最新湖南省邵阳市中考数学试卷(word解析版)

合集下载

(中考精品卷)湖南省邵阳市中考数学真题(解析版)

(中考精品卷)湖南省邵阳市中考数学真题(解析版)

2022年邵阳市初中学业水平考试试题卷数 学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上; (3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. -2022的绝对值是( ) A. 12022 B. 12022- C. -2022 D. 2022【答案】D【解析】【分析】直接利用绝对值定义判断即可.【详解】解:-2022的绝对值是2022,故选:D .【点睛】本题考查了绝对值的定义,明确负数的绝对值等于它的相反数是解题关键. 2. 下列四种图形中,对称轴条数最多的是( )A. 等边三角形B. 圆C. 长方形D. 正方形【答案】B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B .【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.3. 5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是( )A. 0.11B. 1.1C. 11D. 11000 【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:因1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012. 故选:B .【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a 的值以及n 的值.4. 下列四个图形中,圆柱体的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据俯视图是从上面看到的视图进而得出答案即可.【详解】解:竖直放置的圆柱体,从上面看是圆,所以俯视图是圆.故选∶D .【点睛】此题考查了简单几何体的三视图,解题的关键是熟练掌握圆柱体的三视图. 5. 假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )A. 1B. 34C. 12D. 14【答案】D【解析】【分析】由列举法可得:掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,然后利用概率公式求解即可求得答案.为【详解】∵掷两枚硬币,所有等可能的结果有:正正,正反,反正,反反,其中出现(正,正)的情况有1种,∴P(正,正)=14.故选∶D.【点睛】此题考查了列举法求概率,解题关键是知道概率=所求情况数与总情况数之比.6. 下列长度的三条线段能首尾相接构成三角形的是()A. 1cm,2cm,3cmB. 3cm,4cm,5cmC. 4cm,5cm,10cmD. 6cm,9cm,2cm【答案】B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故选项错误,不符合题意;B、3+4>5,能够组成三角形,故选项正确,符合题意;C、5+4<10,不能组成三角形,故选项错误,不符合题意;D、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B.【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.7. 如图是反比例函数y=1x的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A. 1B. 12C. 2 D.32的【答案】B【解析】【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是12. 【详解】解:设A (x ,y )则OB =x ,AB =y , ∵A 为反比例函数y =1x 图象上一点, ∴xy =1,∴S △ABO =12AB •OB =12xy =12×1=12, 故选:B .【点睛】本题考查反比例函数的几何意义,即k 的绝对值,等于△AOB 的面积的2倍,数形结合比较直观.8. 在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A. m n <B. m n >C. m n ≥D. m n ≤【答案】A【解析】【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴32> ∴m <n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.9. 如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A. 32 D. 52【答案】C【解析】【分析】作直径AD ,连接CD ,如图,利用等边三角形的性质得到∠B =60°,关键圆周角定理得到∠ACD =90°,∠D =∠B =60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD ,连接CD ,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD ,∴OA =OB =12AD . 故选:C . 【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质、圆周角定理和含30度的直角三角形三边的关系.10. 关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是( )A. 3B. 4C. 5D. 6 【答案】C【解析】【分析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值. 【详解】解不等式1233x x ->-, 1233x x -+>, ∴2233x >, ∴1x >, 解不等式111(2)22x a -<-, 得11(2)122x a <-+, ∴x a <, ∴1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<, ∵不等式组有且只有三个整数解,∴不等式组的整数解应为:2,3,4,∴a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.二、填空题(本大题有8个小题,每小题3分,共24分)11. 因式分解:224a b -=_____.【答案】()()22a b a b +-【解析】【分析】本题利用平方差公式进行因式分解即可.【详解】解:原式=(a+2b)(a-2b) .12. 有意义,则x的取值范围是_________.【答案】x>2##2<x【解析】【分析】根据二次根式有意义的条件:被开方数是非负数和分式有意义的条件:分母不为0即可求出结论.【详解】解:由题意可得x-2>0,解得:x>2,故答案为:x>2.【点睛】本题考查的是分式及二次根式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0解题的关键.13. 某班50名同学的身高(单位:cm)如下表所示:【答案】160【解析】【分析】根据众数的定义求解.【详解】在这一组数据中160出现了10次,次数最多,故众数是160.故答案为:160.【点睛】此题考查了众数,解题的关键是掌握众数的定义.14. 分式方程532x x-=-的根为_____【答案】x=-3 【解析】【详解】解:532x x-=-,去分母得:5x-3(x-2)=0,解得:x =-3,检验:当x =-3时,x (x -3)≠0,所以,原分式方程的解为x =-3,故答案是:x =-3.15. 已知矩形的一边长为6cm ,一条对角线的长为10cm ,则矩形的面积为_________2cm .【答案】48【解析】【分析】如图,先根据勾股定理求出8cm AB ==,再由ABCD S AB BC=⨯矩形求解即可.【详解】解:在矩形ABCD 中,6cm BC =,10cm AC =,∴Rt ABC △中,8AB ==(cm),∴28648(cm )ABCD S AB BC =⨯=⨯=矩形.故答案为:48.【点睛】此题考查了矩形的性质,勾股定理,解题的关键是熟知上述知识.16. 已知2310x x -+=,则2395x x -+=_________.【答案】2【解析】【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识. 17. 如图,在等腰ABC 中,120A ∠=︒,顶点B 在ODEF 的边DE 上,已知140∠=︒,则2∠=_________.在【答案】110º【解析】【分析】先根据等腰三角形的性质求出∠ABC 的度数;再根据平行四边形对边平行和两直线平行同旁内角互补的性质,得出∠2+∠ABE =180º,代入求解即可.【详解】解:∵ABC 是等腰三角形,∠A =120º,∴∠ABC =∠C =(180º-∠A )÷2=30º,∵四边形ODEF 是平行四边形,∴OF ∥DE ,∴∠2+∠ABE =180º,即∠2+30º+40º=180º,∴∠2=110º.故答案为:110º.【点睛】此题考查了等腰三角形的性质和平行四边形的性质,解题的关键是数形结合,熟练运用上述知识求解.18. 如图,在ABC 中,点D 在AB 边上,点E 在AC 边上,请添加一个条件_________,使ADE ABC △△∽.【答案】∠ADE =∠B (答案不唯一).【解析】【分析】已知有一个公共角,则可以再添加一个角从而利用有两组角对应相等的两个三角形相似来判定或添加夹此角的两边对应成比例也可以判定.【详解】解∶∵∠A =∠A ,∴根据两角相等的两个三角形相似,可添加条件∠ADE =∠B 或∠AED =∠C 证ADE ABC △△∽相似; 根据两边对应成比例且夹角相等,可添加条件AD AE AB AC=证ADE ABC △△∽相似. 故答案为∶∠ADE =∠B (答案不唯一).【点睛】此题考查了本题考查了相似三角形的判定,解题的关键是掌握相似三角形的判定方法. 三、解答题(本大题有8个小题,第19~25题每题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程)19. 计算:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒. 【答案】【解析】【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法. 【详解】解:201(2)2sin 602π-⎛⎫-+-- ⎪⎝⎭︒数幂、负指数幂、锐角三角函数值的计算法则.20. 先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭. 【答案】11x +【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭ 11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦ 的1(1)(1)x x x x x -=⋅+- =11x +, ∵x +1≠0,x -1≠0,x ≠0,∴x ≠±1,x ≠0当x 时,原式==【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.21. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE DF =,OE OA =.求证:四边形AECF 是正方形.【答案】证明过程见解析【解析】【分析】菱形的两条对角线相互垂直且平分,再根据两条对角线相互垂直平分且相等的四边形是正方形即可证明四边形AECF 是正方形.【详解】证明:∵ 四边形ABCD 是菱形∴ OA =OC ,OB =OD 且AC ⊥BD ,又∵ BE =DF∴ OB -BE =OD -DF即OE =OF∵OE =OA∴OA =OC =OE =OF 且AC =EF又∵AC ⊥EF∴ 四边形DEBF 是正方形.【点睛】此题考查了菱形的性质和正方形的判定,解题的关键是掌握上述知识.22. 2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图(1)、图(2)所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.【答案】(1)抽取参加调查的学生人数为40人(2)统计图见解析(3)估计该校报兴趣类社团的学生人数有200人【解析】【分析】(1)从两个统计图中可知,报兴趣类社团有5人,占调查人数的12.5%,可求出抽取参加调查的学生人数;(2)求出报体育类社团的人数即可补全条形统计图,求出文艺类和阅读类所占百分比可补全扇形统计图;(3)用1600去乘报兴趣类社团的学生所占的比例即可.【小问1详解】解:5÷12.5%=40(人)答:抽取参加调查的学生人数为40人.【小问2详解】解:40×25%=10(人),补全条形统计图如图所示:15100%40⨯=37.5%,10100%25%40⨯=,补全扇形统计图如图所示: 【小问3详解】解:1600×12.5%=200(人)答:估计该校报兴趣类社团的学生人数有200人.【点睛】此题考查了条形统计图、扇形统计图的意义和制作方法以及用样本估计总体,解题的关键是从两个统计图中获取数量和数量关系式.23. 2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?【答案】(1)购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;(2)购进的“冰墩墩”挂件不能超过70个.【解析】【分析】(1)设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,利用总价=单价×数量,结合购买“冰墩墩”摆件和“冰墩墩”挂件共180个且共花费11400元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,利用总价=单价×数量,结合至少盈利2900元,即可得出关于m 不等式,解之即可得出结论.【小问1详解】解:设购进“冰墩墩”摆件x 件,“冰墩墩”挂件的y 件,依题意得:180805011400x y x y +=⎧⎨+=⎩, 解得:80100x y =⎧⎨=⎩, 答:购进“冰墩墩”摆件80件,“冰墩墩”挂件的100件;【小问2详解】解:设购买“冰墩墩”挂件m 个,则购买“冰墩墩”摆件(180-m )个,依题意得:(100-80)(180-m )+(60-50)m ≥2900,解得:m ≤70,答:购进的“冰墩墩”挂件不能超过70个.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24. 如图,已知DC 是O 的直径,点B 为CD 延长线上一点,AB 是O 的切线,点A 为切点,且AB AC =.(1)求ACB ∠的度数;(2)若O 的半径为3,求圆弧 AC 的长.【答案】(1)30︒(2)2π【解析】【分析】(1)证明ADO ∆是等边三角形,得到60ADO ︒∠=,从而计算出ACB ∠的度数;(2)计算出圆弧 AC 的圆心角,根据圆弧弧长公式计算出最终的答案.【小问1详解】如下图,连接AO的∵AB 是O 的切线∴OA AB ⊥∴90OAB ︒∠=∵90DAC ︒∠=∴DAC OAB ∠=∠∵AB AC =∴B C ∠=∠∴ABO ACD ∆∆≌∴AD AO DO ==∴ADO ∆是等边三角形∴60ADO ︒∠=∵90DAC ︒∠=∴30ACB ︒∠=【小问2详解】∵60AOD ︒∠=∴120AOC ︒∠=圆弧 AC 的长为:12032180ππ︒︒⨯⨯= ∴圆弧 AC 的长为2π.【点睛】本题考查全等三角形、等腰三角形、等边三角形和圆的性质,解题的关键是熟练掌握全等三角形、等腰三角形、等边三角形和圆的相关知识.25. 如图,一艘轮船从点A 处以30km/h 的速度向正东方向航行,在A 处测得灯塔C 在北偏东60︒方向上,继续航行1h 到达B 处,这时测得灯塔C 在北偏东45︒方向上,已知在灯塔C 的四周40km 内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由. 1.414≈ 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【解析】【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可.【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°,tan ∠DBC =CD BD ,即CD BD =1 ∴CD =BD设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x ,∵40.98km>40km∴这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义. 26. 如图,已知直线y =2x +2与抛物线y =ax 2+bx +c 相交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,点C (3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ 所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【答案】(1)该抛物线的表达式为y=23-x2+43x+2;(2)点P的坐标为(1,0)或(2,0);(3)线段CD'长度的最小值为1.【解析】【分析】(1)先求得点A(-1,0),点B(0,2),利用待定系数法即可求解;(2)分两种情况讨论:△AOB≌△DPC和△AOB≌△CPD,利用全等三角形的性质求解即可;(3)按照(2)的结论,分两种情况讨论,当P、D'、C三点共线时,线段CD'长度取得最小值,据此求解即可.【小问1详解】解:令x=0,则y=2x+2=2,令y=0,则0=2x+2,解得x=-1,点A(-1,0),点B(0,2),把A(-1,0),B(0,2),C(3,0)代入y=ax2+bx+c,得9302a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得23432abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴该抛物线的表达式为y=23-x2+43x+2;【小问2详解】解:若△AOB和△DPC全等,且∠AOB=∠DPC=90°,分两种情况:①△AOB≌△DPC,则AO=PD=1,OB=PC=2,∵OC=3,∴OP=3-2=1,∴点P的坐标为(1,0);②△AOB≌△CPD,则OB=PD=2,∴正方形OPDE的边长为2,∴点P的坐标为(2,0);综上,点P的坐标为(1,0)或(2,0);【小问3详解】解:①点P的坐标为(1,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,1为半径的圆上运动,当P、D'、C三点共线时,线段CD'长度取得最小值,最小值为2-1=1;②点P的坐标为(2,0)时,∵△PQD'与△PQD关于PQ对称,∴PD'=PD,∴点D'在以点P为圆心,2为半径的圆上运动,当P、C、D'三点共线时,线段CD'长度取得最小值,最小值为2-1=1;综上,线段CD'长度的最小值为1.【点睛】此题主要考查了二次函数的综合应用,全等三角形的判定与性质以及待定系数法求二次函数解析式,正方形的性质的应用,点和圆的位置关系,解题的关键是正确进行分类讨论。

