中考数学计算题类型汇总与中考例题专项训练

合集下载

中考数学中档题突破 专项训练五 实际应用与方案设计

中考数学中档题突破 专项训练五 实际应用与方案设计

解:(1)设 B 品牌消毒酒精每桶的价格为 x 元, A 品牌消毒酒精每桶的价 格为( x+20 )元,根据题意,得 3 000 1 800 x+20= x ,解得 x=30, 经检验:x=30 是原分式方程的解,且符合题意, ∴x+20=30+20=50. 答:A 品牌消毒酒精每桶的价格是 50 元, B 品牌消毒酒精每桶的价格是 30 元.
解:(1)设参加社会实践活动的老师有 m 人,学生有 n 人,则家长代表有
2m 人,根据题意得
95(3m+n)=6 175, 60×3m+60×0.75n=3 150,
m=5, 解得n=50. 答:参加社会实践活动的老师有 5 人,家长代表有 10 人,学生有 50 人.
(2)由(1)知,所有参与人员共有 65 人,其中学生有 50 人. ①当 50≤x<65 时,最经济的购票方案为 买二等座学生票 50 张,买二等座成人票(x-50)张,买一等座火车票(65 -x)张. ∴单程火车票的总费用 y 与 x 之间的函数关系式为 y=60×0.75×50+ 60(x-50)+95(65-x), 即 y=-35x+5 425(50≤x<65);
解:设每亩山田产粮相当于实田 x 亩,每亩场地产粮相当于实田 y 亩,
3x+6y=4.7, x=190, 根据题意得5x+3y=5.5,解得y=31.
9
1
答:每亩山田产粮相当于实田10亩,每亩场地产粮相当于实田3亩.
2.(2021·玉林)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有 A,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为 100 吨,每焚烧一吨垃圾,A 焚烧炉比 B 焚烧炉多发电 50 度,A,B 焚烧炉每天共发电 55 000 度. (1)求焚烧一吨垃圾,A 焚烧炉和 B 焚烧炉各发电多少度? (2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和 B 焚烧炉的发电量分别增加 a%和 2a%,则 A,B 焚烧炉每天共发电至少增 加(5+a)%,求 a 的最小值.

山西中考数学计算真题汇总(历年)

山西中考数学计算真题汇总(历年)

