深圳市七年级下册期末数学试卷及答案

合集下载

深圳市七年级下学期期末数学试题及答案

深圳市七年级下学期期末数学试题及答案

深圳市七年级下学期期末数学试题及答案一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.下列运算结果正确的是( )A .32a a a ÷=B .()225a a =C .236a a a =D .()3326a a = 3.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 94.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .5.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( )A .5036241440x y x y +=⎧⎨+=⎩B .5024361440x y x y +=⎧⎨+=⎩C .144036241440x y x y +=⎧⎨+=⎩D .144024361440x y x y +=⎧⎨+=⎩ 6.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 4 7.计算28+(-2)8所得的结果是( ) A .0B .216C .48D .29 8.下列运算中,正确的是( ) A .a 8÷a 2=a 4B .(﹣m)2•(﹣m 3)=﹣m 5C .x 3+x 3=x 6D .(a 3)3=a 6 9.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .252710.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A .23m ≤B .23m <C .23m ≥D .23m > 二、填空题 11.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________.12.计算:312-⎛⎫ ⎪⎝⎭= . 13.已知2m+5n ﹣3=0,则4m ×32n 的值为____ 14.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 15.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .16.一个n 边形的内角和是它外角和的6倍,则n =_______.17.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.18.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.三、解答题21.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,(1)①用含a ,b ,m 的式子表示GF 的长为 ;②用含a ,b 的式子表示长方形EPHD 的面积为 ;(2)已知直角三角形两直角边的平方和等于斜边的平方,例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=,请用上述知识解决下列问题:①写出a ,b ,m满足的等式 ;②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?22.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.23.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )24.解方程组:41325x y x y +=⎧⎨-=⎩. 25.(类比学习) 小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.26.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .27.已知有理数,x y 满足:1x y -=,且221xy ,求22x xy y ++的值. 28.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:22|2|(1)(1)m m m --+-【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC 边上的高就是过B 作垂线垂直AC 交AC 的延长线于D 点,因此只有C 符合条件, 故选:C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.A解析:A【分析】根据同底数幂的除法、同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【详解】解:32a a a ÷=,A 正确,()224a a =,B 错误, 235a a a =,C 错误,()3328a a =,D 错误,故选:A .【点睛】此题主要考查了同底数幂的除法,同底数幂的乘法,以及幂的乘方与积的乘方的运算方法,熟练掌握运算方法是解题的关键.3.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.4.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x -x >1-3,合并同类项,得x >﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.5.B解析:B【分析】本题有2个相等关系:购进A种商品件数+购进B种商品件数=50,购进A种商品x件的费用+购进B种商品y件的费用=1440元,据此解答即可.【详解】解:设购进A种商品x件、B种商品y件,依题意可列方程组50 24361440 x yx y+=⎧⎨+=⎩.故选:B.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.6.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a•a2=a1+2=a3.故选:C.【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.7.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.8.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A 、a 8÷a 2=a 4不正确;B 、(-m )2·(-m 3)=-m 5 正确;C 、x 3+x 3=x 6合并得2x 3,故本选项错误;D 、(a 3)3=a 9,不正确.故选B .【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的关键.9.D解析:D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).10.A 解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围.【详解】解:202x m x m -<⎧⎨+>⎩①② 解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题11.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=解析:a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,故答案为:a4-4a3b+6a2b2-4ab3+b4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.12.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.13.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n −3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.14.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD∥AB 时,∠BAD=∠D=30°;如图所示,当AB∥CD 时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =60°,∴∠BAD =60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.16.14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.17.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab的值.【详解】解:∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab=7,∴ab=1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.18.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.19.a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a +2(2a +4)>1,解得:a >﹣1.故答案为:a >﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.20.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.三、解答题21.(1)①m a b --;②1a b ab --+;(2)①22220m ma mb ab --+=;②12;③m=1 【分析】(1)①直接根据三角形的周长公式即可;②根据BF 长为a ,BG 长为b ,表示出EP ,PH 的长,根据求长方形EPHD 的面积;(2)①直接根据直角三角形两直角边的平方和等于斜边的平方,表示出a ,b ,m 之间的关系式;②根据线段之间的关系利用勾股定理求出长方形EPHD 的面积的值;③结合①的结论和②的作法即可求解.【详解】(1)①∵BF 长为a ,BG 长为b ,△GBF 的周长为m ,∴GF m a b =--,故答案为:m a b --;②∵正方形ABCD 的边长为1 ,∴AB=BC=1,∵BF 长为a ,BG 长为b ,∴AG=1-b ,FC=1-a ,∴EP=AG=1-b ,PH=FC=1-a ,∴长方形EPHD 的面积为:(1)(1)1a b a b ab --=--+,故答案为:1a b ab --+;(2)①△ABC 中,∠ABC=90°,则222AB BC AC +=,∴在△GBF 中, GF m a b =--,∴()222m a b a b --=+, 化简得,22220m ma mb ab --+=故答案为:22220m ma mb ab --+=;②∵BF=a ,GB=b ,∴FC=1-a ,AG=1-b ,在Rt △GBF 中,22222GF BF BG a b ==+=+,∵Rt △GBF 的周长为1,∴1BF BG GF a b ++=+=即1a b =--,即222212(()b a b a b a +=-+++),整理得12220a b ab --+= ∴12a b ab +-=, ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+11122=-=. ③由①得: 22220m ma mb ab --+=, ∴212ab ma mb m =+-. ∴矩形EPHD 的面积••S PH EP FC AG ==()()11a b =--1a b ab =--+2112ma mb a m b +-=--+ ()()211121m a m m b =--+-+, ∴要使长方形EPHD 的面积是一个常数,只有m=1.【点睛】本题考查了正方形的特殊性质和勾股定理,根据正方形的特殊性质和勾股定理推出22220m ma mb ab --+=是解题的关键.22.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.23.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-;(3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.24.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.25.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----,∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.26.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.27.【分析】利用1x y -=将221x y 整理求出xy 的值,然后将22x xy y ++利用完全平方公式变形,将各自的值代入计算即可求出值. 【详解】∵221x y ,∴化简得:241xy x y , ∵1x y -=,∴241xy x y 可化为:241xy ,即有:5xy =,∴2222313516x xy y x y xy .【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.28.(1)213m -<< (2)m -【分析】(1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m =+⎧⎨=-⎩因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。

广东省深圳市七年级初一第二学期期末数学试卷(有答案详解)

广东省深圳市七年级初一第二学期期末数学试卷(有答案详解)

