的力。
10、等压面:流体中压强相等的各点所组成的平面或曲面叫做等压面。
11、绝对压强:以绝对真空或完全真空为基准计算的压强称绝对压强。
12、相对压强:以大气压强为基准计算的压强称相对压强。
13、真空度:如果某点的压强小于大气压强时,说明该点有真空存在,该点压强小于大气压强的数值称真空度。
14、迹线:指流体质点的运动轨迹,它表示了流体质点在一段时间内的运动情况。
15、流线:指流体流速场内反映瞬时流速方向的曲线,在同一时刻处在流线上所有各点的流体质点的流速方向与该点的切线方向重合。
16、定常流动:如果流体质点的运动要素只是坐标的函数而与时间无关,这种流动称为定常流动。
17、非定常流动:如果流体质点的运动要素,既是坐标的函数又是时间的函数,这种流动称为非定常流动。
18、流面:通过不处于同一流线上的线段的各点作出的流线,则可形成由流线组成的一个面称为流面。
19、流管:通过流场中不在同一流面上的某一封闭曲线上的各点做流线,则形成由流线所组成的管状表面,称为流管。
20、微元流束:充满于微小流管中的流体称为微元流束。
流体力学主要内容

第一章连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续体来考虑。
表面力:作用在流体表面上的力;质量力:作用在所取流体体积内每个质点上的力;单位2/m s牛顿内摩擦定律:dudyτμ=μ动力粘度系数,υ运动粘度系数:μυρ=; 无粘性流体:指无粘性,0μ=的流体;不可压缩流体:指流体的每个质点在运动全过程中,密度不变化的流体。
常温常压下气体状态方程:pRT ρ=第二章静止流体的应力特征1.应力方向沿作用面的内法线方向;2.静压强的大小与作用面方位无关。
等压面:流体中压强相等的空间点构成的面(平面或曲面)称为等压面。
重力作用下流体静压强分布o p p gh ρ=+推论:静压强的大小与液体的体积无关两点的压强差等于两点之间单位面积垂直液柱的重量在平衡状态下,液体内任意一点压强的变化等值地传递到其他各点。
压强的度量:绝对压强:流体实有的全部压强相对压强:绝对压强与当地大气压的差值真空度:指绝对压强不足当地大气压的差值,即相对压强的负值v a abs p p p =-;p z c gρ+=,c 为测压管水头(总势能),其中z 为位置水头;pgρ压强水头; 作用在平面上的静水压力 图算法:p bs =(矩形板)b 为受压面宽度,s 为压强分布图的面积总压力的作用线通过压强分布图的形心 解析法:c p gh A ρ=(任意形状平面板)c h :受压面形心的淹没深度A :受压面面积作用在曲面上的静水压力x c x z p gh A p gvρρ==压力体:实压力体,虚压力体,混合压力体第三章描述流体运动的方法:拉格朗日法和欧拉法 拉格朗日法:以个别质点为观察对象,再将每个质点的运动情况汇总起来描述整个流体运动; 欧拉法:以流体运动的空间点作为观察对象,观察不同时刻各空间点上流体质点的运动,再将每个质点的运动情况汇总起来描述整个流体运动。
x x x x x x y z y y y y y x y z z z z zz x y z u u u ua u u u t x y z u u u u a u u u t x y z u u u u a u u u t x y z ∂∂∂∂=+++∂∂∂∂∂∂∂∂=+++∂∂∂∂∂∂∂∂=+++∂∂∂∂流动的分类恒定流和非恒定流:以时间为标准,若各空间点上的运动参数(速度,压强,密度等)都不随时间变化,这样的流动是恒定流,反之则为非恒定流。
流体力学名词解释

流体力学:是力学的一个分支,主要研究流体的各种运动特性,在各种里的作用下流体的运动规律,以及流体与其他界面(固体壁面,不同密度的流体等)由于存在相对运动时的相互作用。
惯性:是物体保持原有运动状态的性质质量:是用来度量物体惯性大小的物理量。
、粘性:反映流体客服外界切向力的物理属性。
气蚀:如这种运动是周期的,将对固体表面产生疲劳并导致剥落,这种现象称为气蚀。