山西省中考数学计算真题汇总一.选择题(共1小题)1.分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3二.填空题(共8小题)2.不等式组的解集是.3.化简的结果是.4.计算:=.5.计算:9x3÷(﹣3x2)=.6.方程=0的解为x=.7.方程的解是x=.8.分解因式:5x3﹣10x2+5x=.9.分解因式:ax4﹣9ay2=.三.解答题(共21小题)10.(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.11.解方程:2(x﹣3)2=x2﹣9.12.(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.13.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.14.(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.15.解不等式组并求出它的正整数解:.16.(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.17.解方程:(2x﹣1)2=x(3x+2)﹣7.18.(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.解方程:.20.(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.21.(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.22.化简:23.(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=024.计算:(3﹣π)0+4sin45°﹣+|1﹣|.25.解不等式组:.26.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.27.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.28.解不等式组,并写出它的所有非负整数解.29.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|30.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.山西省中考数学计算真题汇总参考答案与试题解析一.选择题(共1小题)1.(2011•山西)分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3【分析】观察可得最简公分母是2x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1.检验:把x=1代入2x(x+3)=8≠0.∴原方程的解为:x=1.故选B.【点评】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二.填空题(共8小题)2.(2012•山西)不等式组的解集是﹣1<x≤3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤3,所以不等式组的解集是﹣1<x≤3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.(2012•山西)化简的结果是.【分析】将原式第一项的第一个因式分子利用平方差公式分解因式,分母利用完全平方公式分解因式,第二个因式的分母提取x分解因式,约分后将第一项化为最简分式,然后利用同分母分式的加法法则计算后,即可得到结果.【解答】解:•+=•+=+=.故答案为:.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.4.(2011•山西)计算:=.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.5.(2010•山西)计算:9x3÷(﹣3x2)=﹣3x.【分析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.【解答】解:9x3÷(﹣3x2)=﹣3x.【点评】本题主要考查单项式的除法,同底数幂的除法,熟练掌握运算法则和性质是解题的关键.6.(2010•山西)方程=0的解为x=5.【分析】观察可得最简公分母是(x+1)(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【解答】解:方程两边同乘以(x+1)(x﹣2),得2(x﹣2)﹣(x+1)=0,解得x=5.经检验:x=5是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2009•太原)方程的解是x=5.【分析】本题最简公分母为2x(x﹣1),去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘2x(x﹣1),得4x=5(x﹣1),去括号得4x=5x﹣5,移项得5x﹣4x=5,合并同类项得x=5.经检验x=5是原分式方程的解.【点评】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.8.(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【分析】先提取公因式5x,再根据完全平方公式进行二次分解.【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).【分析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).【点评】此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.三.解答题(共21小题)10.(2016•山西)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11.(2016•山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.12.(2015•山西)(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣4×﹣÷(﹣)=﹣9+4=﹣5;(2)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【分析】分别把1、2代入式子化简求得答案即可.【解答】解:第1个数,当n=1时,[﹣]=(﹣)=×=1.第2个数,当n=2时,[﹣]=[()2﹣()2]=×(+)(﹣)=×1×=1.【点评】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.14.(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.【解答】解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(2014•山西)解不等式组并求出它的正整数解:.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2013•山西)(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第二步开始出现错误,正确的化简结果是.【分析】(1)根据特殊角的三角函数值,0指数幂的定义解答;(2)先通分,后加减,再约分.【解答】(1)解:原式=×﹣1=1﹣1=0.(2)解:﹣=﹣====.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是.故答案为二,.【点评】(1)本题考查了特殊角的三角函数值,0指数幂,是一道简单的杂烩题;(2)本题考查了分式的加减,要注意,不能去分母.17.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.18.(2012•山西)(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】(1)分别根据0指数幂、负整数指数幂、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行解答即可;(2)先根据整式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=1+2×﹣3=1+3﹣3=1;(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题考查的是实数的混合运算及整式的化简求值,熟记0指数幂、负整数指数幂、特殊角的三角函数值计算法则及整式混合运算的法则是解答此题的关键.19.(2012•山西)解方程:.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.【点评】本题考查的是解分式方程.在解答此类题目时要注意验根,这是此类题目易忽略的地方.20.(2011•山西)(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.【分析】(1)将分式的分子、分母因式分解,约分,通分化简,再代值计算;(2)先分别解每一个不等式,再求解集的公共部分,用数轴表示出来.【解答】解:(1)原式=•﹣=﹣===,当a=﹣时,原式==﹣2;(2)由①得,x≥﹣1,由②得,x<2∴不等式组的解集为﹣1≤x<2.用数轴上表示如图所示.【点评】本题考查了分式的化简求值解一元一次不等式组.分式化简求值的关键是把分式化到最简,然后代值计算,解一元一次不等式组,就是先分别解每一个不等式,再求解集的公共部分.21.(2010•山西)(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.【分析】(1)先把根式化成最简根式,把三角函数化为实数,再计算;(2)先对括号里的分式通分、对分解因式,再去括号化简求值.【解答】解:(1)原式=3+(﹣8)﹣+1 (4分)=3﹣8﹣1+1=﹣5.(5分)(2)原式=•(1分)=(2分)==(3分)=x+2.(4分)当x=﹣3时,原式=﹣3+2=﹣1.(5分)【点评】考查了实数的运算和分式的化简求值,熟练掌握和运用有关法则是关键.22.(2009•太原)化简:【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:原式===1.【点评】解决本题的关键是分式的通分和分式的乘法中的约分.要先化简后计算.23.(2009•山西)(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=0【分析】(1)首先计算一次式的平方和两个一次式的积,然后进行减法计算即可;(2)首先把第一个分式进行化简转化为同分母的分式的加法,即可计算;(3)利用配方法,移项使方程的右边只有常数项,方程两边同时加上一次项系数的一半,则左边是完全平方式,右边是常数,即可利用直接开平方法求解.【解答】解:(1)(x+3)2﹣(x﹣1)(x﹣2)=x2+6x+9﹣(x2﹣3x+2)=x2+6x+9﹣x2+3x﹣2=9x+7.(2)===1.(3)移项,得x2﹣2x=3,配方,得(x﹣1)2=4,∴x﹣1=±2,∴x1=﹣1,x2=3.【点评】(1)解决本题的关键是掌握整式乘法法则;(2)本题主要考查分式运算的掌握情况;(3)本题主要考查了配方法解一元二次方程,正确理解解题步骤是解题关键.24.(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣+|1﹣|的值是多少即可.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.25.(2016•北京)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2015•北京)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.29.(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣5﹣+=﹣4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.30.(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【分析】先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.【解答】解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.【点评】此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.。

中考数学计算题训练

中考数学计算题训练

中考数学计算题训练中考数学计算题专项训练一、训练一1.计算:1) sin45° - 1/2 + 3/8;2) 2×(-5) + 23 - 3÷4 + 2^2 + (-1)^4 + (5-2) - |-3|;3) -1-16+(-2)^2/(2×1) + 1001+12-33×tan30°;6) -2+(-2)+2sin30°;8) (-1)-16+(-2)^2/[(2×1)+(1×1)]。

2.计算:[-1/2 + 1/3×(-tan45°)] + 3/2.3.计算:1/3 - 2^-1 - (2010-2012+(-1)^-1)/(1001+12-33×tan30°)。

4.计算:18-[cos60°/(2-1-4sin30°)]+[(2-2)/(2-1)]。

5.计算:[cos60°/(-1)]-1^20+|2-8|-2^-1×(tan30°-1)。

二、训练二(分式化简)1.化简:2x/(x^2-4x-2) - 1/(x-2)。

2.化简:(1+1/(x-2))/(x^2-4)。

3.化简:(1-a)/(2a-1) ÷ [(a^2+2a+1)/(3-a^5)]。

4.化简:[(a-1)/(a^2-1)] ÷ [(a-1)/(2a-1)],其中a≠-1.5.化简:[2x/(x+1)(x-1)] + [1/2(x-1)]。

6.化简:[1/(x-2)^2] ÷ [1/(x^2-4x+1)],其中x≠1.7.化简:[1-(a-1)/(2a)] ÷ [(a^2+2a)/(a-1)],其中a≠a。