初中毕业升学考试(湖南邵阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖南邵阳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖南邵阳卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】的相反数是()A. B. C. D.﹣2【答案】A.【解析】试题分析:的相反数是.故选A.考点:实数的性质.【题文】下面四个手机应用图标中是轴对称图形的是()A. B. C. D.【答案】D【解析】A.既不是轴对称图形,也不是中心对称图形,故本选项错误;B.是中心对称图形,故本选项错误;C.既不是轴对称图形,也不是中心对称图形,故本选项错误;D.是轴对称图形,故本选项正确.故选D.【题文】如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°【答案】C.评卷人得分【解析】试题分析:∵AB∥C D,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.考点:平行线的性质.【题文】在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.80【答案】B.【解析】试题分析:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.考点:众数;折线统计图.【题文】一次函数y=﹣x+2的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C.【解析】试题分析:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.考点:一次函数的图象;一次函数图象与系数的关系.【题文】分式方程的解是()A.x=﹣1 B.x=1 C.x=2 D.x=3【答案】D.【解析】试题分析:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选D.考点:分式方程的解.【题文】一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【答案】B.【解析】试题分析:∵△==9﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.考点:根的判别式.【题文】如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC.C.∠A>∠ABC D.∠A=∠ABC【答案】A.【解析】试题分析:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.考点:等腰三角形的性质.【题文】如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°【答案】D.【解析】试题分析:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OA C﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.考点:切线的性质;圆周角定理.【题文】如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n之间的关系是()A. B. C. D.【答案】B.【解析】试题分析:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴.故选B.考点:规律型:数字的变化类.【题文】将多项式因式分解的结果是.【答案】m(m+n)(m﹣n).【解析】试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).考点:提公因式法与公式法的综合运用.【题文】学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:请你根据上表中的数据选一人参加比赛,最适合的人选是.【答案】乙.【解析】试题分析:因为=0.035>=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为:乙.考点:方差;算术平均数.【题文】将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.【答案】120°.【解析】试题分析:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA’=180°,∠B’CA’=60°,∴∠ACB’=60°,∴∠α=60°+60°=120°,故答案为:120°.考点:旋转的性质;等边三角形的性质.【题文】已知反比例函数(k≠0)的图象如图所示,则k的值可能是(写一个即可).【答案】答案不唯一,只要k<0即可,如k=-1.【解析】试题分析:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为:答案不唯一,只要k<0即可,如k=-1.考点:反比例函数的性质;开放型.【题文】不等式组的解集是.【答案】﹣2<x≤1.【解析】试题分析:,由①得,x≤1,由②得,x>﹣2,故不等式组的解集为:﹣2<x≤1.故答案为:﹣2<x≤1.考点:解一元一次不等式组.【题文】2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是.【答案】16.【解析】试题分析:3386×1013=3.386×1016,则n=16.故答案为:16.考点:科学记数法—表示较大的数.【题文】如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.【答案】答案不唯一,如:AD∥BC.【解析】试题分析:可以添加:AD∥BC(答案不唯一).故答案为:答案不唯一,如:AD∥BC.考点:平行四边形的判定.【题文】如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.【答案】.【解析】试题分析:∵每个小方格都是边长为1的正方形,∴OA=OB==,∴S扇形OAB===.故答案为:.考点:扇形面积的计算.【题文】计算:.【答案】4.【解析】试题分析:原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.试题解析:原式=4+2×﹣1=4+1﹣1=4.考点:实数的运算;零指数幂;特殊角的三角函数值.【题文】先化简,再求值:,其中m=,n=.【答案】,2.【解析】试题分析:原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把m与n 的值代入计算即可求出值.试题解析:原式==当n=时,原式=2.考点:整式的混合运算—化简求值.【题文】如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质可得AD∥BC,AD=BC,根据平行线的性质可得∠EDA=∠FBC,再加上条件ED=BF可利用SAS判定△AED≌△CFB,进而可得AE=CF.试题解析:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EDA=∠FBC,在△AED和△CFB中,∵AD=BC ,∠ADE=∠CBF,BF=DE,∴△AED≌△CFB(SAS),∴AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.【题文】如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM 为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,≈1.73).【答案】67.3.【解析】试题分析:根据sin75°=,求出OC的长,根据tan30°=,再求出BC的长,即可求解.试题解析:在直角三角形ACO中,sin75°=≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°==≈,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.考点:解直角三角形的应用.【题文】为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.【答案】(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1900.【解析】试题分析:(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可.试题解析:(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:.答:一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)依题意得:20×90+2×100=1900(元).答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1900元.考点:二元一次方程组的应用.【题文】为了解市民对全市创文工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.【答案】(1)50;(2)18;(3).【解析】试题分析:(1)由满意的有20人,占40%,即可求得此次调查中接受调查的人数.(2)由(1),即可求得此次调查中结果为非常满意的人数.(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选择的市民均来自甲区的情况,再利用概率公式即可求得答案.试题解析:(1)∵满意的有20人,占40%,∴此次调查中接受调查的人数:20÷40%=50(人);(2)此次调查中结果为非常满意的人数为:50﹣4﹣8﹣20=18(人);(3)画树状图得:∵共有12种等可能的结果,选择的市民均来自甲区的有2种情况,∴选择的市民均来自甲区的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.【题文】尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P ,设BC=a,AC=b,AB=c.求证:.该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m ,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证.(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求的值.【答案】(1)证明见解析;(2)5.【解析】试题分析:(1)设PF=m,PE=n,连结EF,如图1,根据三角形中位线性质得EF∥AB,EF=c,则可判断△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接着根据勾股定理得到,,则,而,所以;(2)利用(1)的结论得==45,再利用△AEG∽△CEB可计算出AG=1,同理可得DH=1,则GH=1,然后利用GH∥BC,根据平行线分线段长比例定理得到MB=3GM,MC=3MH,然后等量代换后可得=5.试题解析:(1)设PF=m,PE=n,连结EF,如图1,∵AF,BE是△ABC的中线,∴EF为△ABC的中位线,AE=b ,BF=a,∴EF∥AB,EF=c,∴△EFP∽△BPA,∴,即=,∴PB=2n,PA=2m ,在Rt△AEP中,∵,∴①,在Rt△AEP中,∵,∴②,①+②得,在Rt△EFP中,∵,∴,∴,∴;(2)∵四边形ABCD为菱形,∴BD⊥AC,∵E,F分别为线段AO,DO的中点,由(1)的结论得==45,∵AG∥BC ,∴△AEG∽△CEB,∴,∴AG=1,同理可得DH=1,∴GH=1,∴GH∥BC,∴,∴MB=3GM,MC=3MH,∴,∴=5.考点:相似三角形的判定;三角形中位线定理;综合题.【题文】已知抛物线(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.【答案】(1);(2)①存在,M(3,);②M(,)或(,)时,|m|+|n|的最大值为.【解析】试题分析:(1)先求出A、B两点坐标,然后过点P作PC⊥x轴于点C,根据∠PBA=120°,PB=AB,分别求出BC和PC的长度即可得出点P的坐标,最后将点P的坐标代入二次函数解析式即;(2)①过点M作ME⊥x轴于点E,交AP于点D,分别用含m的式子表示点D、M的坐标,然后代入△APM的面积公式DM•AC,根据题意列出方程求出m的值;②根据题意可知:n<0,然后对m的值进行分类讨论,当﹣2≤m≤0时,|m|=﹣m;当0<m≤2时,|m|=m ,列出函数关系式即可求得|m|+|n|的最大值.试题解析:(1)如图1,令y=0代入,∴,∵a>0,∴,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,过点P作PC⊥x轴于点C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=,∵OC=OC+BC=4,∴P(4,),把P(4,)代入,∴=16a﹣4a,∴a=,∴抛物线解析式为:;(2)∵点M在抛物线上,∴,∴M的坐标为(m,);①当点M在曲线PB之间(含端点)移动时,∴2≤m≤4,如图2,过点M作ME⊥x轴于点E,交AP于点D ,设直线AP的解析式为y=kx+b,把A(﹣2,0)与P(4,)代入y=kx+b,得:,解得:,∴直线AP的解析式为:,令x=m代入,∴,∴D的坐标为(m,),∴DM==,∴S△APM=DM•AE+DM•CE=DM(AE+CE)=DM•AC=,当S△APM=时,∴=,∴解得m=3或m=﹣1,∵2≤m≤4,∴m=3,此时,M的坐标为(3,);②当点M在曲线BA之间(含端点)移动时,∴﹣2≤m≤2,n<0,当﹣2≤m≤0时,∴|m|+|n|=﹣m﹣n==,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,),当0<m≤2时,∴|m|+|n|=m﹣n==,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M的坐标为(,),综上所述,当点M在曲线BA之间(含端点)移动时,M的坐标为(,)或(,)时,|m|+|n|的最大值为.考点:二次函数综合题;最值问题;二次函数的最值;分类讨论;动点型.。