广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×1083.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a54.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.612.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是次多项式.14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).15.若a+b=3,ab=2,则a2+b2=.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有.(填序号)三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1534亿有12位,所以可以确定n=12﹣1=11.【解答】解:1534亿=1543 0000 0000=1.534×1011,故选:B.3.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除运算法则以及合并同类项法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、a3+a2无法计算,故此选项错误;B、a8÷a4=a4,故此选项错误;C、(a4)2=a8,正确;D、(﹣a)3(﹣a)2=﹣a5,故此选项错误;故选:C.4.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.【考点】整式的除法;零指数幂;负整数指数幂.【分析】分别利用整式的除法运算法则以及零指数幂的性质和负整数指数的幂的性质分别化简求出答案.【解答】解:A、3a3÷2a=a2,故此选项错误;B、﹣0.00010=﹣1,(﹣9999)0=1,故此选项错误;C、3.14×10﹣3=0.00314,故此选项错误;D、(﹣)﹣2=9,正确.故选:D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选B.6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°【考点】平行线的性质.【分析】如图,利用平行线的性质可得到∠2=∠3,再由直角三角形的性质可求得∠1.【解答】解:如图,由题意可知BD∥CE,∴∠3=∠2=45°,∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∴∠1=60°﹣∠3=15°,故选D.7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【考点】作图—基本作图;全等三角形的判定与性质.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故选C.10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m【考点】三角形三边关系.【分析】根据三角形的三边关系定理得到5<AB<25,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,则AB的值在5和25之间.故选B.11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.6【考点】角平分线的性质.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.=AC•DF=×3×2=3,∴S△ACD故选A.12.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高【考点】函数的图象.【分析】根据景点门票价格情况图容易得出选项A、B、D错误,选项C正确;即可得出结论.【解答】解:根据题意得:当旅游人数不超过50人时,则门票价格为80元/人;当旅游人数为50﹣100时,门票价格都是70元/人;若两个班级都是40名学生,则两个班联合起来购票为70元/人,比分别购票要便宜;∵99×70>101×60,∴当人数增多时,虽然门票价格越来越低,但是购票总费用也不会越来越高;∴选项A、B、D错误,选项C正确;故选:C.二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是五次多项式.【考点】单项式乘多项式;多项式.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:5m2n(2n+3m﹣n2)=10m2n2+15m3n﹣5m2n3,则计算结果是五次多项式,故答案为:五14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.15.若a+b=3,ab=2,则a2+b2=5.【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab,代入计算即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有①③④.(填序号)【考点】概率的意义.【分析】正十二面每个面向上的机会相同,因而根据概率公式解答即可.【解答】解:没有6的面,所以①”6”朝上的概率是0,正确;②“5”朝上的概率=概率小,故②错误;③“0”朝上的概率=和“1”朝上的概率=一样大,正确;④“4”朝上的概率是.正确;故答案为:①③④三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.【考点】整式的混合运算—化简求值.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)原式利用单项式乘以多项式,平方差公式计算得到结果,将x与y的值代入计算即可求出值.【解答】解:(1)原式=8x6y3÷6x3y2=x3y;(2)原式=1232﹣×=1232﹣1232+1=1;(3)原式=x2﹣3xy+4x2﹣y2﹣2x2+2xy+xy﹣y2=3x2﹣2y2,当x=﹣2,y=﹣时,原式=12﹣=11.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.【考点】平行线的判定与性质.【分析】求出∠1=∠3,求出∠2=∠3,根据平行线的判定得出AB∥CD,根据平行线的性质得出∠A+∠ADC=180°,∠C+∠ABC=180°,即可得出答案.【解答】证明:∵BE、DF分别平分∠ABC、∠ADC,∴∠1=∠ABC,∠3=∠ADC(角平分线的定义),∵∠ABC=∠ADC,∴∠1=∠3(等量的代换),∵∠1=∠2,∴∠2=∠3(等量代换),∴AB∥DC(内错角相等,两直线平行),∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补)∴∠A=∠C(等量代换).20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?【考点】全等三角形的判定与性质.【分析】先求出AF=CE,再由平行线的性质得出∠A=∠C,由AAS证明△ADF≌△CBE,得出对应边相等即可.【解答】解:AD=BC,理由如下:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AD=BC.21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?【考点】函数关系式;函数值.【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填空即可;(2)x张白纸黏合,需黏合(x﹣1)次,重叠5(x﹣1)cm,所以总长可以表示出来;(3)解当y=2016时得到的方程,若x为自变量取值范围内的值则能,反之不能.【解答】解:(1)75,180;(2)根据题意和所给图形可得出:y=40x﹣5(x﹣1)=35x+5.(3)不能.把y=2016代入y=35x+5,解得,不是整数,所以不能.22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.【考点】配方法的应用.【分析】(1)利用配方法把原式变形,根据非负数的性质解答;(2)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)m2+m+1==,所以m2+m+1的最小值是(2)4﹣x2+2x=﹣x2+2x﹣1+5=﹣(x﹣1)2+5≤5所以4﹣x2+2x的最大值是5.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)由GF垂直平分DC,可得GD=GC,同理可得,GA=GB,又由∠AGD=∠BGC,即可证得△ADG≌△BCG(SAS),继而证得结论;(2)首先延长AD,与CG相交于点O、与BC的延长线相交于点Q,由(1)可证得∠ADG=∠BCG,继而可求得∠Q的度数,【解答】解:(1)AD=BC.理由:∵GF垂直平分DC,∴GD=GC同理,GA=GB,在△ADG和△BCG中,,∴△ADG≌△BCG(SAS),∴AD=BC;(2)AD⊥BC.理由:延长AD,与CG相交于点O、与BC的延长线相交于点Q.∵△ADG≌△BCG,∴∠ADG=∠BCG,则∠GDO=∠QCO,∴∠QDC+∠QCD=∠DQC+∠DCG+∠QCG=∠QDC+∠GDQ+∠DCG=∠CDG+∠DCG,∵DG⊥GC,∴∠QDC+∠QCD=∠CDG+∠DCG=90°,∴∠Q=90°,∴AD⊥BC.第21页(共21页)。