表面张力:由于分子间的吸引力,在液体的自由表面上能够承受及其微小的张力,这种张力称表面张力。
表面力:是通过直接接触,施加在接触面上的力,它正比于接触面面积,通常用单位面积上所受的力表示应力。
质量力:作用在隔离体内每个流动质点上的力称为质量力。
流体静力学:是研究流体处于静止或相对静止状态下的力学规律。
等压面:压强相等的空间点构成的面称为等压面绝对压强:以无物质分子存在的或虽存在但处于绝对静止状态下的压强为起算点,所表示的压强为绝对压强。
相对压强:以当地同高程的大气压强为起算点,所表示的压强为相对压强。
恒定流:在流场中,任意空间位置上运动参数都不随时间而改变,即对时间的偏导数等于零,这种流动称为恒定流。
非恒定流:在流场中,任意空间位置上只要存在某一运动参数是时间的函数,即对时间的偏导数不等于零,这种流动称为非恒定流。
流线:在流场中,流线是一条瞬时曲线,在曲线上每一点的切线方向代表该点的流速方向,流线是由无限多个流体质点组成的。
迹线:在流场中,迹线是由一个流体质点随着时间的推移在空间中所勾画的曲线,即为流体质点的轨迹线。
流管:在流场中任意取一非流线的封闭曲线,通过该曲线上的每一点作流场的流线,这些流线所构成的一封闭管状曲面称为流管。
过流断面:在流束上作与流线正交的横断面称为过流断面。
元流:当流束的过流断面为微元时,该流束称为元流。
总流:总流是由无数元流组成的流束,断面上各点的运动参数一般不相等。
流量:单位时间通过某一过流断面的流体体积或质量称为该断面的流量。
流体力学全部总结

(二)图解法
适用范围:规则受压平面上的静水总压力及其作用点的求解 原理:静水总压力大小等于压强分布图的体积,其作用 线通过压强分布图的形心,该作用线与受压面的交点便 是总压力的作用点(压心D)。
液体作用在曲面上的总压力
一、曲面上的总压力 • 水平分力Px
Px dPx hdAz hc Az pc AZ
z1
p1 g
u12 2g
z2
p2 g
u2 2 2g
上式被称为理想流体元流伯诺里方程 ,该式由瑞士物理学家 D.Bernoulli于1738年首先推出,称伯诺里方程 。
应用条件:恒定流 不可压缩流体 质量力仅重力 微小流束(元流)
三、理想流体元流伯诺里方程的物理意义与几何意义
几何意义
p x p y p z pn
X
流体平衡微分方程 (欧拉平衡方程)
1 p x 1 p y 1 p z
Y Z
0 0 0
物理意义:处于平衡状态的流体,单位质量流体所受的表面力分量与质量
力分量彼此相等。压强沿轴向的变化率( p , p , p )等于该轴向单位体积上的 x y z 质量力的分量(X, Y, Z)。
u x x
u y y
u z z
0
适用范围:理想流体恒定流的不可压缩流体流动。
二、恒定总流连续性方程
取一段总流,过流断面面积为A1和A2;总流中 任取元流,过流断面面积分别为dA1和dA2,流速为 恒定流时流管形状与位置不随时间改变; u1和u2
考虑到: 不可能有流体经流管侧面流进或流出; 流体是连续介质,元流内部不存在空隙;
第三节 连续性方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8)
这就是全面反映牛顿流体应力与应变速度关 系的本构方程式。 按照矩阵加法、乘法规则将对应元素展开, (8)式可以代替()及(7)两式,用矩阵表达 可使后两个公式形式统一。
对于不可压缩流体来说,将(7)式中的 三式相加,因为
vx v y vz 1 0,因此p p xx p yy p zz x y z 3
•
' p xx p p xx p 2 xx p 2
p yy p p 'yy p 2 yy p 2
v x x v y
y v ' p zz p p zz p 2 zz p 2 z z
(7)
• 将(5)和(7)联合在一起,写成矩阵形式,则为
2 2 2 v x , v y , v z 是单位质量流体的切向
应力的分量(粘性力)。
其中,
理想流体运动微分方程及其积分