2022年湖南省邵阳市中考数学试题及答案解析

2022年湖南省邵阳市中考数学试题及答案解析

2022年湖南省邵阳市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−2022的绝对值是( )A. 12022B. −12022C. −2022D. 20222.下列四种图形中,对称轴条数最多的是( )A. 等边三角形B. 圆C. 长方形D. 正方形3.5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为a×1012,则a的值是( )A. 0.11B. 1.1C. 11D. 110004.下列四个图形中,圆柱体的俯视图是( )A.B.C.D.5.假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(正,正)的概率是( )A. 1B. 34C. 12D. 146.下列长度的三条线段能首尾相接构成三角形的是( )A. 1cm ,2cm ,3cmB. 3cm ,4cm ,5cmC. 4cm ,5cm ,10cmD. 6cm ,9cm ,2cm 7. 如图是反比例函数y =1x 的图象,点A(x,y)是反比例函数图象上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A. 1B. 12C. 2D. 32 8. 在直角坐标系中,已知点A(32,m),点B(√72,n)是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( )A. m <nB. m >nC. m ≥nD. m ≤n9. 如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A. 32B. √32 C. √3D. 5210. 关于x 的不等式组{−13x >23−x,12x −1<12(a −2)有且只有三个整数解,则a 的最大值是( ) A. 3B. 4C. 5D. 6二、填空题(本大题共8小题,共24.0分)11. 因式分解:x 2−4y 2=______.12. 使1√x−2有意义的x 的取值范围为______ .13. 某班50名同学的身高(单位:cm)如下表所示:身高155156157158159160161162163164165166167168人数351221043126812则该班同学的身高的众数为______.14.方程5x−2−3x=0的解为______.15.已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为______cm2.16.已知x2−3x+1=0,则3x2−9x+5=______.17.如图,在等腰△ABC中,∠A=120°,顶点B在▱ODEF的边DE上,已知∠1=40°,则∠2=______.18.如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件______,使△ADE∽△ABC.三、解答题(本大题共8小题,共66.0分)19.计算:(π−2)0+(−12)−2−2sin60°.20.先化简,再从−1,0,1,√3中选择一个合适的x值代入求值.(1 x+1+1x2−1)÷xx−1.21.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.22.2021年秋季,全国义务教育学校实现课后服务全覆盖.为了促进学生课后服务多样化,某校组织了第二课堂,分别设置了文艺类、体育类、阅读类、兴趣类四个社团(假设该校要求人人参与社团,每人只能选择一个).为了了解学生喜爱哪种社团活动,学校做了一次抽样调查,并绘制成如图1、图2所示的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题.(1)求抽取参加调查的学生人数.(2)将以上两幅不完整的统计图补充完整.(3)若该校有1600人参加社团活动,试估计该校报兴趣类社团的学生人数.23.2022年2月4日至20日冬季奥运会在北京举行.某商店特购进冬奥会纪念品“冰墩墩”摆件和挂件共180个进行销售.已知“冰墩墩”摆件的进价为80元/个,“冰墩墩”挂件的进价为50元/个.(1)若购进“冰墩墩”摆件和挂件共花费了11400元,请分别求出购进“冰墩墩”摆件和挂件的数量.(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且至少盈利2900元,求购进的“冰墩墩”挂件不能超过多少个?24.如图,已知DC是⊙O的直径,点B为CD延长线上一点,AB是⊙O的切线,点A为切点,且AB=AC.(1)求∠ACB的度数;(2)若⊙O的半径为3,求圆弧AC⏜的长.25.如图,一艘轮船从点A处以30km/ℎ的速度向正东方向航行,在A处测得灯塔C在北偏东60°方向上,继续航行1ℎ到达B处,这时测得灯塔C在北偏东45°方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:√2≈1.414,√3≈1.732)26.如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD′,连接CD′,求线段CD′长度的最小值.答案和解析1.【答案】D【解析】解:−2022的绝对值是2022.故选:D.直接利用绝对值的性质分析得出答案.此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.2.【答案】B【解析】解:A.等边三角形是轴对称图形,它有3条对称轴;B.圆是轴对称图形,有无数条条对称轴;C.长方形是轴对称图形,有2条对称轴;D.正方形是轴对称图形,有4条对称轴;故对称轴条数最多的图形是圆.故选:B.根据轴对称图形的意义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此分析各图形的对称轴条数即可求解.此题考查轴对称图形的知识,关键是掌握轴对称图形的意义及对称轴的描述.3.【答案】B【解析】解:11000亿=1100000000000=1.1×1012,∴a=1.1,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.【答案】D【解析】解:从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆,故选:D.根据俯视图是从物体的上面看得到的视图解答.本题考查的是几何体的三视图,掌握俯视图是从物体的上面看得到的视图是解题的关键.5.【答案】D【解析】解:画树状图如下:共有4种等可能的结果,其中出现(正,正)的结果有1种,∴出现(正,正)的概率为1,4故选:D.画树状图,共有4种等可能的结果,其中出现(正,正)的结果有1种,再由概率公式求解即可.此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】B【解析】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.本题主要考查了三角形三边关系定理:三角形任意两边之和大于第三边.7.【答案】B【解析】解:∵A(x,y),∴OB=x,AB=y,∵A为反比例函数y=1x图象上一点,∴xy=1,∴S△ABO=12AB⋅OB=12xy=12×1=12,故选:B.由反比例函数的几何意义可知,k=1,也就是△AOB的面积的2倍是1,求出△AOB的面积是12.考查反比例函数的几何意义,反比例函数的图象,反比例函数图象上点的坐标特征,解决本题的关键是掌握k的绝对值,等于△AOB的面积的2倍.8.【答案】A【解析】解:点A(32,m),点B(√72,n)是直线y=kx+b上的两点,且k<0,∴一次函数y随着x增大而减小,∵32>√72,∴m<n,故选:A.根据k>0可知函数y随着x增大而减小,再根32>√72即可比较m和n的大小.本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.9.【答案】C【解析】解:连接OB,过点O作OE⊥BC,∵⊙O是等边△ABC的外接圆,∴OB平分∠ABC,∴∠OBE=30°,又∵OE ⊥BC ,∴BE =12BC =12AB =32, 在Rt △OBE 中,cos30°=BE OB ,∴32OB =√32, 解得:OB =√3,故选:C .连接OB ,过点O 作OE ⊥BC ,结合三角形外心和垂径定理分析求解.本题考查三角形的外接圆与外心,掌握等边三角形的性质,应用垂径定理和特殊角的三角函数值解题是关键.10.【答案】C【解析】解:{−13x >23−x①12x −1<12(a −2)②, 由①得:x >1,由②得:x <a ,解得:1<x <a ,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a ≤5,∴a 的最大值是5,故选:C .分别求出不等式组中两不等式的解集,找出两解集的公共部分表示出不等式组的解集,根据解集有且只有三个整数解,确定出a 的范围即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.11.【答案】(x +2y)(x −2y)【解析】解:x 2−4y 2=(x +2y)(x −2y).直接运用平方差公式进行因式分解.本题考查了平方差公式分解因式,熟记公式结构是解题的关键.平方差公式:a 2−b 2=(a +b)(a −b).12.【答案】x >2【解析】解:∵有意义,√x−2∴{x−2≥0x−2≠0,解得x>0.故答案为:x>2.先根据二次根式及分式有意义的条件列出x的不等式组,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.13.【答案】160cm【解析】解:身高160的人数最多,故该班同学的身高的众数为160cm.故答案为:160cm.一组数据中出现次数最多的数据叫做众数,结合表格信息即可得出答案.本题考查了众数的知识,掌握众数的定义是解题的关键.14.【答案】x=−3【解析】解:去分母,得:5x−3(x−2)=0,整理,得:2x+6=0,解得:x=−3,经检验:x=−3是原分式方程的解,故答案为:x=−3.依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.本题主要考查解分式方程能力,熟练掌握解分式方程的步骤是关键.15.【答案】48【解析】解:∵长方形的一条对角线的长为10cm,一边长为6cm,∴另一边长=√102−62=8cm,∴它的面积为8×6=48cm2.故答案为:48.利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.本题考查矩形的性质,勾股定理等知识,利用勾股定理列式求出另一边长是解题的关键.16.【答案】2【解析】解:∵x2−3x+1=0,∴x2−3x=−1,则原式=3(x2−3x)+5=−3+5=2.故答案为:2.原式前两项提取3变形后,把已知等式变形代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.17.【答案】110°【解析】解:∵等腰△ABC中,∠A=120°,∴∠ABC=30°,∵∠1=40°,∴∠ABE=∠1+∠ABC=70°,∵四边形ODEF是平行四边形,∴OF//DE,∴∠2=180°−∠ABE=180°−70°=110°,故答案为:110°.根据等腰三角形的性质和平行四边形的性质解答即可.本题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.18.【答案】∠ADE=∠B或∠AED=∠C或ADAB =AEAC(答案不唯一)【解析】解:∵∠A=∠A,∴当∠ADE=∠B或∠AED=∠C或ADAB =AEAC时,△ADE∽△ABC,故答案为:∠ADE=∠B或∠AED=∠C或ADAB =AEAC(答案不唯一).要使两三角形相似,已知一组角相等,则再添加一组角或公共角的两边对应成比例即可.此题考查了相似三角形的判定的理解及运用,熟练应用相似三角形的判定是解题关键.19.【答案】解:原式=1+4−2×√32=1+4−√3=5−√3.【解析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简,进而得出答案.此题主要考查了实数的运算,正确化简各数是解题关键.20.【答案】解:原式= x−1+1(x+1)(x−1)⋅x−1x=1x+1,又∵x≠−1,∴x可以取0,此时原式=1;x可以取1,此时原式=12;x可以取√3,此时原式=√3+1=√3−12.【解析】先计算分式的混合运算进行化简,先算小括号里面的,然后算括号外面的,最后根据分式成立的条件确定x的取值,代入求值即可.本题考查分式的混合运算,分式成立的条件及二次根式的运算,掌握运算顺序和计算法则准确计算是解题关键.21.【答案】证明:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∠AOE=∠AOF=90°,∴△AOE≌△AOF(SAS),∴AE=AF,∴菱形AECF是正方形.【解析】证明AC与EF互相垂直平分便可根据菱形的判定定理得出结论本题主要考查了菱形的性质与判定,全等三角形的性质与判定,正方形的性质与判定,掌握相关定理是解题基础.22.【答案】解:(1)5÷12.5%=40 (人),答:此次共调查了40人;(2)体育类有40×25%=10(人),文艺类社团的人数所占百分比:15÷40×100%=37.5%,阅读类社团的人数所占百分比:10÷40×100%=25%,将条形统计图补充完整如下:(3)1600×12.5%=200(人),答:估计喜欢兴趣类社团的学生有200人.【解析】(1)根据兴趣类的人数和所占的百分比,可以求得此次调查的人数;(2)根据(1)中的计算和扇形统计图中的数据,可以计算出体育类的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出喜欢兴趣类社团的学生有多少人.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:(1)设购进“冰墩墩”摆件x 个,“冰墩墩”挂件y 个,依题意得:{x +y =18080x +50y =11400, 解得:{x =80y =100. 答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.(2)设购进“冰墩墩”挂件m 个,则购进“冰墩墩”摆件(180−m)个,依题意得:(60−50)m +(100−80)(180−m)≥2900,解得:m≤70.答:购进的“冰墩墩”挂件不能超过70个.【解析】(1)设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,利用进货总价=进货单价×进货数量,结合购进“冰墩墩”摆件和挂件共100个且共花费了11400元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进“冰墩墩”挂件m个,则购进“冰墩墩”摆件(180−m)个,利用总利润=每个的销售利润×销售数量(购进数量),即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:(1)连接OA,∵AB是⊙O的切线,点A为切点,∴∠BAO=90°,又∵AB=AC,OA=OC,∴∠B=∠ACB=∠OAC,设∠ACB=x°,则在△ABC中,x°+x°+x°+90°=180°,解得:x=30,∴∠ACB的度数为30°;(2)∵∠ACB=∠OAC=30°,∴∠AOC=120°,∴lAC⏜=120π×3180=2π.【解析】(1)连接OA,利用切线的性质可得∠BAO=90°,利用等腰三角形的性质可得∠B=∠ACB=∠OAC,根据三角形内角和定理列方程求解;(2)先求得∠AOC的度数,然后根据弧长公式代入求解.本题考查切线的性质、等腰三角形的性质,掌握切线的性质和弧长公式(l=nπr180)是解题关键.25.【答案】解:安全,理由如下:过点C作CD垂直AB,由题意可得,∠CAD=90°−60°=30°,∠CBD=90°−45°=45°,AB=30×1=30km,在Rt△CBD中,设CD=BD=x km,则AD=(x+30)km,在Rt△ACD中,tan30°=CDAD,∴CDAD =√33,∴xx+30=√33,解得:x=15√3+15≈40.98>40,所以,这艘轮船继续向正东方向航行是安全的.【解析】过点C作CD垂直AB,利用特殊角的三角函数值求得CD的长度,从而根据无理数的估算作出判断.本题考查解直角三角形的应用,通过添加辅助线构建直角三角形,熟记特殊角的三角函数值是解题关键.26.【答案】解:在直线y=2x+2中,当x=2时,y=2,当y=0时,x=−1,∴点A的坐标为(−1,0),点B的坐标为(0,2),把点A(−1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,{a−b+c=0c=29a+3b+c=0,解得{a =−23b =43c =2,∴抛物线的解析式为y =−23x 2+43x +2;(2)①当△AOB≌△DPC 时,AO =DP ,又∵四边形OPDE 为正方形,∴DP =OP =AO =1,此时点P 的坐标为(1,0),②当△AOB≌△CPD 时,OB =DP ,又∵四边形OPDE 为正方形,∴DP =OP =OB =2,此时点P 的坐标为(2,0),综上,点P 的坐标为(1,0)或(2,0);(3)如图,点D′在以点P 为圆心,DP 为半径的圆上运动,∴当点D′′,点P ,点C 三点共线时,CD′′有最小值,由(2)可得点P 的坐标为(1,0)或(2,0),且C 点坐标为(3,0),∴CD′′的最小值为1.【解析】(1)先分别求得点A ,点B 的坐标,从而利用待定系数法求函数解析式;(2)分△AOB≌△DPC 和△AOB≌△CPD 两种情况,结合全等三角形的性质分析求解;(3)根据点D′的运动轨迹,求得当点P ,D′,C 三点共线时求得CD′的最小值.本题考查二次函数的应用,全等三角形的判定和性质,折叠的性质,掌握待定系数法求函数解析式,注意数形结合思想和分类讨论思想解题是关键.。