深圳市七年级下册期末数学试卷及答案

深圳市七年级下册期末数学试卷及答案

深圳市七年级下册期末数学试卷一、选择题1.(3分)计算32的结果是()A.6B.9C.8D.52.(3分)下列图形中,是轴对称图形的是()A.B.C.D.3.(3分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米4.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b25.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°6.(3分)以下事件中,必然事件是()A.打开电视机,正在播放体育节目B.三角形内角和为180°C.同位角相等D.掷一次骰子,向上一面是5点7.(3分)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m8.(3分)下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④9.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.10.(3分)如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不是()A.AB=CD B.∠B=∠D C.∠BCA=∠DAC D.AD∥BC 11.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.12.(3分)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1B.2C.3D.4二、填空题(共4小题)13.(3分)n为正整数,若a9÷a n=a5,则n=.14.(3分)已知a2+b2=5,a+b=3,则ab=.15.(3分)若等腰三角形的边长分别为3和6,则它的周长为.16.(3分)如图,D、E分别是等边三角形ABC的边AC、AB上的点,AD=BE,∠BCE=15°,则∠BDC=.三.解答题(共7小题)17.计算:(1)(﹣1)2018+()﹣2﹣(3.14﹣π)0(2)20192﹣2018×202018.先化简,再求值:(x﹣y)2﹣3x(x﹣3y)+2(x+2y)(x﹣2y),其中x=,y=2.19.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是黄色球的概率是.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应)(2)在(1)的结果下,连接BB1,AB1,则△A1BB1面积是;(3)在对称轴上有一点P,当△PBC周长最小时,P点在什么位置,在图中标出P点.21.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.22.如图,完成下列推理过程如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB,求证:AC=AE.证明:∵∠2=∠3(已知),∠AFE=∠DFC(),∴∠E=∠C(),又∵∠1=∠2,∴+∠DAC=+∠DAC(),即∠BAC=∠DAE,在△ABC和△ADE中∠E=∠C(已证)∵AB=AD(已知)∠BAE=∠DAE(已证)∴△ABC≌△ADE()∴AC=AE()23.四边形ABCD是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A点重合,角的两边分别交BC于E,交CD的延长线于F,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE=15,DF=2,试求线段EF的长.深圳市七年级下册期末数学试卷答案一、选择题1.(3分)计算32的结果是()A.6B.9C.8D.5【分析】根据有理数的乘方意义计算即可得出正确选项.【解答】解:32=3×3=9.故选:B.【点评】本题主要考查了有理数的乘方,a n表示有n个a相乘.2.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、C、D中的图形都不是轴对称图形,B中图形是轴对称图形,故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000043=4.3×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b2【分析】利用两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.5.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°【分析】先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.【解答】解:∵∠CDE=140°,∴∠ADC=180°﹣140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)以下事件中,必然事件是()A.打开电视机,正在播放体育节目B.三角形内角和为180°C.同位角相等D.掷一次骰子,向上一面是5点【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视机,正在播放体育节目是随机事件;B、三角形内角和为180°是必然事件;C、同位角相等是随机事件;D、掷一次骰子,向上一面是5点是随机事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m【分析】根据三角形的三边关系定理得到8<AB<48,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:28﹣20<AB<28+20,即:8<AB<48,则AB的值在8和48之间.故选:B.【点评】此题主要考查了三角形的三边关系定理,能正确运用三角形的三边关系定理是解此题的关键.8.(3分)下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④【分析】根据角平分线的定义和性质判断①;根据三角形面积公式即可判断②:根据等腰三角形的性质判断③:根据线段垂直平分线的性质判断④.【解答】解:①角平分线上任意一点到角两边的距离相等是正确的.②根据三角形面积公式即可得到等腰三角形两腰上的高相等,说法是正确;③等腰三角形的中线不一定是它的高,说法是错误;④线段垂直平分线上的点到这条线段两个端点的距离相等,说法正确.故选:C.【点评】本题考查了角平分线、线段垂直平分线的性质,等腰三角形的性质,是基础知识,需熟练掌握.9.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.【分析】由随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,共有6种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:在序号①②③④⑤中的一个小正方形涂黑,有6种等可能结果,其中与图中的阴影部分构成轴对称图形的有②③④这3种结果,所以与图中的阴影部分构成轴对称图形的概率为=,故选:A.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.10.(3分)如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不是()A.AB=CD B.∠B=∠D C.∠BCA=∠DAC D.AD∥BC【分析】根据需要满足的判定定理来添加条件即可.【解答】解:在△ABC与△CDA中,AD=CB,AC=CA,A、添加AB=CD,由全等三角形的判定定理SSS可以使△ABC≌△CDA,故本选项不符合题意.B、添加∠B=∠D,由全等三角形的判定定理SSA不可以使△ABC≌△CDA,故本选项符合题意.C、添加∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.D、添加AD∥BC,则∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.【分析】根据题意可以写出火车行驶的各个阶段中y与x的函数关系,从而可以解答本题.【解答】解:由题意可得,火车头刚进入隧道到火车尾刚进入隧道的这一过程中,y随x的增大而增大,火车尾刚进入隧道到火车头刚要驶离隧道的这一过车中,y随x的增加不发生变化,火车头刚出隧道到火车尾刚驶离隧道这一过程中,y随x的增大而减小,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,写出各段过程中与x的函数关系.12.(3分)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1B.2C.3D.4【分析】由等边三角形的性质得出AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB =∠EAC=60°,则∠DAC=∠BAE,由SAS证得△DAC≌△BAE得出BE=DC,∠ADC =∠ABE,则∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=60°,即①正确;②正确;∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,则∠BDO=∠CEO错误,即③错误;由平行线的性质得出∠DAB=∠ABC=60°,推出∠ACB=30°,则BC⊥CE,④正确.【解答】解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴∠BDO=∠CEO错误,∴③错误;∵DA∥BC,∴∠DAB=∠ABC=60°,∵∠BAC=90°,∴∠ACB=30°,∵∠ACE=60°,∴∠ECB=90°,∴BC⊥CE,④正确,综上所述,①②④正确,故选:C.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质、直角三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.二、填空题(共4小题)13.(3分)n为正整数,若a9÷a n=a5,则n=4.【分析】根据同底数幂的除法法则:底数不变,指数相减,可得9﹣n=5,解方程即可得到答案.【解答】解:∵a9÷a n=a5,∴9﹣n=5,n=4.故答案为:4.【点评】此题主要考查了同底数幂的除法,关键是把握同底数幂的除法法则.14.(3分)已知a2+b2=5,a+b=3,则ab=2.【分析】把a+b=3两边平方,再与a2+b2=5相减即可.【解答】解:∵a+b=3,∴(a+b)2=a2+2ab+b2=9,∵a2+b2=5,∴5+2ab=9,解得ab=2.【点评】本题是对完全平方公式的考查,学生经常漏掉乘积二倍项而导致出错.15.(3分)若等腰三角形的边长分别为3和6,则它的周长为15.【分析】因为3和6不知道那个是底那个是腰,所以要分不同的情况讨论,当3是腰时,当6是腰时等.【解答】解:当3是腰时,边长为3,3,6,但3+3=6,故不能构成三角形,这种情况不可以.当6是腰时,边长为6,6,3,且3+6>6,能构成三角形故周长为6+6+3=15.故答案为:15.【点评】本题考查等腰三角形的性质,等腰三角形的两边相等,以及三角形的三边关系,两个小边的和必须大于大边才能组成三角形.16.(3分)如图,D、E分别是等边三角形ABC的边AC、AB上的点,AD=BE,∠BCE=15°,则∠BDC=75°.【分析】由等边三角形的性质得出∠A=∠EBC=60°,AB=BC,由SAS证得△ABD≌△BCE得出∠BCE=∠ABD=15°,则∠BDC=∠A+∠ABD=75°.【解答】解:∵△ABC是等边三角形,∴∠A=∠EBC=60°,AB=BC,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BCE=∠ABD=15°,∴∠BDC=∠A+∠ABD=60°+15°=75°,故答案为:75°.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.三.解答题(共7小题)17.计算:(1)(﹣1)2018+()﹣2﹣(3.14﹣π)0(2)20192﹣2018×2020【分析】(1)根据乘方的运算法则,零指数幂的意义以及负整数指数幂的意义即可求出答案.(2)根据平方差公式即可求出答案.【解答】解:(1)原式=1+4﹣1=4;(2)原式=20192﹣(2019﹣1)(2019+1)=20192﹣(20192﹣1)=1.【点评】本题考查学生的运算能力,解题额关键是熟练运用运算法则,本题属于基础题型.18.先化简,再求值:(x﹣y)2﹣3x(x﹣3y)+2(x+2y)(x﹣2y),其中x=,y=2.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣2xy+y2﹣3x2+9xy+2x2﹣8y2=7xy﹣7y2,当x=﹣,y=2时,原式=﹣2﹣28=﹣30.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是黄色球的概率是.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.【分析】(1)设口袋里有x个黄球,根据概率公式列出算式,再进行求解即可;(2)用红球的个数除以总球的个数,即可得出摸出一个球是红色的概率.【解答】解:(1)设口袋里有x个黄球,根据题意得:=,解得:x=3,经检验,x=3是分式方程的解;答:口袋里黄球的个数有3个;(2))∵红球有4个,一共有4+5+3=12个,∴P(红球)==.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应)(2)在(1)的结果下,连接BB1,AB1,则△A1BB1面积是4;(3)在对称轴上有一点P,当△PBC周长最小时,P点在什么位置,在图中标出P点.【分析】(1)依据轴对称的性质,即可得到△ABC关于直线l对称的△A1B1C1;(2)依据三角形面积公式即可得出结论;(3)连接B1C,与l的交点即为所求的点P.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图,△A1BB1面积是×2×4=4,故答案为:4;(3)如图所示,点P即为所求.【点评】此题主要考查了利用轴对称求短路线以及轴对称变换,正确得出对应点位置是解题关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为18千米/小时;汽车的速度为45千米/小时;(2)汽车比摩托车早1小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.【分析】(1)根据题意和函数图象中的数据可以解答本题;(2)根据函数图象中的数据可以求得汽车比摩托车早多长时间到达B地;(3)根据题意和(1)中的答案可以解答本题.【解答】解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.如图,完成下列推理过程如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB,求证:AC=AE.证明:∵∠2=∠3(已知),∠AFE=∠DFC(对顶角相等),∴∠E=∠C(三角形内角和定理),又∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC(等量代换),即∠BAC=∠DAE,在△ABC和△ADE中∠E=∠C(已证)∵AB=AD(已知)∠BAE=∠DAE(已证)∴△ABC≌△ADE(AAS)∴AC=AE(全等三角形对应边相等)【分析】由内错角相等得出∠AFE=∠DFC,由三角形内角和定理得出∠E=∠C,由等量代换得出∠1+∠DAC=∠2+∠DAC,由AAS证得△ABC≌△ADE,由全等三角形对应边相等得出AC=AE.【解答】证明:∵∠2=∠3(已知),∠AFE=∠DFC(对顶角相等),∴∠E=∠C(三角形内角和定理),又∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC(等量代换),即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS)∴AC=AE(全等三角形对应边相等)故答案为:对顶角相等,三角形内角和定理,∠1,∠2,等量代换,AAS,全等三角形对应边相等.【点评】本题考查了全等三角形的判定与性质、三角形内角和定理、等量代换等知识,熟练掌握全等三角形的判定是解题的关键.23.四边形ABCD是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A点重合,角的两边分别交BC于E,交CD的延长线于F,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE=15,DF=2,试求线段EF的长.【分析】(1)根据题中所给条件证明△ABE≌△ADF即可.(2)如图2,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合,证明△EAF≌△E'AF(SAS),得EF=E'F,可得结论;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,通过角的计算可得出∠EAF′=∠EAF,结合AF=AF′、AE=AE即可证出△EAF≌△EAF′(SAS),进而得出EF=EF′,即可得出结论.【解答】证明:(1)∵正方形ABCD是正方形,∴AD=AB,∠BAD=∠B=∠ADC=90°,∵∠EAF=90°,∴∠BAE+∠EAD=∠EAD+∠DAF=90°,∴∠BAE=∠DAF,在△BAE和△DAF中,∵,∴△ABE≌△ADF(ASA),∴BE=DF;(2)如图2,∵AD=AB,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合.由旋转可得∠BAE =∠DAE',BE=DE',∠B=∠ADE'=90°.∴∠ADF+∠ADE'=90°+90°=180°,∴点F、D、E'在同一条直线上,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠DAE'=45°=∠EAF,在△EAF和△E'AF中,∵,∴△EAF≌△E'AF(SAS),∴EF=E'F,∵E'F=DF+DE'=DF+BE,∴EF=BE+DF;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,如图3所示,由四边形ABCD为正方形可知点B、C、F′在一条直线上,∵∠BAF′=∠DAF,∠EAF=∠EAD+∠DAF=45°,∴∠EAF′+∠EAD+∠DAF=90°,∴∠EAF′=∠EAF=45°.在△EAF和△EAF′中,,∴△EAF≌△EAF′(SAS),∴EF=EF′,∴EF=EF'=BE﹣BF'=BE﹣DF=15﹣2=13.【点评】本题是四边形的综合题,考查了全等三角形的判定与性质以及正方形的性质,熟练掌握全等三角形的判定与性质是解题的关键,在正方形中可利用旋转作辅助线构建三角形全等.。