8.化简:[2/(a+2)-(a-2)/(a-1)] ÷ [2/(a+1)-2/(a-2)],其中a为整数且-3<a<2.9.化简:[(11/2)x+2]/(x-y) + [9/(x^2+2xy+y^2)],其中x=1,y=-2.10.化简:[(1/2)-(1/12)x]/[2/(x-4)-x/(x^2-4)],其中x=2(tan45°-cos30°)-1.三、训练三(求解方程)1.解方程x-4x+1=0.2.解分式方程(3x-2)/(x+1) + (2x+1)/(x-2) =3.3.解方程:x^3-2x^2+5x-6=0.4.解方程:(x-1)/(x+1) + (x+1)/(x-1) = 4.5.解方程:(x-2)/(x+1) + (x+1)/(x-2) = 2.四、解不等式1.解不等式 $x+2>1$,得 $x>-1$,整数解为 $x\in(-1,+\infty)$。

初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)

初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)

一次函数的几何应用,一次函数的实际问题一、选择5、(陕西省)如图,直线对应的函数表达式是()答案: A9、( 江苏常州 ) 甲、乙两同学骑自行车从 A 地沿同一条路到 B 地, 已知乙比甲先出发 , 他们离出发地的距离 s(km) 和骑行时间 t(h) 之间的函数关系如图所示 , 给出下列说法 : 【】(1)他们都骑行了 20km;(2)乙在途中停留了 0.5h;(3)甲、乙两人同时到达目的地 ;(4)相遇后 , 甲的速度小于乙的速度 .根据图象信息 , 以上说法正确的有A.1 个B.2 个C.3 个D.4 个答案: B10、 ( 湖北仙桃等 ) 如图,三个大小相同的正方形拼成六边形,一动点从点出发沿着→→→→ 方向匀速运动,最后到达点. 运动过程中的面积()随时间( t )变化的图象大致是()答案: B11、( 黑龙江哈尔滨 )9 .小亮每天从家去学校上学行走的路程为900 米,某天他从家去上学时以每分 30 米的速度行走了 450 米,为了不迟到他加快了速度,以每分 45 米的速度行走完剩下的路程,那么小亮行走过的路程 S(米)与他行走的时间 t (分)之间的函数关系用图象表示正确的是().答案: D12、(黑龙江)5月23日8时40分,哈尔滨铁路局一列满载着2400 吨“爱心”大米的专列向四川灾区进发,途中除 3 次因更换车头等原因必须停车外,一路快速行驶,经过 80 小时到达成都.描述上述过程的大致图象是()答案: D13、(湖北天门)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度 h 随时间 t 的变化规律如图所示 ( 图中 OABC为一折线 ) ,这个容器的形状是图中().答案: A14、( 湖南怀化 ) 如图 1,是张老师晚上出门散步时离家的距离与时间之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()答案:D15、(山东济南)济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资 2 小时后开始调出物资(调进物资与调出物资的速度均保持不变). 储运部库存物资 S(吨)与时间 t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4 小时 B.4.4小时 C.4.8小时D.5 小时答案: B16、( 重庆 ) 如图,在直角梯形 ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点 M从点 D 出发,以 1cm/s 的速度向点 C 运动,点 N 从点 B 同时出发,以 2cm/s 的速度向点 A 运动,当其中一个动点到达端点停止运动时,另一个动点2也随之停止运动 . 则四边形 AMND的面积 y(cm)与两动点运动的时间 t (s)的函数图象大致答案: D二、填空1、(江苏省南通市)将点A(, 0)绕着原点顺时针方向旋转45°角得到点B,则点 B 的坐标是 ________.答案:( 4,- 4)2、(江苏省无锡市)已知平面上四点,,,,直线将四边形分成面积相等的两部分,则的值为答案:.3、(江苏省苏州市) 6 月 1 日起,某超市开始有偿提供可重复使用的三种环保..购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、 5 公斤和 8 公斤. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们选购的 3 只环保购物袋至少应付..给超市元.答案: 8、湖北荆门 ) 如图,l 1反映了某公司的销售收入与销量的关系, l 24 (反映了该公司产品的销售成本与销量的关系,当该公司赢利 ( 收入大于成本 )时,销售量必须 ____________.答案:大于 45、(山东烟台)如图是某工程队在“村村通”工程中,修筑的公路长度(米)与时间(天)之间的关系图象. 根据图象提供的信息,可知该公路的长度是______米.答案: 504三、解答题1、(湖北襄樊)我国是世界上严重缺水的国家之一. 为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费 . 即一月用水 10 吨以内 ( 包括 10 吨 ) 用户 , 每吨收水费 a 元 ; 一月用水超过 10 吨的用户 ,10 吨水仍按每吨 a 元水费 , 超过的部分每吨按 b 元(b>a) 收费 . 设一户居民月用水 y 元 ,y 与 x 之间的函数关系如图所示 .(1) 求 a 的值 , 若某户居民上月用水8 吨 , 应收水费多少元 ?(2)求 b 的值 , 并写出当 x 大于 10 时 ,y 与 x 之间的函数关系 ;(3)已知居民甲上月比居民乙多用水 4 吨, 两家共收水费 46元 , 求他们上月分别用水多少吨 ?解:( 1)当 x≤ 10 时,有 y=ax.将x=10,y=15代入,得a=1.5用水 8 吨应收水费 8×1.5=12 (元)(2)当 x>10 时,有(3)将 x=20,y=35 代入,得 35=10b+15. b=2(4)故当 x>10 时, y=2x- 5(5)因 1.5 ×10+1.5 ×10+2×4<46.所以甲、乙两家上月用水均超过10 吨则解之,得故居民甲上月用水16 吨,居民乙上月用水12 吨2、(湖北孝感)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m元;(二)职工个人当年治病花费的医疗费年底按表 1 的办法分段处理:表 1分段方式处理办法不超过 150 元(含 150 元)全部由个人承担超过 150 元,不超过 10000 元(不含 150个人承担n%,剩余部分由公司承担元,含 10000 元)的部分超过 10000 元(不含 10000 元)的部分全部由公司承担设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m元)为 y 元( 1)由表 1 可知,当时,;那么,当时,y=;(用含 m、 n、x 的方式表示)(2)该公司职工小陈和大李 2007 年治病花费的医疗费和他们个人实际承担的费用如表 2:职工治病花费的医疗费 x(元)个人实际承担的费用 y(元)小陈300280大李500320请根据表 2 中的信息,求 m、n 的值,并求出当时, y 关于 x 函数解析式;(3)该公司职工个人一年因病实际承担费用最多只需要多少元?(直接写出结果)解: 1)(2)由表2 知,小陈和大李的医疗费超过150 元而小于10000 元,因此有:( 3)个人实际承担的费用最多只需2220 元。