湖南省邵阳市中考数学试卷含答案解析(word版)

湖南省邵阳市中考数学试卷含答案解析(word版)

湖南省邵阳市中考数学试卷一.选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出四个选项中只有一项是符合题目要求)1.(3分)用计算器依次按键,得到结果最接近是()A.1.5B.1.6C.1.7D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC大小为()A.20°B.60°C.70°D.160°3.(3分)将多项式x﹣x3因式分解正确是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形是()A. B. C. D.5.(3分)据《经济日报》·2018·5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9mB.2.8×10﹣8mC.28×109mD.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O内接四边形,∠BCD=120°,则∠BOD 大小是()A.80°B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,·2018·1~4月训练成绩如下表所示:月份1234成绩(s)15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8sB.3.8sC.3sD.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x 轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形,得到△COD,则CD长度是()A.2B.1C.4D.29.(3分)根据李飞与刘亮射击训练成绩绘制了如图所示折线统计图.根据图所提供信息,若要推荐一位成绩较稳定选手去参赛,应推荐()A.李飞或刘亮B.李飞C.刘亮D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成《直指算法统宗》是东方古代数学名著,详述了传统珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大.小和尚各有多少人,下列求解结果正确是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大.小和尚各100人二.填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上位置如图所示,则点A表示数相反数是.12.(3分)如图所示,点E是平行四边形ABCD边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x方程x2+3x﹣m=0一个解为﹣3,则它另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它一个外角∠ADE=60°,则∠B大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生评价结果作为样本进行分析,绘制了如图所示统计图.已知图中从左到右五个长方形高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”学生约为人.16.(3分)如图所示,一次函数y=ax+b图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x方程ax+b=0解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB面积为2,则k值是.三.解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

2020年湖南邵阳市中考数学试题(word版及答案)

2020年湖南邵阳市中考数学试题(word版及答案)

销售量/双尺码/cm 01 23423.5 24 24.5 25 25.5 O 1 -1 1 0 2 ABC DM NEF 初中毕业学业水平考试数学试题一、选择题(本大题共8小题,每小题3分,满分24分)1.―|―3|=( )A .―3B .― 1 3C . 13D .―32.(―a )2·a 3=( )A .―a 5B .a 5C .―a 6D .a 6 3.下列长度的三条线段能组成三角形的是( )A .1,2,3B .2,2,4C .3,4,5D .3,4,8 4.如图,数轴上表示的关于x 的一元一次不等式的解集为( )A .x ≤1B .x ≥1C .x <1D .x >1 5.某几何体的三视图如图所示,则这个几何体是( )6.如图是某商场一天的运动鞋销售情况统计图.这些运动鞋的尺码组成的一组数据,众数和 中位数分别是( )A .25,25B .25,24.5C .24.5,25D .24.5,24.57.如图,在边长为1的小正方形组成的网格中,半径为2的⊙O 1的圆心 O 1在格点上,将一个与⊙O 1重合的等圆,向右平移2个单位,再向上平移2个单位得到⊙O 2,则⊙O 2与⊙O 1的位置关系是( )A .内切B .外切C .相交D .外离8.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快,走了一段时间,最后他以较快的速度匀速前进到达学校.小明走路的速度v (m/min )是时间t (min )的函数,能正确反映这一函数关系的大致图象是( )二、填空题(本大题共8小题,每小题3分,满分24分)9.若二次根式1 x 在实数范围内有意义,则x 的取值范围是 . 10.如图,已知直线AB ∥CD ,直线MN 分别与AB 、CD 交于点E 、F .若∠BEM =65°,则∠CFN = .11.如图是小明家今年1月份至5月份的每月用电量的统计图,据此推断他家这五个月的月A B C Dv (m/min )v (m/min )v (m/min )v (m/min )t (min )t (min )t (min )t (min )OOOOABCD月份用电量/度 140 160 1201 2 3 4 5 6PO Q x yA D C BEO AB D C平均用电量是 度. 12.化简:x 2 x 2-y 2 -y 2x 2-y 2= .13.我国曙光公司研制的“星云”号大型计算机每秒能完 成12 700 000亿次运算.用科学记数法将该计算机的 运算速度表示为 次/秒. 14.如图,直线y =k 1x +b 与双曲线y =k 2x相交于点P 、Q .若点P 的 坐标为(1,2),则点Q 的坐标为 .15.如图,在等边△ABC 中,以AB 边为直径的⊙O 与BC 交于点D ,连接AD ,则∠CAD的度数是 .16.如图,在等腰梯形ABCD 中,AB ∥CD ,AD =BC =CD ,点E 在AB 上,连接CE .请添加一个适当的条件: ,使四边形AECD 为菱形.三、解答题(本大题共3小题,每小题6分,满分18分)17.计算:31851531+⨯-⎪⎭⎫⎝⎛-.18.给出3个整式:x 2、2x +1、x 2-2x .(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?A E BCFDG19.如图,将矩形纸片ABCD 沿EF 折叠,使A 点与C 点重合,点D 落在点G 处,EF 为折痕. (1)求证:△FGC ≌△EBC ;(2)若AB =8,AD =4,求四边形ECGF (阴影部分)的面积.四、应用题(本大题共4小题,每小题8分,满分32分)20.某市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A (优秀)、B (良好)、C (合格)、D (不合格)四个等级进行统计,并将统计结果绘制成如下统计图表.请你结合图表中所给信息解答下列问题:(1)请将上面表格中缺少的数据补充完整;(2)扇形统计图中“A ”部分所对应的圆心角的度数是 ;(3)该市九年级共有80 000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.等级 人数 A (优秀) 200 B (良好) 400 C (合格) 280 D (不合格)AB C D 40%28% 12%21.为了增强居民的节约用水意识,某市制定了新的水费收费标准:每户每月不超过5吨的部分,自来水公司按每吨2元收费;超过5吨部分,按每吨2.6元收费.设某用户月用水量为x吨,自来水公司应收水费y元.(1)试写出y(元)与x(吨)之间的函数关系式;(2)该用户今年5月份的用水量为8吨,自来水公司应收水费多少元?22.如图,在上海世博会会场馆通道的建设中,建设工人将坡长10m(AB=10m)、坡角为20.5°(∠BAC=20.5°)的斜坡通道改造成坡角为12.5°(∠BDC=12.5°)斜坡通道,使坡的起点从点A向左平移至点D处,求改造后的斜坡通道BD的长(结果精确到0.1m,参考数据:sin12.5°≈0.21,sin20.5°≈0.35,sin69.5°DA C23.小明去离家2.4km 的体育馆看球赛,进场时发现门票还放在家中,此时离比赛开始还有45min ,于是他立即步行(匀速)回家取票.在家取票用时2min ,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20min ,骑自行车的速度是步行速度的3倍. (1)小明步行的速度(单位:m/min )是多少? (2)小明能否在球赛开始前赶到体育馆吗?五、探究题(本大题10分)24.阅读下列材料,然后解答问题.经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.如图,正方形ABCD 内接于⊙O ,⊙O 的面积为S 1,正方形ABCD 的面积为S 2.以圆心O 为顶点作∠MON ,使∠MON =90°.将∠MON 绕点O 旋转,OM 、ON 分别与⊙O交于点E 、F ,分别与正方形ABCD 的边交于点G 、H .设由OE 、OF 、EF ⌒及正方形ABCD的边围成的图形(阴影部分)的面积为S .(1)当OM 经过点A 时(如图①),则S 、S 1、S 2之间的关系为: (用含S 1、S 2的代数式表示);(2)当OM ⊥AB 于G 时(如图②),则(1)中的结论仍然成立吗?请说明理由;(3)当∠MON 旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.A B C DDDC C ABABOO O M NM NM NG HG H (E ) (F ) E F EF图①图②图③BA OF E D C lxy六、综合题(本大题12分)25.如图,抛物线y =- 14x 2+x +3与x 轴交于点A 、B ,与y 轴交于点C ,顶点为点D ,对称轴l 与直线BC 交于点E ,与x 轴交于点F . (1)求直线BC 的解析式.(2)设点P 为该抛物线上的一个动点,以点P 为圆心、r 为半径作⊙P . ①当点P 运动到点D 时,若⊙P 与直线BC 相交,求r 的取值范围;②若r =455,是否存在点P 使⊙P 与直线BC 相切?若存在,请求出点P 的坐标;若不存在,请说明理由.。