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷及答案解析

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷及答案解析

2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列四个实数中,是无理数的为()A.0B.C.﹣D.﹣22.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.3.(3分)一粒米的质量约0.000022千克,数据0.000022用科学记数法表示为()A.0.22×10﹣4B.2.2×10﹣5C.22×10﹣4D.2.2×10﹣44.(3分)下列说法正确的是()A.的平方根是B.﹣25的算术平方根是5C.(﹣5)2的平方根是﹣5D.0的平方根和算术平方根都是05.(3分)△ABC中,∠A、∠B、∠C的对边分别记为a、b、c,由下列条件不能判定△ABC为直角三角形的是()A.∠A﹣∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a2:b2:c2=3:4:56.(3分)如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD7.(3分)已知长方形的周长为16cm,其中一边长为x cm,面积为y cm2,则这个长方形的面积y与边长x之间的关系可表示为()A.y=x2B.y=(8﹣x)2C.y=x(8﹣x)D.y=2(8﹣x)8.(3分)如图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为()A.20°B.25°C.22.5°D.30°9.(3分)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A.B.C.D.10.(3分)如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°二、填空题(本题共5小题,每小题3分,共15分)11.(3分).(填“>”、“<”或“=”)12.(3分)若a+b=3,ab=1,则a2+b2=.13.(3分)一个等腰三角形的两边长分别是3cm和7cm,则它的周长是cm.14.(3分)如图,∠ABC=∠CAD=90°,AC=AD,若AB=2,则△BAD的面积为.15.(3分)如图,一个三棱柱盒子底面三边长分别为3cm,4cm,5cm,盒子高为9cm,一只蚂蚁想从盒底的点A沿盒子的表面爬行一周到盒顶的点B,蚂蚁要爬行的最短路程是cm.三、解答题(本大题共7小题,共55分)16.(8分)计算:(1)x3•x5﹣(2x4)2+x10÷x2;(2).17.(6分)先化简,再求值:(a﹣b)(a+b)﹣b(2a﹣b),其中a=2,b=3.18.(6分)如图,在方格纸中,△PQR的三个顶点及A、B、C、D、E五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等19.(7分)如图,现有一个可以自由转动的转盘(转盘被等分成8个扇形),每个扇形区域内分别标有1,2,3,4,5,6,7,8这八个数字,转动转盘,停止转动后,指针指向的数字即为转出的数字,请回答下列问题:(1)转出的数字是1是,转出的数字是9是;(从“随机事件”,“必然事件”,“不可能事件”中选一个填空)(2)转动转盘,转出的数字是奇数的概率是.(3)现有两张分别写有2和5的卡片,随机转动转盘,转盘停止转动后,记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.这三条线段能构成三角形的概率是.20.(8分)图中所示的是空军某部一架空中加油机给另一架正在飞行的战斗机进行空中加油的场景(加油机飞行不会消耗自身加油箱内的油),在加油过程中,设战斗机的油箱中的油量为Q1吨,加油机的加油箱中的油量为Q2吨,加油时间为t(分),Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油之前,加油机的加油油箱中装载了吨油;这些油全部加给战斗机需分钟;(2)战斗机每分钟的飞行油耗是多少?(3)战斗机加完油后,加速飞行,加速后每分钟油耗为加油时的三倍,请问战斗机最多还能飞行多少分钟?21.(10分)如图,在△ABC中,点D是边AB上一点,点E是边AC的中点,作CF∥AB交DE延长线于点F.(1)证明:△ADE≌△CFE;(2)若∠ABC=∠ACB,CE=3,CF=4,求DB的长.22.(10分)在四边形ABDE中,点C是BD边的中点,AB=2,ED=5,BD=6,AC平分∠BAE,EC平分∠AED.(1)如图1,若∠ACE=90°,则线段AE的长度为;(2)如图2,若∠ACE=120°,则线段AE的长度是多少?写出结论并证明;(3)若∠ACE=135°,其他条件不变,则线段AE的长度为.2023-2024学年广东省深圳中学初中部七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A.0是整数,属于有理数,故本选项不符合题意;B.是分数,属于有理数,故本选项不符合题意;C.﹣是分数,属于有理数,故本选项不合题意;D.﹣2是无理数,故本选项符合题意.故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项A、B、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.选项C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据科学记数法的方法进行解题即可.【解答】解:0.000022=2.2×10﹣5.故选:B.【点评】本题主要考查了科学记数法,科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数.4.【分析】根据平方根的定义对A选项和C选项进行判断;根据算术平方根的定义对B选项进行判断;根据0的平方根为0和算术平方根为0对D选项进行判断.【解答】解:A.的平方根为±,所以A选项不符合题意;B.﹣25没有算术平方根,所以B选项不符合题意;C.(﹣5)2=25,25的平方根为±5,所以C选项不符合题意;D.0的平方根为0,0的算术平方根为0,所以D选项符合题意.故选:D.【点评】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根.也考查了平方根.5.【分析】根据勾股定理的逆定理和三角形的内角和定理逐个判断即可.【解答】解:A、∠A﹣∠B=∠C,∠A=90°,是直角三角形,不符合题意;B、∵∠A:∠B:∠C=1:2:3,∴∠C=90°,是直角三角形,不符合题意;C、a2=c2﹣b2,a2+b2=c2,是直角三角形,不符合题意;D、∵设a2=3x,b2=4x,c2=5x,3x+4x≠5x,∴a2+b2≠c2,不是直角三角形,符合题意;故选:D.【点评】本题考查了勾股定理的逆定理和三角形的内角和定理,注意:①如果一个三角形的两边a、b 的平方和等于第三边c的平方,那么这个三角形是直角三角形,②三角形的内角和等于180°.6.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选:D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.【分析】直接利用长方形面积求法得出答案.【解答】解:∵长方形的周长为16cm,其中一边长为x cm,∴另一边长为:(8﹣x)cm,故y=(8﹣x)x.故选:C.【点评】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.8.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=DB,再根据等边对等角可得∠A=∠DBA,然后在Rt△ABC中,根据三角形的内角和列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故选:C.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,以及直角三角形两锐角互余的性质,熟记性质并列出方程是解题的关键.9.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,每一段h随t的增大而增大,增大的速度是先快后慢.故选:C.【点评】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10.【分析】作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',推出四边形DEMN的周长最小时,点M与M'重合,点N与点N'重合,再求出∠DN'M+∠EM'N即可解决问题.