流体为理想流体时,运动粘度为0,N-S方 程可简化为:
v x v x v x 1 p v x X vx vy vz x t x y z v y v y v y 1 p v y Y vx vy vz y t x y z 1 p v z v z v z v z Z vx vy vz z t x y z
(10) 这就是不可压缩实际流体的运动微分方程式, 通常称为纳维-斯托克斯方程式,或N-S方程式。
• 式中,
dvx dvy dvz , , 是流体运动时单位质量流体的惯性力 dt dt dt 在三个坐标轴上的分量(惯性项); X, Y, Z是单位质量流体的单位质量力分量; 1 p 1 p 1 p , , 是单位质量流体的法向应力 x y z 的分量;
但是在运动着的实际流体中取出边长dx、dy、 dz的六面体微元,如右图1多示,由于粘性影响,当 微元有剪切变形时,作用在微元体ABCDEFGH上的表 面力就不仅有压应力p,而且也有切应力τ 。当微元 有直线变形时,一点上的压应力也不再具有各项同 性的性质了。
粘性流体的法向应力和切向应力都必须同时考虑。 在粘性流体表面上任取一点N,过N作微元面积Δ A。其 外法线方向矢量为 n ,切线方向为 ,N点的表面应力 分为法向应力pn 和切向应力τ ,pn 和τ 随微元面积Δ A 在空间的位置而变化。在直角坐标系中将pn和τ 沿x,y ,z三个坐标轴分解成9个应力分量,即
v x x v y
(6)
由式(6)可以看出,由于各个方向的直线应变速 度不见得相等,因而这种由于粘性阻碍作用所产生的 法向应力也是各向不等的,p'xxp'yyp'zz统称为一点上的 各项异性压强。 • 于是在实际流体运动时,一点上的法向应力除了由 于分子运动统计平均的各向同性压强p之外,还需加上 由于粘性影响而与直线变形有关的各向异性压强,最 后可以得到法向应力与直线应变速度之间的关系为
该方程组有四个未知数p,vx,vy,vz,它和 连续性方程共有四个方程式,从理论上讲, 在一定初始条件和边界条件下,任何一个不 可压缩均质粘性流体的运动问题,是可以求 解的。但是由于实际流体中的粘性影响非常 复杂,单纯用求解N-S方程的方法去解决各种 实际问题是有困难的。 • 而且N-S方程式二阶非线性非齐次的偏微 分方程组,除针对具体情况用数值计算方法 外,还不能积分求普遍解,只有在某些简单 的或特殊的条件下,才能求得精确解。
即为理想流体的运动微分方程,或通称为欧 拉方程。
如果流体是静止或相对平衡流体,则相对于 坐标系来说,速度v=0,则上式简化为:
1 p X 0 x 1 p Y 0 y 1 p Z 0 z
这就是流体的平衡微分方程,也叫欧拉平衡方程。 所以,N-S方程是不可压缩均质流体运动的普遍 方程。如果将牛顿第二定律理解为力的平衡关系式, 则从上面的推导不难看出N-S方程也是作用在流体上 的力的平衡关系式。
实际流体的运动微分 方程
——纳维-斯托克斯方程式 (N-S方程式)
以应力表示的黏性流体运动微分方程式
• 一、作用在流体微元上的应力 在粘性不起作用的平衡流体 中,或者在没有粘性的理想运动 流体中,作用在流体微元表面上 的表面力只有与表面相垂直的压 应力,而且压应力又具有一点上 各向同性的性质。
图一
dvx v x v x v x v x 1 p 2 vx vx vy vz x dt t x y z dvy v y v y v y v y 1 p 2 Y vy vx vy vz y dt t x y z 1 p 2 dvz v z v z v z v z Z vz vx vy vz z dt t x y z X
dn
式中的正负号是为了保持切应力的τ 的正值。 在层流中取正方形流体微元面积abcd,流层间存在 相对速度,在运动中必然变形,经时间dt后变成 a’b’c’d’,ab边线的转角为 d d tgd dvdt 那么角变形速度为
d dv dt dn
dn
即速度梯度等于
剪切变形的角速度。牛顿内摩擦定律也可写成
图2