2024陕西中考数学二轮专题训练 题型三 简单计算题 (含答案)

2024陕西中考数学二轮专题训练 题型三 简单计算题 (含答案)

2024陕西中考数学二轮专题训练题型三简单计算题类型一实数的运算【类型解读】实数的运算近7年在解答题考查6次,仅2020年未考查,分值均为5分,考查点涉及:①去绝对值符号;②二次根式运算;③0次幂;④分数的负整数指数幂;⑤立方根.考查形式:含3个考查点的加减混合运算.1.计算:20-|2-5|+(-2)2.2.计算:2×6+|3-2|-(-2022)0.3.计算:4×(-8)-|3-22|-(-13)-1.4.计算:-2×28+|7-1|+(-1)2022.5.计算:(-3)2×3-64-|-23|+(12)-2.6.计算:3×12-|2-6|-2tan45°.7.计算:-13×24+|22-2|-(-77)0+(-1)3.8.计算:13×(-327)-|1-3|+(-12)-3-2sin60°.类型二整式的化简(求值)1.计算:x (x +2)+(1+x )(1-x ).2.化简:(m+1)(m-3)-(m-2)2.3.化简:(x-3y)2-(x+2y)(x-2y).4.化简:(x-1)2-x(x-2)+(-x-3)(x-3).5.先化简,再求值:2x(1-x)-(x-3)(x+5),其中x=2.6.已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.7.先化简,再求值:(x+2y)2+(x-2y)(x+2y)-2x(x+4y),其中x=2,y= 3.8.下面是小颖化简整式x(x+2y)-(x+1)2+2x的过程,仔细阅读后解答所提出的问题.解:原式=x2+2xy-(x2+2x+1)+2x第一步=x2+2xy-x2+2x+1+2x第二步=2xy+4x+1.第三步(1)小颖的化简过程从第________步开始出现错误,错误的原因是__________________________;(2)写出正确的解题过程.类型三分式的化简(求值)与解分式方程【类型解读】分式化简(求值)近10年考查6次,其中选择题1次(2017.5),解答题5次.其中分式化简考查5次,均为三项,形式包含:(A+B)÷C、(A-B)÷C;分式化简求值考查1次,形式为A-B,所给值为负数.解分式方程近10年考查5次,分值均为5分.考查形式:分式方程均为三项,其中两项为分式,另一项为常数1或-1.分式化简与解分式方程对比练习:针对分式化简与解分式方程过程中容易混淆的步骤,特设对比练习,让学生掌握基本步骤,明确解题方法,避免失分.对比练习①化简:12-x÷(2-2x2+x).解分式方程:12-x+2=2x2+x.解题过程对比练习②化简:(1-xx+1)÷1x2-1.解分式方程:1-xx+1=1x2-1.解题过程对比练习③化简:4x2-9÷(2x-3-1x+3).解分式方程:4x2-9-2x-3=1x+3.解题过程注意事项 1.分式化简时,分母始终存在,分 1.解分式方程时,第1步是利用等式式的每一项属于恒等变形;2.分式化简时,若遇到异分母分式相加或者相减,要进行通分,通分是将几个异分母的分式分别化成与原来的分式相等的同分母的分式;3.在化简的过程中,分子或分母能因式分解的先因式分解,以便看能否约去公因式的基本性质,去分母,因此分母不存在;2.解分式方程时,去分母是给方程两边同乘最简公分母,从而将分式方程化为整式方程;3.分式方程要检验,即检验所求的解是否是该方程的根考向一分式的化简(求值)1.化简:(1+1m-1)÷mm2-1.2.化简:a-ba+b-a2-2ab+b2a2-b2÷a-ba.3.化简:(x-2x+2-8x4-x2)÷x2+2xx-2.4.计算:x2-9x2+2x+1÷(x+3-x2x+1).5.已知A=2x-1,B=x+1x2-2x+1,C=x+13x-3,将它们组合成A-B÷C或(A-B)÷C的形式,请你从中任选一种组合形式,先化简,再求值,其中x=-3.考向二解分式方程1.解分式方程:xx+1=x3x+3+1.2.解分式方程:xx-3-6x=1.3.解分式方程:xx-2-1=4x2-4x+4.4.下面是小颖同学解分式方程的过程,请认真阅读并完成相应任务.解方程:x+2x-2-1=84-x2.解:(x+2)2-(x2-4)=-8,·················第一步x2+4x+4-x2-4=-8,····················第二步4x=0,···································第三步x=0,····································第四步所以原分式方程的解是x=0.················第五步任务一:①以上解分式方程的过程中,缺少的一步是________;②第________步开始出现错误,这一步错误的原因是________________________;任务二:请直接写出该分式方程的解;任务三:除纠正上述错误外,请你根据平时的学习经验,就解分式方程时还需要注意的事项给其他同学提一条建议.类型四一次方程(组)(常在一次函数的实际应用、二次函数综合题中涉及)1.解方程:x-32+x-13=4.2.=2y -y=6.3.x-y=-4-2y=-3.4.x-4(x+2y)=5+2y=1.5.2y=3-2+y3=-12.6.x+y=7=y-1的解也是关于x、y的方程ax+y=4的一个解,求a的值.7.x+2y=5①x+2y=-3②时的部分过程:x+2y=5①x+2y=-3②,①-②,得-2x=8,…(1)上述解法中,使用的方法是____________;(填“代入消元法”或“加减消元法”)(2)解方程组的基本思想是________;(3)请选择不同于题中的方法求解该方程组.