【解答】解:作点D关于BC的对称点D',作点E关于AC的对称点E',连接D'E'分别交AC,BC于点M',N',连接ME',ND',EM',DN',则ME=ME',ND=ND',∴四边形DEMN的周长=DE+ME+MN+ND=DE+ME'+MN+ND'≥DE+D'E',∵DE长固定,∴点M与M'重合,点N与点N'重合时,四边形DEMN的周长最小,此时∠DNM+∠EMN=∠DN'M+∠EM'N,由对称性和三角形外角性质可知:∠DN'M=∠N'DD'+∠N'D'D=2∠N'D'D,∠EM'N=∠M'EE'+∠M'E'E =2∠M'E'E,∴∠DN'M+∠EM'N=2∠N'D'D+2∠M'E'E=2(180°﹣∠D'DE'),设DD'与BC交于点H,∵AB=AC,∠A=90°,∴∠BDH=45°,∴∠D'DE'=180°﹣45°=135°,∴∠DN'M+∠EM'N=2(180°﹣135°)=90°,即当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是90°,故选:B.【点评】本题考查轴对称﹣最短路线问题,解答中涉及两点之间线段最短,三角形内角和定理,三角形外角性质,等腰三角形的性质,能用一条线段表示出三条线段的和的最小值,并确定最小时M,N的位置是解题的关键.二、填空题(本题共5小题,每小题3分,共15分)11.【分析】求出>2,不等式的两边都减1得出﹣1>1,不等式的两边都除以2即可得出答案.【解答】解:∵>2,∴﹣1>2﹣1,∴﹣1>1∴>.故答案为:>.【点评】本题考查了不等式的性质和实数的大小比较的应用,解此题的关键是求出的范围,题目比较好,难度不大.12.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=9﹣2=7.故答案为:7.【点评】本题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.13.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.【分析】过点D作DE⊥BA交BA的延长线于E,证△ABC和△DEA全等得AB=DE=2,再根据三角形的面积公式即可求出△BAD的面积.【解答】解:过点D作DE⊥BA交BA的延长线于E,如图所示:∵∠ABC=∠CAD=90°,∴∠ABC=∠DEA=90°,∠1+∠2=90°,∠C+∠2=90°,∴∠C=∠1,在△ABC和△DEA中,,∴△ABC≌△DEA(AAS),∴AB=DE=2,=AB•DE=×2×2=2.∴S△BAD故答案为:2.【点评】此题主要考查了全等三角形的判定和性质,三角形的面积,熟练掌握全等三角形的判定和性质是解决问题的关键,正确地作出辅助线构造全等三角形是解决问题的难点.15.【分析】将三棱柱侧面展开得出矩形,求出矩形对角线的长度即可.【解答】解:如图,右侧为三棱柱的侧面展开图,AA′=3+4+5=12cm,A′B=9cm,∠AA′B=90°,∴AB===15cm,故答案为:15.【点评】本题考查了三棱柱的侧面展开图,两点之间线段最短,勾股定理,画出三棱柱的侧面展开图,运用勾股定理是解题关键.三、解答题(本大题共7小题,共55分)16.【分析】(1)利用同底数幂乘法及除法法则,幂的乘方与积的乘方法则计算即可;(2)利用零指数幂及二次根式的运算法则计算即可.【解答】解:(1)原式=x8﹣4x8+x8=﹣2x8;(2)原式=2﹣+1=+1.【点评】本题考查实数的运算及整式的混合运算,熟练掌握相关运算法则是解题的关键.17.【分析】利用整式的相应的法则对式子进行化简,再代入相应的值运算即可.【解答】解:(a+b)(a﹣b)﹣b(2a﹣b)=a2﹣b2﹣2ab+b2=a2﹣2ab,当a=2,b=3时,原式=22﹣2×2×3=4﹣12=﹣8.【点评】本题主要考查整式的混合运算—化简求值,解答的关键是对相应的运算法则的掌握.18.【分析】(1)过A作AE∥PQ,过E作EB∥PR,再顺次连接A、E、B,此题答案不唯一,符合要求即可;(2)△PQR面积是:×QR×PQ=6,连接BA,BA长为3,再连接AD、BD,三角形的面积也是6,但是两个三角形不全等.【解答】解:(1)如图所示:;(2)如图所示:【点评】此题主要考查了作图,关键是掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;三角形面积的计算公式:S=×底×高.19.【分析】(1)根据确定性事件和不确定性事件的概念判断可得;(2)转盘共有8种可能结果,奇数的结果有4种,由概率公式解答即可;(3)先求出第三条线段取值范围,再判断即可.【解答】解:(1)转出的数字是1是随机事件,转出的数字是9是不可能事件;故答案为:随机事件;不可能事件;(2)∵转盘转到每个数字的可能性相等,共有8种可能结果,奇数的结果有4种,∴转出的数字是奇数的概率是=,故答案为:;(3)①5﹣2=3,5+2=7,∴第三条线段可以是4,5,6,转动转盘停止后,指针指向的数字有8种情况,其中能构成三角形的有3种,所以这三条线段能构成三角形的概率是,故答案为:.【点评】本题主要考查了概率公式,随机事件,解题的关键是熟练掌握概率公式,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A 发生的概率为P(A)=且0≤P(A)≤1.20.【分析】(1)根据自变量的值求函数值,根据函数值求自变量值;(2)根据“耗油量÷时间=单位时间耗油量”计算;(3)根据“时间=油量÷单位时间耗油量”求解.【解答】解:(1)当t=0时,Q2=50,Q2=0时,t=20,故答案为:50,20;(2)∵战斗机在20分钟时间内,加油69﹣20=49吨,但加油飞机消耗了50吨,所以说20分钟内战斗机耗油量为1吨,∴战斗机每分钟耗油量为1÷20=0.05吨;(3)由(2)知战斗机每小时耗油量为0.05×3=0.15吨,∴69÷0.15=460(分钟),答:战斗机最多还能飞行460分钟.【点评】本题考查了一次函数的应用,理解数形结合思想是解题的关键.21.【分析】(1)根据AAS或ASA证明△ADE≌△CFE即可;(2)利用全等三角形的性质求出AD,AB即可解决问题;【解答】(1)证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵△ADE≌△CFE,CF=4,∴CF=AD=4,又∵∠B=∠ACB,∴AB=AC,∵E是边AC的中点,CE=3,∴AC=2CE=6.∴AB=6,∴DB=AB﹣AD=6﹣4=2.【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)在AE上取一点F,使AF=AB,连接CF,即可以得出△ACB≌△ACF,就可以得出BC =FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF =CG,△CFG是等边三角形,就有FG=CF=3,进而得出结论;(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF =CG,△CFG是等腰直角三角形,就有FG=CG=,进而得出结论.【解答】解:(1)如图1,在AE上取一点F,使AF=AB=2,连接CF,∵AC平分∠BAE,∴∠BAC=∠FAC,在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF,∵C是BD边的中点,∴BC=CD,∴CF=CD,∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°,∴∠ECF=∠ECD,在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED=5,∵AE=AF+EF,∴AE=2+5=7,故答案为:7;(2)AE=11,理由如下:如图2,在AE上取点F,点G,使AF=AB=2,EG=DE=5,连接CF,CG,同理得:△ACB≌△ACF(SAS),△DCE≌△GCE(SAS),∴BC=FC=3=DC=CG,∠ACB=∠ACF,∠DCE=∠GCE,∵∠ACE=120°,∴∠ACB+∠DCE=180°﹣120°=60°,∴∠ACF+∠ECG=60°,∴∠FCG=60°,∴△CFG是等边三角形,∴FG=CF=3,∴AE=2+3+5=10;(3)如图3,在AE上取点F,点G,使AF=AB=2,EG=DE=5,连接CF,CG,同理得:△ACB≌△ACF(SAS),△DCE≌△GCE(SAS),∴BC=FC=3=DC=CG,∠ACB=∠ACF,∠DCE=∠GCE,∵∠ACE=135°,∴∠ACB+∠DCE=180°﹣135°=45°,∴∠ACF+∠ECG=45°,∴∠FCG=90°,∴△CFG是等腰直角三角形,∴FG=CG=,∴AE=2++5=7+3.故答案为:7+3.【点评】本题考查了角平分线的定义的运用,全等三角形的判定及性质的运用,等边三角形的判定与性质的运用和等腰直角三角形的判定与性质的运用,解答时证明三角形全等是关键。