2023年湖南省邵阳市中考数学试卷(含答案)010101

2023年湖南省邵阳市中考数学试卷(含答案)010101

2023年湖南省邵阳市中考数学试卷试卷考试总分:118 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 的倒数是( )A.B.C.D.2. 下列图形是中心对称图形的是( )A.B.C.D.3. 声音在空气中传播每小时约通过,将用科学记数法表示为 A.B.C.D.4. 若式子有意义,则一次函数的图象可能是()A.−33−13−3131200000m 1200000()12×1061.2×1061.2×1071.2×108+(2−k k −2−−−−√)∘y =(2−k)x+k −2B. C. D.5. 如图,已知,直角三角板的直角顶点在直线上,若,则下列结论错误的是( )A.B.C.D.6. 下列不等式组的解集,在数轴上表示为如图所示的是( )A.B.C.D.7. 的正约数的个数是( )A.B.a//b b ∠1=60∘∠2=60∘∠3=60∘∠4=120∘∠5=40∘{x−1>0,x+2≤0{x+1>0,x+2≤0{x+1>0,x−2≤0{x−1≤0,x+2<0200134C.D.8. 如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴负半轴上,点在第四象限的双曲线上,过点作轴交双曲线于点,则的长为 A.B.C.D.9. 在四边形中:①;②;③;④.从以上选择两个条件使四边形为平行四边形的选法共有( )A.种B.种C.种D.种10. 若点,,都在二次函数的图象上,则,,的大小关系是 A.B.C.D.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11. 的算术平方根是________. 12. 因式分解:=________.13. 方程的解为________. 14. 某校女子排球队队员的年龄分布如下表:年龄人数则该校女子排球队队员的平均年龄是________岁.68ABCD A (1,1)B x D y =−8xC CE//x E CE ()2353.5585ABCD AB//CD AD//BC AB =CD AD =BC ABCD 3456(−3,)y 1(1,)y 2(3,)y 3y =(x+1+k )2y 1y 2y 3()<<y 1y 2y 3=>y 1y 3y 2=<y 1y 2y 3=>y 1y 2y 3164−−−√3−2x +12xm−18xm 2=1x−152x+113141547415. 如图,是的直径,与相切于点,交于点,若,则________.16. 圆锥的母线长为,侧面积为,则圆锥的底面圆半径________.17. 某药品经过两次降价,每瓶零售价由元降为元,已知两次降价的百分率相同,设每次降价的百分率为,根据题意列方程为________.18. 如图,矩形纸片,,,如果点在边上,将纸片沿折叠,使点落在点处,连结,当是直角三角形时,的长为________.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 ) 19. 计算题:(1)().(2).20. 化简求值: ,其中 .21. 已知中为边上高,为上一点,,的延长线与延长线交于点,求证: .22. 年月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进、两种类型的便携式风扇到地摊一条街出售.已知台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元.求型风扇、型风扇进货的单价各是多少元?小丹准备购进这两种风扇共台,根据市场调查发现,型风扇销售情况比型风扇好,小丹准备多购进型风扇,但数量不超过型风扇数量的倍,购进、两种风扇的总金额不超过元.根据以上信息,小丹共有哪几种进货方案?哪种进货方案费用最低?最低费用为多少?23. 某保险的基本保费为(单位:元),继续购买该保险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关系如下:AB ⊙O BC ⊙O B AC ⊙O D ∠ACB =50∘∠BOD =7cm 21πcm 2r =cm 168108x ABCD AD =4AB =3E BC AE B F FC △EFC BE −+22−2cos +60∘−12cos −tan −30∘45∘2x(2x−1)+4x(+x−1)−4(1+2)x 2x 2x =−2△ABC CE AB D AC DG ⊥BC GD BA H GF ⋅GH =GB ⋅GC 20205A B 2A 5B 1003A 2B 62(1)A B (2)100A B A B 3A B 1170a上年度出险次数保费该保险个续保人一年内出险次数的统计情况如下:一年内出险次数人数求一续保人本年度的保费高于基本保费的概率;求续保人本年度的平均保费与基本保费的比值.24. 如图,为了绘制学校平面图,某校数学社团的同学们利用无人机测量学校校园的南北宽度.当无人机飞行高度米时,在点测得学校最南端点的俯角为,继续水平飞行米到达处时,测得学校最北端点的俯角为,求学校校园的南北宽度(结果精确到米)(参考数据:,,,,)25. 如图,正方形的边长为,,上各有一点,,若的周长为.将绕点逆时针方向旋转交的延长线于点,画出相应的图形;猜想________,并写出证明过程;求的度数.26. 如图,在平面直角坐标系中,已知抛物线过,,三点,点的坐标是,点的坐标是.求此抛物线的函数解析式.点是抛物线上的一个动点,设点的横坐标为.①是否存在点,使得是以为直角边的直角三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由;②过动点作轴于点,交直线于点,过点作轴于点.连接.当线段的长度最短时,请求出点的坐标.01234≥50.85a a 1.25a 1.5a 1.75a 2a10001234≥530152020105(1)(2)88A P 78∘100B Q 30∘0.1sin ≈0.9878∘cos ≈0.2178∘tan ≈4.7078∘≈1.733–√≈1.412–√ABCD 1AB AD P Q △APQ 2(1)CQ C 90∘AB M (2)AM +AQ =(3)∠PCM y =+bx+c x 2A B C A (3,0)C (0,−3)(1)(2)P P m P △ACP AC P P PE ⊥y E AC D D DF ⊥x F EF EF P参考答案与试题解析2023年湖南省邵阳市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】B【考点】倒数【解析】此题暂无解析【解答】此题暂无解答2.【答案】B【考点】中心对称图形【解析】根据中心对称图形的概念求解.【解答】解:,是轴对称图形,不是中心对称图形,故错误;,是中心对称图形,故正确;,是轴对称图形,不是中心对称图形,故错误;,是轴对称图形,不是中心对称图形,故错误.故选.3.【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】解:将用科学记数法表示为:.故选.A AB BC CD D B a ×10n 1≤|a |<10n n a n >1n <1n 1200000 1.2×106B4.【答案】C【考点】一次函数的图象二次根式有意义的条件零指数幂【解析】本题考查了二次根式,零指数幂有意义的条件,一次函数的图像,熟练掌握二次根式,零指数幂有意义的条件,一次函数的图像是解题关键,先根据二次根式,零指数幂有意义的条件求得值范围,再结合一次函数的图像得到答案.【解答】解:式子有意义,,解得:,,一次函数的图象位于一、二、四象限.故选.5.【答案】D【考点】邻补角平行线的性质对顶角【解析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出,,,的度数,然后选出错误的选项.【解答】解:∵,,∴,,,∵三角板为直角三角板,∴.故选6.【答案】C【考点】在数轴上表示不等式的解集解一元一次不等式组k ∵+k −2−−−−√(2−k)0∴k −2≥0,2−k ≠0k >2∴2−k <0,k −2>0∴y =(2−k)x+k −2C ∠2∠3∠4∠5a//b ∠1=60∘∠3=∠1=60∘∠2=∠1=60∘∠4=−∠3=180∘−=180∘60∘120∘∠5=−∠3=90∘−=90∘60∘30∘D.【解析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再进行比较可得到答案.【解答】解:解得:则不等式组无解;解得:则不等式组无解;解得:则不等式组解集为:;解得:则不等式组解集为:.结合数轴,可知正确.故选.7.【答案】B【考点】约数与倍数【解析】先分解质因数,然后根据约数个数定理来解答.【解答】解:∵,∴的约数应为个:,,,,,,,.故选.8.【答案】A【考点】全等三角形的性质与判定正方形的性质反比例函数综合题待定系数法求反比例函数解析式【解析】{x−1>0,x+2≤0,{x >1,x ≤−2,{x+1>0,x+2≤0,{x >−1,x ≤−2,{x+1>0,x−2≤0,{x >−1,x ≤2,−1<x ≤2{x−1≤0,x+2<0,{x ≤1,x <−2,x <−2C C 2001=3×23×292001=3×23×29200181323293×233×2923×292001B此题暂无解析【解答】解:过作轴的平行线,过点作于,过作于,设,∵四边形是正方形,∴,,易得,∴,∴,∴,解得,∴,.∵,∴点的纵坐标为,当时,,∴,∴,∴.故选.9.【答案】B【考点】平行四边形的判定【解析】根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有种,分别是:①②、②④、①③、③④.故选.10.【答案】C【考点】二次函数的性质二次函数图象上点的坐标特征【解析】D DH ⊥x CE A AG ⊥GH G B BM ⊥HC M D(x,−)8x ABCD AD =CD =BC ∠ADC =∠DCB =90∘△AGD ≅△DHC ≅△CMB AG =DH =x−1DG =BM 1+=x−1+8x 8x x =2D(2,−4)CH =DG =BM =1+=582AG =DH =x−1=1E −5y =−5x =85E(,−5)85EH =2−=8525CE =CH−HE =5−=25235A 4B分别计算函数值,然后比较大小即可.【解答】解:当时,;当时,;当时,,所以.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )11.【答案】【考点】算术平方根立方根【解析】【解答】解:,的算术平方根是.故答案为:.12.【答案】【考点】提公因式法与公式法的综合运用【解析】首先提公因式,再利用完全平方进行二次分解即可.【解答】原式==.13.【答案】=【考点】解分式方程【解析】方程两边都乘以最简公分母把分式方程化为整式方程,求解后进行检验.x =−3=(−3+1+k =4+ky 1)2x =1=(1+1+k =4+k y 2)2x =3=(3+1+k =16+k y 3)2=<y 1y 2y 3C 12=164−−−√314141212−2x(m−3)2−2x −2x(−6m+9)m 2−2x(m−3)2x 2(x−1)(2x+1)【解答】方程两边都乘以得,=,解得=,检验:当=时,==,所以,原方程的解是=.14.【答案】【考点】加权平均数【解析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】根据题意得:=(岁),15.【答案】【考点】圆周角定理切线的性质【解析】根据是圆的切线,可得,再求得,由圆周角定理可得,即可求得答案.【解答】解:是圆的切线,,∵,,由圆周角定理可得:.故答案为:.16.【答案】【考点】扇形面积的计算圆锥的计算【解析】由于圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式(x−1)(2x+1)2x+15(x−1)x 2x 2(x−1)(2x+1)(2−1)×(2×2+1)5≠0x 214(13×4+14×7+15×4)÷151480∘BC ∠ABC =90∘∠A ∠BOD =2∠A ∵BC ∴∠ABC =90∘∠ACB =50∘∴∠A =−∠ACB 90∘=−90∘50∘=40∘∠BOD =2∠A=2×40∘=80∘80∘32π×r ×7=21π1得到,然后解方程即可.【解答】解:根据题意得,即得,所以圆锥的底面圆半径为.故答案为:.17.【答案】【考点】由实际问题抽象出一元二次方程【解析】设每次降价的百分率为,根据降价后的价格=降价前的价格(降价的百分率),则第一次降价后的价格是,第二次后的价格是,据此即可列方程求解.