高考数学整体知识点总结框架大全
2024高考数学知识点归纳总结

2024高考数学知识点归纳总结第一章函数的初步1.函数的概念和性质:自变量、函数值、定义域、值域、单调性等。
2.常见函数的图像与性质:常数函数、线性函数、二次函数、反比例函数。
3.反函数的概念与性质:定义域、值域的互换、对称关系等。
4.函数的运算:加减乘除、复合、逆向运算等。
第二章数列与数理统计1.数列的概念与性质:数列的定义、通项公式、递推公式、等差数列、等比数列。
2.算数平均数、中位数、众数与离均差。
3.方差与标准差的概念与计算方法。
4.频数与频率:频数分布表、频率分布表等。
第三章高中函数1.函数的定义与性质:基本初等函数、分段函数。
2.函数的图像与性质:一次函数、幂函数、指数函数、对数函数、三角函数(正弦函数、余弦函数)等。
3.解析式的建立方法和解题技巧。
4.函数的图像与图形的简单变化:平移、翻转与伸缩。
第四章一元二次方程与不等式1.一元二次方程的定义与性质:解的个数与形式、判别式、根与系数之间的关系等。
2.根与系数之间的联系:求一次项系数、顶点坐标、对称轴与焦点、及抛物线方程等。
3.一元二次不等式:解集表示、解集的画图表示。
第五章二次函数与二次方程1.二次函数的性质:图像、单调性、极值点、对称轴、直线与抛物线的交点等。
2.二次函数图像的应用:最高点问题、根的情况及数值应用等。
第六章图形的性质与变换1.图形的简单性质与性质推理:内角和、外角和、对角线、对称性等。
2.图形的简单变换:平移、旋转、翻转、缩放等。
3.图形的计算:面积、体积的计算方法和应用。
第七章几何运动1.几何运动的基本概念与性质:初值、公差、项数等。
2.几何运动的求和计算:前n项和、无穷项和(算术级数与几何级数等)。
3.等差数列与等比数列。
4.利用等差数列与等比数列解决实际问题。
第八章概率与统计1.概率的基本概念与性质:样本空间、随机事件、概率的计算等。
2.事件的独立性:互斥事件、独立事件、相对独立事件等。
3.排列与组合:排列组合的基本概念、计算方法和应用。
高考数学框架知识点

高考数学框架知识点一、初等数论初等数论是数学中的基础,涵盖了整数的性质和关系。
在高考数学中,初等数论包括以下几个主要知识点:1.1 整数的性质整数包括正整数、负整数和零,它们的性质有以下几个方面:- 整数的加法、减法、乘法运算及其性质;- 整数的除法,包括带余除法和整除性质;- 整数的奇偶性和约数性质。
1.2 整数的因数与倍数- 整数的因数:包括最大公因数、最小公倍数等概念;- 整数的质因数分解:将一个整数表示为几个不同质数的乘积。
1.3 整数的整除与整除性质- 整数除法的性质,包括能否整除、被除数与除数的关系等。
1.4 同余与模运算- 同余关系的概念和性质;- 模运算的定义和性质。
二、平面向量平面向量是解析几何中的基础知识,也是高考数学中的重要考点。
平面向量包括以下几个主要知识点:2.1 平面向量的定义与表示- 平面向量的概念和表示方法,包括坐标表示和数量表示。
2.2 平面向量的运算- 平面向量的加法、减法和数乘运算;- 平面向量的数量积和向量积。
2.3 平面向量的性质和应用- 平面向量的模、方向和单位向量;- 平面向量的共线与垂直。
三、解析几何解析几何是平面几何和立体几何的结合,通过代数方法研究几何问题。
在高考数学中,解析几何包括以下几个主要知识点:3.1 直线和圆的方程解析几何中,直线和圆可以通过方程表示:- 直线的一般式方程和截距式方程;- 圆的标准方程和一般方程。
3.2 二次曲线- 抛物线、椭圆、双曲线的定义和性质;- 二次曲线的标准方程。
四、立体几何立体几何是研究空间中图形的性质和关系的一个分支,它包括以下几个主要知识点:4.1 空间图形的表示- 点、直线、平面等基本概念;- 空间图形的投影和截面。
4.2 空间中的位置关系- 直线与平面的位置关系;- 平面与平面的位置关系。
4.3 空间几何体的性质和计算- 球、柱、锥、棱柱和棱锥的定义和计算;- 空间几何体的体积、表面积和侧面积公式。
高考数学考点大全总结概括