广东省深圳市2022-2023学年七年级下学期期末数学试题(A卷)(含答案)

广东省深圳市2022-2023学年七年级下学期期末数学试题(A卷)(含答案)

2022—2023学年第二学期七年级学科素养测试数学(A 卷)说明:1.答卷前,请将学校、班级、姓名填写在答题卡指定位置上;请将试卷类型填涂在答题卡指定位置上;并核对条形码上自己的学校、姓名和考号,核对无误后,将条形码正向、准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损。

2.全卷共8页,共24题。

考试时间100分钟,满分120分。

素养题选做,分值12分。

3.作答选择题时,选出每题答案后,用2B 铅笔把答案涂在答题卡上对应题目选项的相应的位置,务必涂黑,涂满格。

如有改动,请用橡皮擦干净后,再选涂其他答案;作答非选择题时,用黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。

所有题目写在本试卷或者是草稿纸上,其答案一律无效。

4.考试结束后,请将答题卡交回。

一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式中,计算结果为32的是( )A .B .C .D .2.在科幻小说《三体》中,制造太空电梯的材料是由科学家汪淼发明的一种超高强度纳米丝——“飞刃”,已知“飞刃”的直径为,用科学记数法表示为( )A .B .C .D .3.树的高度随时间的变化而变化,下列说法正确的是( )A .,都是常量B .是自变量,是因变量C .,都是自变量D .是自变量,是因变量4.如图,当光线从空气射入水中时,光线的传播方向发生了改变,这就是折射现象.那么,图中的对顶角是()A .B .C .D .都不是5.如图,,,则()4(2)-5(2)-42520.0009dm 3910dm -⨯4910dm -⨯5910dm -⨯6910dm-⨯h t h t t h h t h t 1∠AOB ∠BOC ∠AOC ∠//AB DE 76E ∠=︒B C ∠+∠=A .B .C .D .6.如图所示,将长为8的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等.若要将其围成如图2所示的三棱柱形物体.则图中的值可以是()图1图2A .1B .2C .3D .47.下列计算正确的是()A .B .C .D .8.如图,为了测量学校的教学楼AB 的高度,在旗杆CD 与楼之间选定一点.测得视线PC 与地面夹角,测得视线PA 与地面夹角,量得米,米,则AB 的高度为()米.A .36B .46C .56D .109.图1是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图象.那么水的高度是如何随时间变化的,请选择分别与①、②、③、④匹配的图象()图1图2A .(3)(2)(4)(1)B .(2)(3)(1)(4)C .(2)(3)(4)(1)D .(3)(2)(1)(4)10.已知,点是的重心,过顶点作一条直线平行于BC ,连接CD 并延长,交AB 于点,交直线于点,连接BD 并延长交AC 于点,则的面积与四边形AGDE 的面积之比为()114︒44︒38︒76︒a 2(32)32x x x +=+()23(2)12x y x x y ++=+5232824x y x y x y -÷=-()32226332x y x yxy x y xy-÷=-P 42DPC ∠=︒48APB ∠=︒10PB CD ==46DB =D ABC △A l E l F G AEF △A .B .C .D .二、填空题(本大题共5小题,每小题3分,共15分)11.已知,则的余角的度数为_______°.12.已知变量x ,y 满足下面的关系x …012…y…36…则x 、y 之间用关系式表示为________.13.若,,则________.14.如图,在中,和的角平分线交于点,延长BO 与的外角平分线交于点,若,则________.15.如图,中,,,以点为圆心,BC 长为半径作弧;以点为圆心,AC 长为半径作弧,两弧相交于点,则的度数为_______.三、解答题(一)(共3小题,每题8分,共24分)16.计算:(1);(2).17.先化简,再求值:,其中,.18.如图,已知,,.求证:.证明:∵,(已知),又∵______(______),∴______(______).∴______(______).∴(______).1:23:22:14:345A ∠=︒A ∠2-1-6-3-y =5m a =2n a =2m n a -=ABC △ABC ∠ACB ∠O ACB ∠D BOC x ∠=D ∠=ABC △23A ∠=︒57B ∠=︒A B D DBC ∠223(2023)1π-+--()324282a a a a a ⋅+-÷2()()()42x y y x x y y y ⎡⎤+-++-÷⎣⎦1x =-2y =12∠=∠34∠=∠B D ∠=∠//AD BC 12∠=∠34∠=∠2∠=1∠=//AB B DCG ∠=∠∵,(已知)∴.∴(______).四、解答题(二)(共3小题,每题9分,共27分)19.小明坐车到地游玩,他从家出发0.8小时后到达地,逗留一段时间后继续坐车到B 地.小明离家一段时间后,爸爸驾车沿相同的路线前往B 地.如图是他们离家路程与小明离家时间的关系图,请根据图象回答下列问题:(1)图中自变量是_______,因变量是_______;(2)小明出发_______小时后爸爸驾车出发;(3)小明从家到地的平均速度为_______,小明爸爸驾车的平均速度为_______;(4)小明爸爸出发多久后追上了小明?20.(1)若,,求的值.根据上面的解题思路与方法解决下列问题:(2)已知中,,分别以AC 、BC 边向外侧作正方形.如图所示,设,两正方形的面积和为20,求的面积.(3)若,求的值.21.如图,在中,是CA 延长线上的一点,点是AB 的中点.(1)利用尺规作图,在的内部作,使得,并在AM 上取一点,使B D ∠=∠DCG D ∠=∠//AD BC B A (km)s (h)t A km /h km /h 2a b -=1ab =22a b +ABC △90C ∠=︒6AD =ABC △(6)(2)1x x -+=22(6)(2)x x -++ABC △D E BAD ∠BAM ∠BAM B ∠=∠F,分别连接CE 、EF .(要求:在图中标明相应字母,保留作图痕迹,不写作法,写出作图小结)【温聚提醒:请考生在答题卡上作图后,用黑色水笔将作图痕迹描黑.】(2)求证:点C 、E 、F 三点在同一直线上.五、解答题(三)(共2小题,每题12分,共24分)22.已知关于的三次三项式及关于的二次三项式(,均为非零常数).(1)当为关于的三次三项式时,_______.(2)当多项式与的乘积中不含项时,________.(3)若写成(其中a ,b ,c ,d 均为常数),求的值.(4)若能被整除,求的值.23.【数学概念】平移,翻折,旋转是初中数学几何的三大全等变换,无论哪种变换都不会改变图形的形状和大小.【概念探索】在生活中,我们常用实物体验图形变换的过程.小明同学利用一块四边形纸片完成了如下的操作:如图1,已知四边形,,.图1图2图3(1)操作一:沿AC 所在的直线对折.(如图2)你认为左右两侧对折后能完全重合吗?如果能,请证明.如果不能,请说明理由.