这就是剪切应力与剪 切应变速度的关系式, 实际也就是牛顿流体的 牛顿内摩擦定律在三元 运动情况下的推广。
•
流体运动时在内部产生的切应力是阻碍流体剪切 变形的。其实流体的粘性不只对剪切变形有阻碍作用。 下面我们分析一下法向应力与直线变形速度之间的关 系。 • 如图3所示,ABCD经过dt时间变成A'B'C'D'时, 微元体在x方向的粘性阻力阻止其拉长。微元体在y方 向缩短,亦必遇到y方向的粘性阻力阻止其缩短。 • 这种表面法向作用的应力的大小与各该方向的直 线应变速度有关,方向与直线变形的方向相反。
(9)
此式说明一点上的各向同性压强也就是不可 压缩实际流体中不同方向压强的算术平均值。这 给具体计算实际流体中的压强带来很大的方便, 我们无需进一步研究各向异性压强,只要找出各 向同性压强与其他流动参数之间的关系,则据此 算出的各向同性压强事实上也就是不可压缩实际 运动流体一点上的流体动压强。
p的含义
• 由上可知,p这个符号就有三种不同的含义: • 在平衡流体中,它代表一点上的流体 静压强; • 在理想运动流体中,它代表一点上的 流体动压强; • 在不可压缩实际运动流体中,它代表 一点上的流体动压强的算术平均值,因此 它也代表一点上的流体动压强。
纳维-斯托克斯方程
将方程(5)、(7)代入方程(3),对于x轴 方向的方程为:
d dt
联系到流体微元运动分析,如图2所示,则流体 微元绕z轴的剪切角速度为
v y v x d ( ) 2 xy y x
流体微元各表面上的切应力为
xy yx ( yz zy xz zx
v x v y ) 2 xy y x v y v z ( ) 2 yz (5) z y v x v z ( ) 2 xz z x
(3)
方程(3)就是以应力表示的粘性流体运动微分 方程,通常X、Y、Z作为已知量,不可压缩流体 已知,方程应包含六个应力及三个速度分量,共9 个未知数。而方程(3)加上连续性方程也只有4 个方程,无法求解,必须找出新的补充关系式。
应力和变形速度的关系
由牛顿内摩擦定律知,当流体两层速度不同时,作用在 流体上的切应力大小等于动力粘度乘以速度梯度。切应力 与速度梯度关系为 dv (4)
v x v x v y v x v z dvx 1 X { ( p 2 ) [ ( )] [ ( )]} x x y y x z z x dt
化简得
dvx 1 p 2 vx 2 vx 2 vx vx v y vz X [( 2 2 2 )] [( )] x x y z x x y z dt
zy dxdy ( zy ( xy x p yy y y zy x z zy z dz)dxdy Ydxdydz )dxdydz Ydxdydz
(1)
流体微团质量与y轴加速度的乘积为
Ydxdydz
dv y dt
(2)
由牛顿第二定律(1)=(2),化简得
p xx yx zx
xy
p yy
xz yz
p zz
xy
应力矩阵的元素沿pxx-pyy主对角线是 对称的。在这9个元素中,xy yx xz zx yz zy ,因此只有6个独立分量。
注意:应力符号 中的下标,下标 第一个字母表示 作用面的法线方 向,第二个字母 表示应力的方向。
•
非线性偏微分方程的常用解法
• 在工程流体中,解决上述非线性偏微分方程 的常用方法和途径有以下三种: • (1)在一些简单的问题中,由于问题的特点, 非线性项等于0,或设法使方程化为线性方程,从 而求得精确解。如用于解决圆管层流、平板层流、 球体的低速绕流、地下水渗流等问题时,能够得 到与实验相符合的满意结果; • (2)根据问题的物理性质,略去方程中某些 次要项,从而得到近似方程,在某些情况下得到 近似解。如用于分析附面层、润滑理论等问题时, 能够得到一定程度的近似结果;
y D D' A O B x
按照剪切力与剪切应变速度的关系式可写出
p'yy
C C' p'xx B'
' p xx 2 xx 2
p 'yy 2 yy
' p zz 2 zz
图3 直线变形与各向异性压强
2 y v z 2 z