类型五一元二次方程(常在二次函数综合题中涉及)1.解方程:(x+1)2-4=0.2.解方程:2x2+6x-3=0.3.解方程:x(x-7)=8(7-x).4.解方程:(x+1)(x-3)=1.5.若x=-1是关于x的一元二次方程(m-1)x2-x-2=0的一个根,求m的值及另一个根.6.已知关于x的一元二次方程x2-2x+1-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你给出一个k的值,并求出此时方程的根.7.已知关于x 的一元二次方程x 2-4mx +3m 2=0.(1)求证:该方程总有两个实数根;(2)若m >0,且该方程的两个实数根的差为2,求m 的值.类型六不等式(组)【类型解读】解不等式组近10年考查5次,其中解答题2次(近两年连续考查),选择题3次.1.-1≥2①x +3<13②.2.x <x +8(x +1)≤7x +10.3.x -1)≤1x -53.4.(x +1)≤7x +13-4<x -83.5.解不等式:3x +24≤x -13,并把解集在数轴上表示出来,同时写出它的最大整数解.第5题图6.6≤x+16,并把它的解集在数轴上表示出来.第6题图7.(1+x)>-1①1-x)>-2②的解答过程.解:由①,得2+x>-1,所以x>-3.由②,得1-x>2,所以-x>1,所以x>-1;所以原不等式组的解是x>-1.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.参考答案类型一实数的运算1.解:原式=25-(5-2)+4=25-5+2+4=5+6.2.解:原式=2×6+(2-3)-1=23+2-3-1=3+1.3.解:原式=2×(-22)-(3-22)+3=-42-3+22+3=-2 2.4.解:原式=-2×27+(7-1)+1=-47+7-1+1=-37.5.解:原式=3×(-4)-23+4=-12-23+4=-8-2 3.6.解:原式=3×23-(6-2)-2=6-6+2-2=6- 6.7.解:原式=-13×24+(22-2)-1-1=-22+22-2-2=-4.8.解:原式=13×(-3)-(3-1)-8-2×32=-1-3+1-8-3=-23-8.类型二整式的化简(求值) 1.解:原式=x2+2x+1-x22.解:原式=m2+m-3m-3-(m2-4m+4)=m2-2m-3-m2+4m-4=2m-7.3.解:原式=x2-6xy+9y2-(x2-4y2)=x2-6xy+9y2-x2+4y2=-6xy+13y2.4.解:原式=x2-2x+1-x2+2x-(x+3)(x-3)=1-(x2-9)=1-x2+9=10-x2.5.解:原式=2x-2x2-(x2-3x+5x-15)=2x-2x2-x2+3x-5x+15=-3x2+15.当x=2时,原式=-3×22+15=3.6.解:原式=9x2-4+x2-2x=10x2-2x-4,∵5x2-x-1=0,∴5x2-x=1,∴原式=2(5x2-x)-4=-2.7.解:原式=x2+4xy+4y2+x2-4y2-(2x2+8xy)=x2+4xy+4y2+x2-4y2-2x2-8xy=-4xy.当x=2,y=3时,原式=-4×2×3=-4 6.8.解:(1)二;括号前是“-”号,去括号时里面的各项没有变号;(2)原式=x2+2xy-(x2+2x+1)+2x=x2+2xy-x2-2x-1+2x=2xy-1.类型三分式的化简(求值)与解分式方程解:原式=12-x ÷2(2+x )-2x 2+x=12-x ÷42+x=12-x ·2+x 4=2+x 8-4x.解:方程两边同乘(2+x )(2-x ),得2+x +2(2+x )(2-x )=2x (2-x ),2+x +8-2x 2=4x -2x 2,-3x =-10.解得x =103.检验:当x =103时,(2+x )(2-x )≠0,∴原分式方程的解是x =103.对比练习②解:原式=x +1-x x +1÷1(x +1)(x -1)=1x +1·(x +1)(x -1)=x -1.解:方程两边同乘(x +1)(x -1),得(x +1)(x -1)-x (x -1)=1,x 2-1-(x 2-x )=1,解得x =2.检验:当x =2时,(x +1)(x -1)≠0,∴原分式方程的解是x =2.对比练习③解:原式=4(x +3)(x -3)÷2(x +3)-(x -3)(x +3)(x -3)=4(x +3)(x -3)÷2x +6-x +3(x +3)(x -3)=4(x +3)(x -3)·(x +3)(x -3)x +9=4x +9.解:方程两边同乘(x +3)(x -3),得4-2(x +3)=x -3.4-(2x +6)=x -3.-3x =-1.解得x =13检验:当x =13时,(x +3)(x -3)≠0,∴原分式方程的解是x =13.考向一分式的化简(求值)1.解:原式=m -1+1m -1·(m +1)(m -1)m =m m -1·(m +1)(m -1)m=m +1.2.解:原式=a -b a +b -(a -b )2(a -b )(a +b )·a a -b=a -b a +b -a a +b=-b a +b.3.解:原式=(x -2x +2+8x x 2-4)÷x (x +2)x -2=x 2-4x +4+8x (x +2)(x -2)·(x -2)x (x +2)=x 2+4x +4(x +2)(x -2)·(x -2)x (x +2)=(x +2)2(x +2)(x -2)·(x -2)x (x +2)=1x.4.解:原式=(x +3)(x -3)(x +1)2÷x 2+x +3-x 2x +1=(x +3)(x -3)(x +1)2·x +1x +3=x -3x +1.5.