(2)操作二:对折后,将纸片撕成两个三角形(和),先固定,再将绕点顺时针旋转一定的角度(如图3所示)得到,连接、.求证:.【应用拓展】(3)如图4,在中,,,点在边BC 上,,点E ,F 在线段AD 上,,,若的面积为,求与的面积之和.图4AF BC =x 3221A x x =-+x 2B x mx n =++m n A B +x n =A B 4x m =3221A x x =-+32(1)(1)(1)A a x b x c x d =-+-+-+a b c ++B 1x -m n +ABCD AB AD =BC CD =ACB △ACD △ACB △ACD △A 'AC D △CD 'C B 'CD C B =ABC △AB AC =AB BC >D BD mCD =130AEB AFC ∠=∠=︒50BAC ∠=︒ABC △n ABE △CDF △六、素养题(选做题,共12分)假如你有12根手指在小时候,我们做加法运算会用手指一个一个掰着算.但是计算“”会发现手指不够用了,于是畅想自己如果有12根手指就好了.在中国文化中,“12”有广泛的应用.古代设有12地支,与一天的12个时辰对应.一个地支还对应两个节气,从而表示一年的二十四节气.同时,将地支与12种动物对应,成为十二生肖,来表示12年为周期的循环.我们发现,将各国的数字构造进行比较,与12也有一定关系.比如英文中,一到十二,这十二个数字是独立的,十三以后又有一个构成法,但与二十以后的数又不同.而法文与英文的构成法略有不同.数字123456789101112中文一二三四五六七八九十十一十二英文one two three four five six seven eight nine ten eleven twelve 法文un deux trois quatre cinqsixsepthuitneuf dix onzedouze数字131415161718192021中文十三十四十五十六十七十八十九二十二十一英文thirteen fourteenfifteen sixteenseventeen eighteen nineteen twenty Twenty-one 法文treizequatorze quinzeseizedix-septdix-huitdix-neufvingtvingt-un(1)(3分)请你观察表格的规律,并用三种语言表示数字28.中文英文法文28(2)(6分)英国人计数经常使用十二进制.十二进制数通常使用数字0—9以及字母t,e表示,其中即数字10,e 即数字11.我们熟知“九九乘法表”,现在我们帮助英国人设计一个与十二进制有关的“依依乘法表”(如下图表示部分)请试着填一填:=_______,=_______,=_______.123456789t e 1123456789t e 22468101214181t 33691013161920232629448101418202428303438551318212634394247…(3)(3分)爱尔兰小说《格列佛游记》里,有格列佛在小人国一顿吃了1728份小人饭的叙述,作者为什么要使用这么复杂的数字呢?许多研究者认为这与十二进制有关.对于右面的程序框图,若输入,,则输出的结果为________.57+t 1728a =12k =2022—2023学年第二学期七年级学科素养测试数学答案一、选择题(共10题,每题3分,共计30分)题号1题2题3题4题5题6题7题8题9题10题答案DBBADCCAAB二、填空题(共5题,每题3分,共计15分)11. 12. 13. 14. 15.或(答错或未答完整均不得分)三、解答题(一)(共3小题,每题8分,共24分)16.计算:(1)解:原式 3分 4分(2)解:原式3分4分17.化简求值解:原式3分4分6分当,时 7分原式 8分18.(每空1分)如图,已知,,.求证:.45︒3x 252-90x -︒34︒80︒1119=+-19=666a a a =+-6a =()2222242y x x xy y y y =-+++-÷()22242xy y y y =+-÷2x y =+-1x =-2y =1=-12∠=∠34∠=∠B D ∠=∠//AD BC证明:∵,(已知),又∵(对顶角相等),∴(等量代换).∴(内错角相等,两直线平行).∴(两直线平行,同位角相等).∵,(已知)∴.∴(内错角相等,两直线平行).19.(1)自变量是小明离家的时间t1分因变量是离家的路程s 2分(2)2.53分(3) 7分(4)9分答:小明爸爸出发后追上了小明.20.(1)∵,,∴1分∴ 2分∴3分(2)设正方形ACGF 与正方形BCDE 的边长分别为,.由题意可得,4分∴ 6分(3)令,由题可知,7分12∠=∠34∠=∠24∠=∠13∠=∠//()AB CD CF 或B DCG ∠=∠B D ∠=∠DCG D ∠=∠//AD BC 15km /h 30km /h (3012) 1.512-÷=122h 30123=-2h 32a b -=1ab =2()4a b -=22ab =2224a b ab +-=226a b +=x y 6x y AD +==2220x y +=()222111()4222ABC S xy x y x y ⎡⎤==⨯+-+=⎣⎦△6x a -=2x b+=1ab =8a b +=,8分∴ 9分21.(1)如图所示3分如图所示即为所求 4分(2)证明:∵点是AB 的中点,∴, 5分∴在和中∴(SAS ) 7分∴,∵∴,∴点C 、E 、F 三点在同一直线上 9分22.(1) 2分(2)4分(3)当时,6分当时,∴ 8分(4)令∴∴,∴ 12分(其他方法酌情给分)23.(1)能够完全重合 1分证明:在与中∵,,∴(SSS)2()64a b +=22ab =22222(6)(2)()262x x a b a b ab -++=+=+-=E AE BE =AEF △BEC △AF BC FAE CBE AE BE =⎧⎪∠=∠⎨⎪=⎩AEF BEC ≌△△AEF BEC ∠=∠180BEC AEC ∠+∠=︒180AEF AEC ∠+∠=︒1-1x =1210d =-+=2x =1a b c d +++=1a b c ++=2(1)()x x a x mx n -+=++22(1)x a x a x mx n +--=++1m a =-n a =-1m n +=-ABC △ADC △AB AD =BC CD =AC AC =ABC ADC ≌△△所以对折后可以完全重合 4分(2)∵∴∴ 6分∵, ∴(SAS )∴8分(3)∵∴ 9分∴∵ ∴又∵,∴ ∴ 10分∴∵∴ 11分12分素养题:(1)二十八,twenty-eight ,vingt-huit 每空1分,3分(2)=t,=16,= 2e 每空2分,9分(3)100012分'C AD CAB∠=∠'C AD BAD CAB BAD ∠+∠=∠+∠'C AB CAD ∠=∠'C A CA =AB AD ='C AB CAD ≌△△'CD C B =130AFC ∠=︒18050CFD AFC ∠=-∠=︒50CAD ACF ∠+∠=︒50BAC BAD CAD ∠=∠+∠=︒BAD ACF∠=∠AEB AFC ∠=∠AB AC=(AAS)ABE CAF ≌△△ABE CAF S S =△△ABE CDF CAF CDF CAD S S S S S +=+=△△△△△BD mCD =:1:(1)CD BC m =+::1:(1)CAD ABC S S CD BC m ==+△△ABC S n=△1ABE CDF nS S m +=+△△。