高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高三数学新教材知识点归纳总结

高三数学新教材知识点归纳总结一、函数与方程1. 函数的基本概念函数是一个或多个自变量和因变量之间的对应关系,通常表示为y=f(x)。
函数的定义域、值域和图像为常见的函数性质。
2. 基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数等。
学习基本初等函数的性质和图像,掌握其函数图像的平移、翻折、伸缩等变换规律。
3. 方程与不等式解方程和不等式的基本方法,包括二次方程、一次方程、分式方程等。
通过应用数学工具解决实际问题。
二、数列与数学归纳法1. 数列的概念与表示数列是按照一定规律排列的一组数字。
常见的数列有等差数列和等比数列。
2. 数列的通项与前n项和掌握求等差数列和等比数列的通项公式和前n项和公式。
3. 数学归纳法数学归纳法是证明数学命题的常用方法,通过证明基准情形成立和归纳假设成立,推导出待证情形成立。
三、三角函数与解三角形1. 三角函数的基本概念与性质掌握正弦函数、余弦函数、正切函数等的定义和基本性质,能够利用三角函数解决实际问题。
2. 特殊角与通角熟练掌握特殊角的计算和通角的概念,能够灵活运用它们解决问题。
3. 解三角形熟练掌握利用三角函数解三角形的基本思路和方法,包括解任意三角形和解直角三角形。
四、立体几何1. 空间直角坐标系与向量了解空间直角坐标系的定义和性质,熟悉坐标表示点、直线和平面的方法。
掌握向量的定义、加法和数量积的运算。
2. 空间几何体的表示能够根据给定条件,利用空间直角坐标系表示球、圆锥、椭球等几何体。
3. 空间几何体的性质与计算熟悉立体几何体的性质和计算方法,如计算体积、表面积等。
五、导数与微分应用1. 导数的概念与计算掌握导数的定义和基本性质,能够利用求导法则计算导数。
2. 函数的求导与应用了解函数的增减性、极值和曲线的凹凸性等,能够利用导数求解函数相关问题。
3. 微分与线性近似掌握微分的概念与计算方法,能够利用微分求解近似问题,如线性近似、最优化问题等。
六、概率与统计1. 随机事件与概率了解随机事件、样本空间和事件概率的基本概念,掌握概率的计算方法。
高中数学知识框架思维导图(整理版)

及其变换
对称变换: = () → = −(), = () → = (−), = () → = −(−)
翻折变换: = () → = |()|, = () → = (||)
伸缩变换: = () → = (), = () → = ()
| Ax0+By0+C |
点到线的距离:d=
圆的标准方程
直线与圆的位置关系
两圆的位置关系
| C1-C2 |
,平行线间距离:d=
A2+B2
阿波罗尼斯圆:满足|| = ||( ≠ 1)的点的轨迹
圆的一般方程
圆的方程
A2+B2
相离
<0,或 d>r
相切
=0,或 d=r
相交
>0,或 d<r
垂线,它们围成的矩形
面积=|z|
1 : = 1 + 1 .
2 : = 2 + 2 .
A1A2+B1B2=0
平行:1 = 2 ,1 ≠ 2
垂直:1 ∙ 2 = −1
斜截式:y=kx+b
y-y1 x-x1
=
y2-y1 x2-x1
直线方程的形式
两点式:
2 −1
1 : 1 + 1 + 1 = 0.
→
投影
|a|
→
→
a·b
设→
a 与→
b 夹角,则 cos=——
→ →
夹角公式
| a |·| b |
共线(平行)
→
a ∥→
b →
b =→
a x1y2-x2y1=0
垂直
→
a ⊥→
b →
a ·→
b =0 x1x2+y1y2=0
高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
高三数学整个框架知识点

高三数学整个框架知识点数学是一门非常重要的学科,也是高中阶段学习的必修科目之一。
在高三数学学习中,有一些核心的知识点和框架需要掌握。
下面将为大家详细介绍高三数学整个框架的知识点。
一、数列与数列极限1.1 等差数列与等差数列的通项公式1.2 等比数列与等比数列的通项公式1.3 数列的求和与数列极限的概念1.4 数列极限的性质与计算方法二、函数与函数的极限2.1 函数的概念与性质2.2 常见函数的图像与性质2.3 函数的极限与连续性2.4 导数与导数的应用三、三角函数与解三角形3.1 三角函数的定义与性质3.2 三角函数的图像与周期性3.3 三角函数的复合与反函数3.4 解三角形的方法与应用四、平面几何与空间几何4.1 平面几何中的基本图形与性质4.2 平面向量的基本概念与运算4.3 空间几何中的直线与平面方程4.4 空间几何中的位置关系与计算方法五、概率与统计5.1 随机事件与概率的基本概念5.2 概率的计算方法与性质5.3 统计的基本概念与数据处理5.4 概率与统计在生活中的应用六、数学建模与应用题6.1 数学建模的基本步骤与方法6.2 应用题的解题思路与技巧6.3 实际问题的数学模型构建6.4 数学建模与应用题的实际应用以上是高三数学整个框架的知识点。
通过对这些知识点的学习与掌握,能够为高三学生提供全面的数学基础,帮助他们更好地应对考试和解决实际问题。
尽管数学学习可能会遇到一些困难,但只要保持积极的学习态度和良好的学习方法,相信每个高三学生都能够取得优异的成绩。
祝愿大家在高三数学学习中取得好成绩!。
高考数学最全知识点

高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。
祝你成功!。