解:A -B ÷C :2x -1-x +1x 2-2x +1÷x +13x -3原式=2x -1-x +1(x -1)2·3(x -1)x +1=2x -1-3x -1=-1x -1,当x =-3时,原式=-1-3-1=14;(A -B )÷C :(2x -1-x +1x 2-2x +1)÷x +13x -3原式=[2x -1-x +1(x -1)2]·3(x -1)x +1=[2x -2(x -1)2-x +1(x -1)2]·3(x -1)x +1=x -3(x -1)2·3(x -1)x +1=3x -9x 2-1,当x =-3时,原式=3×(-3)-9(-3)2-1=-94.考向二解分式方程1.解:方程两边同乘3(x +1),得3x =x +3x +3,解得x =-3.检验:当x =-3时,3(x +1)≠0,∴原分式方程的解为x =-3.2.解:方程两边同乘x (x -3),得x 2-6(x -3)=x (x -3).-3x =-18.解得x =6.检验:当x =6时,x (x -3)≠0,∴原分式方程的解为x =6.3.解:方程两边同乘(x -2)2,得x (x -2)-(x -2)2=4,2x=8.解得x=4.检验:当x=4时,(x-2)2≠0.∴原分式方程的解为x=4.4.解:任务一:①检验;②二,去括号时,括号前是“-”号,括号里面第二项没有变号;任务二:该分式方程的解为x=-4;【解法提示】x+2x-2-1=84-x2,(x+2)2-(x2-4)=-8,x2+4x+4-x2+4=-8,4x=-16,x=-4,检验:当x=-4时,x2-4≠0,∴原分式方程的解为x=-4.任务三:答案不唯一,如:去分母时,注意方程中的每项都要乘最简公分母;去括号时,注意正确运用去括号法则;解分式方程必须验根等.类型四一次方程(组)1.解:3(x-3)+2(x-1)=24,3x-9+2x-2=24,3x+2x=24+9+2,5x=35,x=7.∴原方程的解为x=7.2.解:=2y①-y=6②,把①代入②,得2y-y=6,解得y=6.把y=6代入①,得x=12.=12=6.3.解x-y=-4①-2y=-3②,①×2,得6x-2y=-8③,③-②,得5x=-5,解得x=-1,把x=-1代入①,得y=1.=-1=.4.解x-8y=5①+2y=1②,①+②得:-6y=6,解得y=-1,把y=-1代入②得:x-2=1,解得x=3,=3=-1.5.解:将原方程组整理,得:+2y=3①x-2y=1②,①+②,得4x=4,解得x=1,将x=1代入①,得1+2y=3,解得y=1,=1=1.6.解x+y=7=y-1②,把②代入①得:2(y-1)+y=7,解得y=3,代入①中,解得x=2,把x=2,y=3代入方程ax+y=4得,2a+3=4,解得a=12.7.解:(1)加减消元法;(2)消元;(3)由②得2y=-3-5x③.将③代入①得,3x+(-3-5x)=5,去括号,移项、合并同类项得-2x=8,解得x=-4,将x=-4代入①,得-12+2y=5,解得y=172,=-4=172.类型五一元二次方程1.解:(x+1)2=4,∴x+1=±2,解得x1=1,x2=-3.2.解:∵a=2,b=6,c=-3,∴b2-4ac=60>0,∴x=-b±b2-4ac2a=-6±602×2=-6±2154=-3±152.∴x1=-3+152,x2=-3-152.3.解:x(x-7)+8(x-7)=0,(x-7)(x+8)=0,解得x1=7,x2=-8.4.解:将方程整理为一般式为x2-2x-4=0,∵a=1,b=-2,c=-4,∴b2-4ac=(-2)2-4×1×(-4)=20>0,∴x=-b±b2-4ac2a=2±252=1±5,∴x1=1+5,x2=1-5.5.解:将x=-1代入原方程得m-1+1-2=0,解得m=2,当m=2时,原方程为x2-x-2=0,即(x+1)(x-2)=0,∴x1=-1,x2=2,∴方程的另一个根为x=2.6.解:(1)∵关于x的一元二次方程x2-2x+1-k=0有两个不相等的实数根.∴b2-4ac=(-2)2-4×1×(1-k)>0,∴4k>0,解得k>0;(2)由(1)知,实数k的取值范围为k>0,故取k=1,则x2-2x=0,即x(x-2)=0,解得x1=0,x2=2.7.(1)证明:∵b2-4ac=(-4m)2-4×1×3m2=4m2≥0,∴该方程总有两个实数根;(2)解:x2-4mx+3m2=0可化为(x-m)(x-3m)=0,解得x1=m,x2=3m.∵m>0,∴m<3m.∵该方程的两个实数根的差为2,∴x2-x1=3m-m=2m=2,解得m=1.类型六不等式(组) 1.解:解不等式①,得x≥3,解不等式②,得x<5,∴原不等式组的解集为3≤x<5.2.解x<x+8①(x+1)≤7x+10②,解不等式①,得x<4,解不等式②,得x≥-2,∴原不等式组的解集是-2≤x<4.3.解x-1)≤1①x-53②,解不等式①,得x≥1,解不等式②,得x<3.∴原不等式组的解集是1≤x<3.4.解(x +1)≤7x +13①-4<x -83②,解不等式①,得x ≥-3,解不等式②,得x <2.∴原不等式组的解集是-3≤x <2.5.解:去分母,得3(3x +2)≤4(x -1),去括号,得9x +6≤4x -4,移项、合并同类项,得5x ≤-10,解得x ≤-2.将不等式的解集在数轴上表示如解图,第5题解图∴不等式的最大整数解为x =-2.6.解6①≤x +16②,解不等式①,得x >-3,解不等式②,得x ≤2,∴这个不等式组的解集是-3<x ≤2.解集在数轴上表示如解图.第6题解图7.解:圆圆的解答过程有错误.正确的解答过程如下:由①,得2+2x >-1,∴2x >-3,∴x >-32,由②,得1-x <2,∴-x <1,∴x >-1.∴原不等式组的解集是x >-1.。