【解答】解:因为某药品经过两次降价,每瓶零售价由元降为元,根据题意得:.故答案为:.18.【答案】或【考点】矩形的性质翻折变换(折叠问题)【解析】分两种情况:①当=时,先判断出点在对角线上,利用勾股定理列式求出,设=,表示出,根据翻折变换的性质可得=,=,然后在中,利用勾股定理列出方程求解即可;②当=时,判断出四边形是正方形,根据正方形的四条边都相等可得=.【解答】解:分两种情况:①当时,如图:∵,,∴点、、共线,∵矩形的边,∴,在中,,设,则,×2π×r ×7=21π12×2π×r ×7=21π12r =3r 3cm 3168(1−x =108)2x 1−168(1−x)168(1−x)2168108168(1−x =108)2168(1−x =108)21.53∠EFC 90∘F AC AC BE x CE AF AB EF BE Rt △CEF ∠CEF 90∘ABEF BE AB ∠EFC =90∘∠AFE =∠B =90∘∠EFC =90∘A F C ABCD AD =4BC =AD =4Rt △ABC AC ===5A +B B 2C 2−−−−−−−−−−√+3242−−−−−−√BE =x CE =BC −BE =4−x由翻折的性质得,,,∴,在中,,即,解得,即;②当时,如图:由翻折的性质得,,∴四边形是正方形,∴,综上所述,的长为或.三、 解答题 (本题共计 8 小题 ,每题 8 分 ,共计64分 )19.【答案】()===;=(==.【考点】特殊角的三角函数值负整数指数幂实数的运算【解析】(1)直接利用特殊角的三角函数值以及负整数指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值分别化简得出答案.【解答】()===;=(==.AF =AB =3EF =BE =x CF =AC −AF =5−3=2Rt △CEF E +C =F 2F 2CE 2+=x 222(4−x)2x =1.5BE =1.5∠CEF =90∘∠AEB =∠AEF =×=1290∘45∘ABEF BE =AB =3BE 1.53−+22−2cos +60∘−1−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+10−+22−2cos +60∘−1−4+3−2×+3−4+3−1+312cos −tan −30∘45∘2×−1−−1)−1−+120.【答案】解:原式 ,当 时,原式 .【考点】整式的混合运算——化简求值【解析】此题暂无解析【解答】解:原式 ,当 时,原式 .21.【答案】证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【考点】相似三角形的判定与性质【解析】∵为高,∴,又∵,∴,∴,而,∴,∴,即 .【解答】证明:∵为高,∴,又∵,∴,∴,而,∴,∴,即 .22.【答案】解:设型风扇进货的单价是元,型风扇进货的单价是元,=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3=4−2x+4+4−4x−4−8x 2x 3x 2x 2=4−6x−4x 3x =−2=4×(−2−6×(−2)−4=−24)3CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC CF ∶GB =GC ∶CH GF ⋅GH =GB ⋅GC CE ∠FCG =−∠ABC 90∘HG ⊥BC ∠H =−∠ABC 90∘∠FCG =∠H ∠BGH =∠FGC =90∘△BGH ∼△FGC GF ∶GB =GC ∶GH GF ⋅GH =GB ⋅GC (1)A x B y依题意,得:解得:答:型风扇进货的单价是元,型风扇进货的单价是元.设购进型风扇台,则购进型风扇台,依题意,得: 解得: .又∵为正整数,∴可以取、、、,∴小丹共有种进货方案,方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台.∵型风扇进货的单价大于型风扇进货的单价,∴方案:购进型风扇台,型风扇台的费用最低,最低费用为(元).【考点】二元一次方程组的应用——销售问题一元一次不等式组的应用【解析】(1)设型风扇进货的单价是元,型风扇进货的单价是元,根据“台型风扇和台型风扇进价共元,台型风扇和台型风扇进价共元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进型风扇台,则购进型风扇台,根据“购进型风扇不超过型风扇数量的倍,购进、两种风扇的总金额不超过元”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,再结合为正整数即可得出各进货方案.【解答】解:设型风扇进货的单价是元,型风扇进货的单价是元,依题意,得:解得:答:型风扇进货的单价是元,型风扇进货的单价是元.设购进型风扇台,则购进型风扇台,依题意,得: 解得: .又∵为正整数,∴可以取、、、,∴小丹共有种进货方案,方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台;方案:购进型风扇台,型风扇台.∵型风扇进货的单价大于型风扇进货的单价,∴方案:购进型风扇台,型风扇台的费用最低,最低费用为(元).23.【答案】解:设表示事件:“一续保人本年度的保费高于基本保费”,则;续保人本年度的平均保费为,所以续保人本年度的平均保费与基本保费的比值为.【考点】{2x+5y =100,3x+2y =62,{x =10,y =16.A 10B 16(2)A m B (100−m){m≤3(100−m),10m+16(100−m)≤1170,71≤m≤7523m m 7273747541A 72B 282A 73B 273A 74B 264A 75B 25B A 4A 75B 2575×10+25×16=1150A x B y 2A 5B 1003A 2B 62x y A m B (100−m)A B 3A B 1170m m m (1)A x B y {2x+5y =100,3x+2y =62,{x =10,y =16.A 10B 16(2)A m B (100−m){m≤3(100−m),10m+16(100−m)≤1170,71≤m≤7523m m 7273747541A 72B 282A 73B 273A 74B 264A 75B 25B A 4A 75B 2575×10+25×16=1150(1)A P(A)==0.5520+20+10+5100(2)(0.85a ×30+a ×15+1.25a ×20+1.5a 1100×20+1.75a ×10+2a ×5)=1.23a 1.23概率公式加权平均数频数(率)分布表【解析】(1)根据各频数之和为进行计算,即可得到的值;(2)根据本年度保险费不高于基本保险费的频数除以,即可得到本年度保险费不高于基本保险费的概率;(3)根据人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值.【解答】解:设表示事件:“一续保人本年度的保费高于基本保费”,则;续保人本年度的平均保费为,所以续保人本年度的平均保费与基本保费的比值为24.【答案】解:作于,如图,在中,,(米).在中,,(米).(米).答:学校校园的南北宽度约为米.【考点】解直角三角形的应用-仰角俯角问题【解析】左侧图片未给出解析.【解答】解:作于,如图,100m 100(1)A P(A)==0.5520+20+10+5100(2)(0.85a ×30+a ×15+1.25a ×20+1.5a 1100×20+1.75a ×10+2a ×5)=1.23a1.23BM ⊥CQ M Rt △ACP tan ∠APC =AC CP∴CP =≈≈18.72AC tan ∠APC 884.70Rt △BMQ tan ∠BQM =BM QM ∴QM ==88≈152.24BMtan ∠BQM 3–√∴PQ =CM +MQ −CP =100+152.24−18.72=233.52≈233.5233.5BM ⊥CQ M ∠APC =AC在中,,(米).在中,,(米).(米).答:学校校园的南北宽度约为米.25.【答案】解:画图如图所示,∵的周长为,∴.∵,∴.∵,,∴ ,.【考点】全等三角形的性质与判定作图-旋转变换旋转的性质正方形的性质【解析】(2)解∵四边形是正方形∴,将绕着点跑时针旋转得到∴∴∴∴∵∴【解答】解:画图如图所示,∵四边形是正方形,∴,.将绕着点逆时针旋转得到,Rt △ACP tan ∠APC =AC CP ∴CP =≈≈18.72AC tan ∠APC 884.70Rt △BMQ tan ∠BQM =BM QM ∴QM ==88≈152.24BM tan ∠BQM3–√∴PQ =CM +MQ −CP =100+152.24−18.72=233.52≈233.5233.5(1)2(3)△APQ 2AP +AQ +PQ =2AQ +AP +PM =2PQ =PM CQ =CM CP =CP △CPQ ≅△CPM(SSS)∠PCQ =∠PCM =∠QCM =1245∘ABCD CD =CB CQ C 90∘CMCO =CM ∠QCM =∠DCB =90∘∠QCD =∠BCM △CDQ ≅△CBMDQ =BMAD+AB =2AM +AO =2(1)(2)ABCD CD =CB ∠DCB =90∘CQ C 90∘CM∴,,,∴ ,∴,∴.∵,∴.故答案为:.∵的周长为,∴.∵,∴.∵,,∴ ,.26.【答案】解:点的坐标是,则,将点代入中,得.解得.∴抛物线的解析式为.①由点,的坐标,得直线的函数表达式为,如图,当时,则直线的函数表达式为,联立解得,(与点重合,舍去),故点.如图,当时,设直线的函数表达式为,将,代中,得,则直线的函数表达式为,联立解得,与点重合,舍去),故点.综上所述,存在点或,使得是以为直角边的直角三角形.②如图,易得四边形为矩形,则.设点,则点,则,故当时,取得最小值,即点,将点的坐标代入,解得,故点或.【考点】二次函数综合题CQ =CM ∠QCM =∠DCB =90∘∠QCD =∠BCM △CDQ ≅△CBM DQ =BM AD+AB =2AM +AQ =AB+BM +AQ =AB+DQ +AQ=AB+AD =22(3)△APQ 2AP +AQ +PQ =2AQ +AP +PM =2PQ =PM CQ =CM CP =CP △CPQ ≅△CPM(SSS)∠PCQ =∠PCM =∠QCM =1245∘(1)C (0,−3)c =−3A(3,0)y =+bx−3x 20=+3b −332b =−2y =−2x−3x 2(2)A C AC y =x−3∠ACP =90∘CP y =−x−3{y =−2x−3,x 2y =−x−3,=1x 1=0x 2C P(1,−4)∠AC =P ′90∘AP ′y =−x+b x =3y =0y =−x+b b =3AP ′y =−x+3{y =−2x−3,x 2y =−x+3,=−2x 1=3(x 2A (−2,5)P ′P(1,−4)(−2,5)△ACP AC OEDF EF =OD D(n,n−3)P(m,n−3)E =O =+(n−3=2−6n+9=2(n−+F 2D 2n 2)2n 232)292n =32EF P(m,−)32P y =−2x−3x 2m=2±10−−√2P(,−)2+10−−√232(,−)2−10−−√222【解析】此题暂无解析【解答】解:点的坐标是,则,将点代入中,得.解得.∴抛物线的解析式为.①由点,的坐标,得直线的函数表达式为,如图,当时,则直线的函数表达式为,联立解得,(与点重合,舍去),故点.如图,当时,设直线的函数表达式为,将,代中,得,则直线的函数表达式为,联立解得,与点重合,舍去),故点.综上所述,存在点或,使得是以为直角边的直角三角形.②如图,易得四边形为矩形,则.设点,则点,则,故当时,取得最小值,即点,将点的坐标代入,解得,故点或.(1)C (0,−3)c =−3A(3,0)y =+bx−3x 20=+3b −332b =−2y =−2x−3x 2(2)A C AC y =x−3∠ACP =90∘CP y =−x−3{y =−2x−3,x 2y =−x−3,=1x 1=0x 2C P(1,−4)∠AC =P ′90∘AP ′y =−x+b x =3y =0y =−x+b b =3AP ′y =−x+3{y =−2x−3,x 2y =−x+3,=−2x 1=3(x 2A (−2,5)P ′P(1,−4)(−2,5)△ACP AC OEDF EF =OD D(n,n−3)P(m,n−3)E =O =+(n−3=2−6n+9=2(n−+F 2D 2n 2)2n 232)292n =32EF P(m,−)32P y =−2x−3x 2m=2±10−−√2P(,−)2+10−−√232(,−)2−10−−√222。