中考数学计算题专项训练

中考数学计算题专项训练

÷
x2-2x+1 x2-4
,其中
x=-5(2)(a﹣1+
(3) (1 1 ) a2 2a 1 ,其中 a = 2 -1.
a 1
a
)÷(a2+1),其中 a= ﹣
(5)
x x
1 1
2x x2 1
1 然后选取一个使原式有意义的
x2 1
x
的值代入求值
1/5
(6)
9、化简求值:
m2 2m 1 m2 1
x 2 6x 3 2.解不等式组 5x 1 6 4x 1
{ 3.解不等式组:
2x+3<9-x, 2x-5>3x.
25、先化简,再求值:
x2
x2 4 4x
4
x2 x
x 1
x
,其中
x=-3.
4.解不等式组
x x
2
2 1
1, 2.
5.解方程组
,并求
的值.
3/5
7.
x+2 解不等式组 3
<1,
并把解集在数轴上表示出来。
2(1-x)≤5,
3x 1 x 3
9.
解不等式组
1
x
2
≤1 2x 3
,并写出整数解.
1
中考数学计算题专项训练
1 x2 4
(2) 先化简,再求值. (1
)
,其中 x=3..
x3 x3
6.先化简,再求值:
1 a 1
a2
a
1 2a 1
a a
1 1
,其中
a
2.
(1) Sin45 0 1 3 8
(2)
2
(3)2×(-5)+23-3÷12

(完整版)初三中考数学计算题训练及答案

(完整版)初三中考数学计算题训练及答案

1 23 8 3 ﹣ ﹣1.计算:22+|﹣1|﹣ 9.2 计算:( 13)0 -( 2 )-2 + tan45°13.计算:2×(-5)+23-3÷2.4. 计算:22+(-1)4+(5-2)0-|-3|;5.计算: Sin 450 -+ 6.计算: - 2 + (-2)0 + 2 s in 30︒ .( 1)0 + ∣2 3∣ + 2sin 60° 7.计算 ,8.计算:a(a-3)+(2-a)(2+a)∣﹣5∣ + 22﹣( + 1)00 39.计算:10. 计算: -- (-2011) + 4 ÷(-2)11.解方程 x 2﹣4x+1=0.12.解分式方程2 =x + 23x - 23 13.解方程:x=2x-1.14.已知|a﹣1|+ab + 2=0,求方裎x+bx=1 的解.x 315.解方程:x2+4x-2=0 16.解方程:x - 1 - 1 - x = 2.{2x+3<9-x,) 17.(2011.苏州)解不等式:3﹣2(x﹣1)<1.18.解不等式组:2x-5>3x.⎧x - 2 6(x + 3) ⎧⎪x + 2 > 1, 19.解不等式组⎨( -1)- 6 ≥ 4(x +1) 20.解不等式组⎨x +1 < 2.⎩5 x ⎩⎪ 2初中计算题训练2 12 1 2 1 21 2 1 2答案1.解: 原式=4+1﹣3=22.解:原式=1-4+1=-2.3.解:原式=-10+8-6=-84.解:原式=4+1+1-3=3。

1 5.解:原式= -2 + 2 = 2 . 6. 解:原式=2+1+2× =3+1=4.2 27. 解:原式=1+2﹣ 3+2× 2 =1+2﹣ 3+ 3=3.8.解: a (a - 3)+ (2 - a )(2 + a )= a 2 - 3a + 4 - a 2 =4 - 3a9. 解:原式=5+4-1=810. 解:原式= 3 -1- 1=0.2211. 解:(1)移项得,x 2﹣4x=﹣1,配方得,x 2﹣4x+4=﹣1+4,(x ﹣2)2=3,由此可得 x ﹣2=± 3,x =2+3,x =2﹣ 3;(2)a=1,b=﹣4,c=1.b 2﹣4ac=(﹣4)2﹣4×1×1=12>0.4 ± 12x=2 =2± 3, x =2+ 3,x =2﹣ 3.12.解:x=-10 13.解:x=314. 解:∵|a﹣1|+1b + 2=0,∴a﹣1=0,a=1;b+2=0,b=﹣2.1 ∴x ﹣2x=1,得 2x 2+x ﹣1=0,解得 x =﹣1,x =2. 1 1经检验:x =﹣1,x =2是原方程的解.∴原方程的解为:x =﹣1,x =2. 15.解: x =-4 ±16 + 8 = -4 ± 2 6 = - 2 ± 2 216. 解:去分母,得 x +3=2(x -1) . 解之,得 x =5. 经检验,x =5 是原方程的解. 17. 解:3﹣2x+2<1,得:﹣2x <﹣4,∴x>2. 18.解:x <-519.解: x ≥ 1520. 解:不等式①的解集为 x >-1;不等式②的解集为 x +1<4 x <3故原不等式组的解集为-1<x <3.2 36。

初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)

初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)

初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、计算题(共100题)1、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?2、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?3、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.4、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?5、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.6、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.7、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.8、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.9、在中,当时,,当时,,求和的值.10、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.11、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.12、在中,当时,,当时,,求和的值.13、已知,当时,;当时,. 求出k,b 的值;14、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.15、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.16、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.17、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.18、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.19、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.20、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.21、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.22、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.23、已知y=(k-3)x+k2-9是关于x的正比例函数,求当x=-4时,y的值.24、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?25、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.28、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?29、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.30、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.31、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.32、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.33、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.34、在中,当时,,当时,,求和的值.35、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.36、已知,当时,;当时,. 求出k,b 的值;37、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.38、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.39、在中,当时,,当时,,求和的值.40、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.41、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.42、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.43、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.44、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.45、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.46、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.47、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.48、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.49、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.50、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?51、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.52、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.53、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学计算题类型与中考典型例题专项训练
一、计算
1. (2011.常州)计算:30
82
145+-Sin 2.(计算)
22)145(sin 230tan 31
21-︒+︒--
3.(2011.淮安)计算:
4.(2011.连云港)计算:2×(-5)+23-3÷1
2 . 5.(2011.南通) 计算:22+(-1)4+(5-2)0-|-3|;
6.(2011。

苏州)计算:22
+|﹣1|﹣. 7. (2011.宿迁)计算:︒+-+-30sin 2)2(20.
8. (2011.泰州)计算,
9. (2011.无锡)计算:
(1)()()0
2
2161-+-- (2)a(a-3)+(2-a)(2+a)
10. (2011.盐城)计算:(
3
)0 - (
12 )-2 +
tan45° 11. 计算: 1
31-⎪⎭⎫ ⎝⎛+0
232006⎪⎪⎭
⎫ ⎝⎛-3-tan60°
二、分式化简 1. (2011.南京)计算
. 2. (2011.常州)化简:
2
1
422
---x x x
3.(2011.淮安)化简:(a+b )2
+b (a ﹣b ).
4. (2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.
5. (2011.苏州)先化简,再求值:(a ﹣1+
)÷(a 2
+1),其中a=
﹣1.
6. (2011.宿迁)已知实数a 、b 满足ab =1,a +b =2,求代数式a 2b +ab 2的值.
7. (2011.泰州)化简.
8. (2011.无锡)a(a-3)+(2-a)(2+a)
9.(2011.徐州)化简:11
()a a a a
--÷;
10.(2011.扬州)化简2
11
1x x x -⎛⎫+÷ ⎪⎝⎭
三、解方程
1. (2011•南京)解方程x 2
﹣4x+1=0. 2. (2011.常州)解分式方程2
3
22-=
+x x
3.(2011.连云港)解方程:3x = 2
x -1 . 4. (2011.无锡)解方程:x 2+4x -2=0
5. (2011.苏州)已知|a ﹣1|+=0,求方裎+bx=1的解.
6.(2011.盐城)解方程:x x -1 - 3
1-
x
= 2.
四、解不等式
1.(2011.南京)解不等式组,并写出不等式组的整数解.
2.(2011.常州)解不等式组()()()
⎩⎨⎧+≥--+-14615362x x x x 3.(2011.连云港)解不等式组:⎩
⎨⎧2x +3<9-x ,2x -5>3x .
4.(2011.南通)求不等式组⎩⎨⎧3x -6≥x -4
2x +1>3(x -1)
的解集,并写出它的整数解.
5.(2011.苏州)解不等式:3﹣2(x ﹣1)<1.
6. (2011.宿迁)解不等式组⎪⎩⎪
⎨⎧<+>+.22
1,12x x
7. (2011.泰州)解方程组,并求
的值.
8.(2011.无锡)解不等式组⎪⎩

⎨⎧-≤-〉-121
312x x x x 9.解方程组 4143314312x y y x +=⎧⎪
-⎨--=⎪⎩
10. 解不等式组⎩⎪⎨⎪⎧x +23 <1,
2(1-x )≤5,
并把解集在数轴上表示出来。

11. 解不等式组31311212
3x x x x +<-⎧⎪
++⎨+⎪⎩≤,并写出它的所有整数解.。

相关文档
最新文档