邵阳中考数学试卷真题

邵阳中考数学试卷真题

邵阳中考数学试卷真题1.简答题(1)若x+y=3、x-y=5,求x和y的值。

(2)已知m:n=3:4,且n:x=4:5,求m:n:x的值。

2.填空题(1)将0.08写作分数形式为_______。

(2)设a:b=2:3,a+b=50,求a的值。

3.选择题(1)如图所示,直线l 和直线m是平行线,则∠1和∠2的关系是()。

A.∠1=∠2B.∠1<∠2C.∠1>∠2D.不能确定(2)一组数据的四分位数分别是17、30 和45,则该组数据的中位数为()。

A.17B.30C.45D.不能确定4.计算题(1)已知集合 A={1,3,5,7},集合 B={2,4,5,6},求 A∪B 和A∩B 的值。

(2)已知〈A〉=2, 〈B〉=3,求〈2A-B〉的值。

5.解答题(1)若a:b=2:3,b:c=4:5,a+b+c=231,求a、b、c的值。

(2)某年级学生的数学成绩如下表所示:年级60-69分70-79分80-89分90-99分100分以上人数8 12 24 6 ∂其中,∂表示人数为多少?请根据表格数据填写相应的数值。

(3)已知一边长为6 cm 的正方形 ABCD,边 CD 向左伸长 3 cm,点 E 是线段 DC 上的点,且 DE=3 cm。

连结 EB。

如图所示,如果连接点 B 到线段 AD 的延长线与线段 DC 和 NE 的延长线交于点 F,求∠BFD 的度数。

以上就是邵阳中考数学试卷的真题,希望对你有帮助。

如果需要详细的解答,请提供相应的答案空间,我将尽快为你提供解答。

祝你学习进步!。

邵阳中考数学试题及答案

邵阳中考数学试题及答案

邵阳中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A3. 以下哪个选项表示的是锐角三角形?A. ∠A=30°,∠B=60°,∠C=90°B. ∠A=30°,∠B=60°,∠C=90°C. ∠A=30°,∠B=60°,∠C=90°D. ∠A=30°,∠B=60°,∠C=90°答案:B4. 计算下列哪个表达式的结果为0?A. 3x - 3xB. 2x + 3xC. 5x - 5xD. 4x - 3x答案:C5. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C6. 一个长方体的长、宽、高分别是4厘米、3厘米和2厘米,那么它的体积是多少?A. 24立方厘米B. 12立方厘米C. 8立方厘米D. 6立方厘米答案:B7. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = x/3D. y = √x答案:B8. 一个等腰三角形的底边长为6厘米,高为4厘米,那么它的面积是多少?A. 12平方厘米B. 18平方厘米C. 24平方厘米D. 30平方厘米答案:B9. 计算下列哪个表达式的结果为-1?A. (-1)^2B. (-1)^3C. (-1)^4D. (-1)^5答案:B10. 一个数的平方根是2,那么这个数是?A. 4B. -4C. 2D. -2答案:A二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可以是______或______。

答案:5或-512. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年湖南省邵阳市中考数学试卷(word解析版)一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是()A.B.﹣C.﹣D.﹣22.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.805.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=37.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是.12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.5 9.5方差0.035 0.015请你根据上表中的数据选一人参加比赛,最适合的人选是.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是.14.已知反比例函数(k≠0)的图象如图所示,则k的值可能是(写一个即可).15.不等式组的解集是.16.2015年7月,第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是.17.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件(写一个即可),使四边形ABCD是平行四边形.18.如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三、解答题:本大题共3小题,每小题8分,共24分19.计算:(﹣2)2+2cos60°﹣()0.20.先化简,再求值:(m﹣n)2﹣m(m﹣2n),其中m=,n=.21.如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.四、解答题:本大题共3小题,每小题8分,共24分22.如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).23.为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.24.为了解市民对全市创卫工作的满意程度,某中学教学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)求此次调查中接受调查的人数.(2)求此次调查中结果为非常满意的人数.(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2为进行回访,已知4为市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.五、综合题:本大题共2小题,其中25题8分,26题10分,共18分25.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF 中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.26.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.2016年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣的相反数是()A.B.﹣C.﹣D.﹣2【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选A.2.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.3.如图所示,直线AB、CD被直线EF所截,若AB∥CD,∠1=100°,则∠2的大小是()A.10° B.50° C.80° D.100°【考点】平行线的性质.【分析】根据平行线的性质得到∠3=∠1=100°,根据平角的定义即可得到结论.【解答】解:∵AB∥CD,∠3=∠1=100°,∴∠2=180°﹣∠3=80°,故选C.4.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.80【考点】众数;折线统计图.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B.5.一次函数y=﹣x+2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.【解答】解:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,∴该函数图象经过第一、二、四象限.故选C.6.分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=3【考点】分式方程的解.【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.7.一元二次方程2x2﹣3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】代入数据求出根的判别式△=b2﹣4ac的值,根据△的正负即可得出结论.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根.故选B.8.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【考点】等腰三角形的性质.【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.9.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°【考点】切线的性质;圆周角定理.【分析】首先连接OD,由CA,CD是⊙O的切线,∠ACD=30°,即可求得∠AOD 的度数,又由OB=OD,即可求得答案.【解答】解:连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.10.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【考点】规律型:数字的变化类.【分析】由题意可得下边三角形的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.二、填空题:本大题共8小题,每小题3分,共24分11.将多项式m3﹣mn2因式分解的结果是m(m+n)(m﹣n).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用平方差公式分解即可.【解答】解:原式=m(m2﹣n2)=m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n)12.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔10成绩及方差如下表:选手甲乙平均数(环)9.5 9.5方差0.035 0.015最适合的人选是乙.【考点】方差;算术平均数.【分析】根据方差的定义,方差越小数据越稳定.【解答】解:因为S甲2=0.035>S乙2=0.015,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为乙.13.将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是120°.【考点】旋转的性质;等边三角形的性质.【分析】根据旋转的性质和等边三角形的性质解答即可.【解答】解:∵三角形ABC是等边三角形,∴∠ACB=60°,∵等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,∴∠BCA'=180°,∠B'CA'=60°,∴∠ACB'=60°,∴∠α=60°+60°=120°,故答案为:120°.14.已知反比例函数y=(k≠0)的图象如图所示,则k的值可能是﹣1(写一个即可).【考点】反比例函数的性质.【分析】利用反比例函数的性质得到k<0,然后在此范围内取一个值即可.【解答】解:∵双曲线的两支分别位于第二、第四象限,∴k<0,∴k可取﹣1.故答案为﹣1.15.不等式组的解集是﹣2<x≤1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解,精品文档由 ①得 , x≤1, 由 ②得 , x> ﹣ 2, 故不等式组的解集 为 :﹣2<x≤1. 故 答 案 为 : ﹣ 2< x≤1.16.2015 年 7 月, 第 四十五届“世界超级 计 算机 500 强排行榜”榜 单发布,我 国国防科技大学研 制 的 “天河二号”以每秒 3386×1013 次的浮点运算速度第五 次 蝉 联 冠 军 ,若 将 338 6×1013 用 科 学 记 数 法 表 示 成 a×10n 的 形 式 ,则 n 的 值 是 16 .【考点】科学记数法 —表示较大的数. 【分析】直接利用科学记数法的表示方法分析得出 n 的值. 【 解 答 】 解 : 3386×1013=3.386×1016, 则 n=16. 故 答 案 为 : 16.17.如图所示,四 边 形 ABCD 的对角线相交于点 O,若 AB∥ CD,请添加一 个 条 件 AD∥ BC ( 写 一 个 即 可 ), 使 四 边 形 ABCD 是 平 行 四 边 形 .【考点】平行四边形的判定. 【分析】根据平行四边形的定义或判定定理即可解答. 【 解 答 】 解 : 可 以 添 加 : AD∥ BC( 答 案 不 唯 一 ). 故答案是:AD∥ BC.18.如图所示,在 3×3 的方格纸中,每 个小 方格都是边长为 1 的 正方形,点O,A,B 均为格点,则扇形 OAB 的面积大小是.【考点】扇形面积的计算. 【 分 析 】 根 据 题 意 知 , 该 扇 形 的 圆 心 角 是 9 0°. 根 据 勾 股 定 理 可 以 求 得 OA=OB= ,由扇形面积 公式可得出结论.精品文档精品文档【解答】解:∵ 每个小方格都是边长为 1 的正方形,∴ OA=OB==,∴ S 扇 形 OAB===.故答案为: .三 、 解答 题: 本大 题共 3 小 题, 每小 题 8 分 , 共 24 分19. 计 算 :( ﹣ 2) 2+2 cos60°﹣ () 0.【考点】实数的运算;零指数幂;特殊角的三角函数值. 【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计 算即可得到结果.【解答】解:原式=4+2× ﹣1=4+1﹣ 1 =4.20. 先 化 简 , 再 求 值 :( m﹣ n) 2﹣ m( m﹣ 2 n), 其 中 m= , n= . 【 考 点 】 整 式 的 混 合 运 算 —化 简 求 值 . 【分析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号 合并得到最简结果,把 m 与 n 的值代入计算即可求出值. 【 解 答 】 解 : 原 式 =m2﹣ 2mn+n2﹣ m2+2mn=n2, 当 n= 时,原式=2.21.如 图 所 示 ,点 E,F 是 平 行 四 边 形 ABCD 对 角 线 BD 上 的 点 ,BF=DE,求 证 : AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质. 【分析】根据平行 四 边形的性质可得 AD∥ BC,AD=BC,根据平行线的性质 可 得 ∠ EDA=∠ FBC,再 加 上 条 件 ED=B F 可 利 用 SAS 判 定 △ AED≌ △ CFB ,进 而 可 得 AE=CF. 【解答】证明:∵ 四边形 ABCD 是平行四边形, ∴ AD∥ BC,AD=BC, ∴ ∠ EDA=∠ FBC, 在 △ AED 和 △ CFB 中 ,精品文档精品文档,∴ △ AED≌ △ CFB( SAS), ∴ AE=CF.四 、 解答 题: 本大 题共 3 小 题, 每小 题 8 分 , 共 24 分22.如 图 为 放 置 在 水 平 桌 面 上 的 台 灯 的 平 面 示 意 图 ,灯 臂 AO 长 为 40cm,与水 平 面 所 形 成 的 夹 角 ∠ OAM 为 75°. 由 光 源 O 射 出 的 边 缘 光 线 OC, OB 与 水平 面 所 形 成 的 夹 角 ∠ O CA, ∠ OBA 分 别 为 90°和 30°, 求 该 台 灯 照 亮 水 平 面 的宽 度 BC( 不 考 虑 其 他 因 素 , 结 果 精 确 到 0.1cm. 温 馨 提 示 : sin75°≈0.97,cos75°≈0.26,).【考点】解直角三角形的应用.【 分 析 】 根 据 sin75°= = , 求 出 OC 的 长 , 根 据 tan30°= , 再 求 出 BC的长,即可求解.【 解 答 】 解 : 在 直 角 三 角 形 ACO 中 , sin75 °= = ≈0.97,解得 OC≈38.8,在 直 角 三 角 形 BCO 中 , tan30°= =≈,解得 BC≈67.3. 答 : 该 台 灯 照 亮 水 平 面 的 宽 度 BC 大 约 是 67.3cm.23.为了响应“足球 进 校园”的目标,某校 计 划为学校足球队购 买 一批足球, 已 知 购 买 2 个 A 品 牌 的 足 球 和 3 个 B 品 牌 的 足 球 共 需 380 元 ;购 买 4 个 A 品 牌的足球和 2 个 B 品 牌的足球共需 360 元 . (1)求 A,B 两种品 牌的足球的单价. (2)求该校购买 20 个 A 品牌的足球和 2 个 B 品牌的足球的总 费用.【考点】二元一次方程组的应用. 精品文档精品文档【 分 析 】( 1 ) 设 一 个 A 品 牌 的 足 球 需 x 元 , 则 一 个 B 品 牌 的 足 球 需 y 元 , 根 据“购买 2 个 A 品牌的 足球和 3 个 B 品牌的 足球共需 380 元; 购 买 4 个 A 品 牌的足球和 2 个 B 品 牌的足球共需 360 元”列出方程组并解答 ; (2)把(1)中的 数 据代入求值即可. 【 解 答 】解 :( 1)设 一 个 A 品 牌 的 足 球 需 x 元 ,则 一 个 B 品 牌 的 足 球 需 y 元 ,依题意得:,解得.答:一个 A 品牌的足 球需 90 元,则一 个 B 品牌的足球需 100 元 ;( 2) 依 题 意 得 : 20×9 0+2×100=1900( 元 ). 答:该校购买 20 个 A 品牌的足球和 2 个 B 品牌的足球的总费 用 是 1900 元.24.为 了 解 市 民 对 全 市 创 卫 工 作 的 满 意 程 度 ,某 中 学 教 学 兴 趣 小 组 在 全 市 甲 、 乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满 意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题: (1)求此次调查中 接 受调查的人数. (2)求此次调查中 结 果为非常满意的人 数 . ( 3)兴 趣 小 组 准 备 从 调 查 结 果 为 不 满 意 的 4 位 市 民 中 随 机 选 择 2 为 进 行 回 访 , 已知 4 为市民中有 2 位来自甲区,另 2 位来自乙区,请用列表或用画树状图 的方法求出选择的市民均来自甲区的概率. 【考点】列表法与树状图法;扇形统计图;条形统计图. 【 分 析 】( 1)由 满 意 的 有 20 人 ,占 40 %, 即 可 求 得 此 次 调 查 中 接 受 调 查 的 人 数. ( 2) 由 ( 1), 即 可 求 得 此 次 调 查 中 结 果 为 非 常 满 意 的 人 数 . ( 3)首 先 根 据 题 意 画 出 树 状 图 ,然 后 由 树 状 图 求 得 所 有 等 可 能 的 结 果 与 选 择 的市民均来自甲区的情况,再利用概率公式即可求得答案. 【 解 答 】 解 :( 1) ∵ 满 意 的 有 20 人 , 占 40 %, ∴ 此 次 调 查 中 接 受 调 查 的 人 数 : 20÷40%=5 0( 人 );( 2) 此 次 调 查 中 结 果 为 非 常 满 意 的 人 数 为 : 50﹣ 4﹣ 8﹣ 20=18( 人 );( 3) 画 树 状 图 得 :精品文档精品文档∵ 共有 12 种等可能的 结果,选择的市民 均 来自甲区的有 2 种 情 况, ∴ 选择的市民均来自甲区的概率为: = .五 、 综合 题: 本大 题共 2 小 题, 其 中 25 题 8 分 , 26 题 10 分 ,共 18 分 25. 尤 秀 同 学 遇 到 了 这 样 一 个 问 题 : 如 图 1 所 示 , 已 知 AF, BE 是 △ ABC 的 中 线 , 且 AF⊥BE, 垂 足 为 P, 设 BC=a, AC=b, AB=c. 求 证 : a2+b2=5c2 该同学仔细分析后,得到如下解题思路:先 连 接 E F,利 用 E F 为 △ ABC 的 中 位 线 得 到 △ EP F∽ △ BPA,故,设 PF=m,PE=n,用 m,n 把 PA,PB 分 别 表 示 出 来 ,再 在 Rt△ APE,Rt△ BPF 中 利 用 勾 股 定 理 计 算 , 消 去 m, n 即 可 得 证 (1)请你根据以上 解 题思路帮尤秀同学 写 出证明过程. (2)利用题中的结 论 ,解答下列问题: 在 边 长 为 3 的 菱 形 ABCD 中 ,O 为 对 角 线 AC,BD 的 交 点 ,E,F 分 别 为 线 段 AO,DO 的中点,连接 BE,CF 并延长交 于点 M,BM,CM 分 别交 AD 于点 G,H,如图 2 所示,求 MG2+MH2 的值.【考点】相似三角形的判定;三角形中位线定理. 【 分 析 】( 1) 设 P F= m, P E=n, 连 结 EF, 如 图 1, 根 据 三 角 形 中 位 线 性 质 得 E F∥ AB,E F= c,则 可 判 断 △ E FP ∽ △ BPA ,利 用 相 似 比 得 到 P B=2n,PA=2m,接 着 根 据 勾 股 定 理 得 到 n2 +4m2 = b2 ,m2 +4n2 = a2 ,则 5( n2 +m2 )= ( a2 +b2 ),而 n2+m2=EF2= c2, 所 以 a2+b2=5c2; ( 2) 利 用 ( 1) 的 结 论 得 MB2+MC2=5BC2=5×32=45, 再 利 用 △ AEG∽ △ CEB 可计算出 AG=1,同理可得 DH=1,则 GH=1,然后利用 GH∥ BC,根据平 行 线 分 线 段 长 比 例 定 理 得 到 MB=3GM, MC=3MH, 然 后 等 量 代 换 后 可 得 MG2+MH2=5. 【 解 答 】 解 :( 1) 设 P F= m, P E=n, 连 结 E F, 如 图 1, ∵ AF, BE 是 △ ABC 的中 线 ,精品文档精品文档∴ EF 为 △ ABC 的 中 位 线 , AE= b, BF= a,∴ EF∥ AB, EF= c,∴ △ EFP ∽ △ BPA,∴,即 = = ,∴ P B=2n, PA=2m, 在 Rt△ AEP 中 , ∵ P E2+PA 2=AE2,∴ n2+4m2= b2①,在 Rt△ AEP 中 , ∵ PF2+PB2=BF2,∴ m2+4n2= a2②,①+②得 5( n2 +m2 ) = ( a2 +b2 ), 在 Rt△ EFP 中 , ∵ PE2+PF2=EF2, ∴ n2+m2=EF2= c2,∴ 5• c2 = ( a2 +b2 ),∴ a2+b2=5c2; (2)∵ 四边形 ABCD 为菱形, ∴ BD⊥AC, ∵ E,F 分别为线段 AO,DO 的中点, 由 ( 1) 的 结 论 得 MB2+MC2=5BC2=5×32=45, ∵ AG∥ BC, ∴ △ AEG∽ △ CEB,∴ = =,∴ AG=1, 同理可得 DH=1, ∴ GH=1, ∴ GH∥ BC,∴ = = =,∴ MB=3GM, MC=3MH, ∴ 9MG2+9MH2=45, ∴ MG2+MH2=5.精品文档精品文档26. 已 知 抛 物 线 y=ax2﹣ 4a( a> 0) 与 x 轴 相 交 于 A, B 两 点 ( 点 A 在 点 B 的 左 侧 ), 点 P 是 抛 物 线 上 一 点 , 且 P B=AB, ∠ P BA=120°, 如 图 所 示 . (1)求抛物线的解 析 式. ( 2) 设 点 M( m, n) 为 抛 物 线 上 的 一 个 动 点 , 且 在 曲 线 PA 上 移 动 . ①当点 M 在曲线 PB 之间(含端点)移 动 时,是否存在点 M 使 △ APM 的面积为?若存在,求点 M 的坐标;若不存在,请说明理由.②当 点 M 在 曲 线 BA 之 间 ( 含 端 点 ) 移 动 时 , 求 |m|+|n|的 最 大 值 及 取 得 最 大 值时点 M 的坐标.【考点】二次函数综合题. 【 分 析 】( 1) 先 求 出 A、 B 两 点 坐 标 , 然 后 过 点 P 作 PC⊥x 轴 于 点 C, 根 据 ∠ P BA=120°, P B=AB, 分 别 求 出 BC 和 P C 的 长 度 即 可 得 出 点 P 的 坐 标 , 最 后将点 P 的坐标代入二次函数解析式即; (2)①过点 M 作 ME⊥x 轴于点 E,交 AP 于点 D,分别用含 m 的式子表示点 D、M 的坐标,然 后代入 △ APM 的面积公式 DM•AC,根据题意列出方程求出 m 的值; ②根 据 题 意 可 知 : n< 0, 然 后 对 m 的 值 进 行 分 类 讨 论 , 当 ﹣ 2≤m≤0 时 , |m|= ﹣ m; 当 0< m≤2 时 , |m|=m, 列 出 函 数 关 系 式 即 可 求 得 |m|+|n|的 最 大 值 . 【 解 答 】 解 :( 1) 如 图 1, 令 y= 0 代 入 y=a x2﹣ 4a, ∴ 0=ax2﹣4a, ∵ a>0,精品文档精品文档∴ x2﹣4=0, ∴ x=±2, ∴ A( ﹣ 2, 0), B( 2, 0), ∴ AB=4, 过点 P 作 PC⊥x 轴于点 C, ∴ ∠ PBC=180°﹣ ∠ P BA=60°, ∵ PB=AB=4,∴ cos∠ PBC= ,∴ BC=2, 由勾股定理可求得:PC=2 , ∵ OC=OC+BC=4, ∴ P ( 4, 2 ), 把 P( 4, 2 ) 代 入 y=ax2﹣ 4a, ∴ 2 =16a﹣4a,∴ a= ,∴ 抛物线解析式为; y= x2﹣;(2)∵ 点 M 在抛物线 上,∴ n= m2﹣,∴ M 的 坐 标 为 ( m,m2﹣),①当点 M 在曲线 PB 之间(含端点)移动时, ∴ 2≤m≤4, 如图 2,过点 M 作 ME⊥x 轴于点 E,交 AP 于点 D, 设 直 线 AP 的 解 析 式 为 y=kx+b, 把 A( ﹣ 2, 0) 与 P( 4, 2 ) 代 入 y=kx+b,得:,解得∴ 直 线 AP 的 解 析 式 为 : y= x+ , 精品文档精品文档令 x=m 代 入 y= x+ ,∴ y= m+,∴ D 的 坐 标 为 ( m,m+),∴ DM=( m+) ﹣ ( m2﹣) =﹣ m2+ m+,∴ S△ APM= DM•AE+ DM•CE = DM(AE+CE)= DM•AC=﹣ m2+ m+4当 S△ APM=时,∴=﹣ m2+ m+4 ,∴ 解 得 m=3 或 m=﹣ 1,∵ 2≤m≤4,∴ m=3,此时,M 的坐标为(3,);②当点 M 在曲线 BA 之间(含端点)移动时, ∴ ﹣ 2≤m≤2, n< 0, 当 ﹣ 2≤m≤0 时 ,∴ |m|+|n|=﹣ m﹣ n=﹣ m2﹣ m+=﹣ ( m+ ) 2+,当 m=﹣ 时 ,∴ |m|+|n|可取得最大值 ,最大值为,此 时 , M 的 坐 标 为 ( ﹣ , ﹣ ),当 0< m≤2 时 ,∴ |m|+|n|=m﹣ n=﹣ m2+m+=﹣ ( m﹣ ) 2+,精品文档精品文档当 m= 时 ,∴ |m|+|n|可取得最大值 ,最大值为,此 时 , M 的 坐 标 为 ( , ﹣ ),综上所述,当点 M 在曲线 BA 之间(含端点)移动时,M 的坐标为()或(﹣ ,﹣ )时, |m|+|n|的最大值 为.,﹣精品文档。

相关文档
最新文档