2023-2024学年广东省深圳实验学校初中部七年级(下)期末数学试卷+答案解析

2023-2024学年广东省深圳实验学校初中部七年级(下)期末数学试卷+答案解析

2023-2024学年广东省深圳实验学校初中部七年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是()A. B. C. D.2.下列各式运算正确的是()A. B. C. D.3.如图,已知,于点D,若,则的度数是()A. B.C. D.4.一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,若每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A. B. C. D.15.如图,点B,F,C,E共线,,,添加一个条件,不能判断≌的是()B.C.D.6.下列条件中,不能够判断为直角三角形的是()A.,,B.:::4:5C.BC:AC::4:5D.7.已知,则的值是()A.6B.C.D.48.某人开车从家出发去植物园游玩,设汽车行驶的路程为千米,所用时间为分,S与t之间的函数关系如图所示.若他早上8点从家出发,汽车在途中停车加油一次,则下列描述中,不正确的是()A.汽车行驶到一半路程时,停车加油用时10分钟B.汽车一共行驶了60千米的路程,上午9点5分到达植物园C.加油后汽车行驶的速度为60千米/时D.加油后汽车行驶的速度比加油前汽车行驶的速度快9.如图,在中,分别以A,B为圆心,以大于的长为半径作弧,两弧相交于F,G两点,作直线FG分别交AB,BC于点M,D;再分别以A,C为圆心,以大于的长为半径作弧,两弧相交于H,I两点,作直线HI分别交AC,BC于点N,E;若,,,则AC的长为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。

11.计算:已知,,则的值为______.12.“人间四月芳非尽,山寺桃花始盛开”,是说因为气温随地面的高度上升而降低这一特点,才造成了山上、山下的桃花花期早迟不一这种地理现象.下面是小深对某地某一时距离地面的高度h与温度t测量得到的表格.写出t随h变化的关系式______.距离地面高度01234…温度201482…13.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是______.14.图①是一张长方形纸条,点E,F分别在AD,BC上,将纸条沿EF折叠成图②,再沿BF折叠成图③.若图③中的,则图①中的的度数是______.15.已知:如图,中,E在BC上,D在BA上,过E作于F,,,,则AD的长为______.16.某中学为了了解学生最喜欢的课外活动,以便更好开展课后服务,随机抽取若干名学生进行了问卷调查.调查问卷如下:调查问卷在下列课外活动中,你最喜欢的是单选A.文学科技艺术体育填完后,请将问卷交给教务处.根据统计得到的数据,绘制成下面两幅不完整的统计图.请根据统计图中提供的信息,解答下面的问题:本次调查采用的调查方式为______填写“普查”或“抽样调查”;在这次调查中,抽取的学生一共有______人;扇形统计图中n的值为______;已知选择“科技”类课外活动的50名学生中有30名男生和20名女生.若从这50名学生中随机抽取1名学生座谈,且每名学生被抽到的可能性相同,则恰好抽到女生的概率是______;若该校共有1000名学生参加课外活动,则估计选择“文学”类课外活动的学生有______人.三、解答题:本题共6小题,共48分。

深圳市七年级下册数学全册单元期末试卷及答案-百度文库

深圳市七年级下册数学全册单元期末试卷及答案-百度文库

深圳市七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .22.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 3.下列图形可由平移得到的是( )A .B .C .D .4.若a >b ,则下列结论错误的是( )A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b5.下列代数运算正确的是( )A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 36.小晶有两根长度为 5cm 、8cm 的木条,她想钉一个三角形的木框,现在有长度分别为 2cm 、3cm 、 8cm 、15cm 的木条供她选择,那她第三根应选择( )A .2cmB .3cmC .8cmD .15cm7.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150° 8.等腰三角形的两边长分别为3和6,那么该三角形的周长为( )A .12B .15C .10D .12或15 9.不等式3+2x>x+1的解集在数轴上表示正确的是( )A .B .C .D .10.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .二、填空题11.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .12.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____.13.若多项式x 2-kx +25是一个完全平方式,则k 的值是______. 14.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程mx ﹣y =7的一个解,则m =_____. 15.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 16.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.17.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.18.分解因式:x 2﹣4x=__.19.已知2x +3y -5=0,则9x •27y 的值为______.20.计算:2m·3m=______. 三、解答题21.计算:(1)2x 3y •(﹣2xy )+(﹣2x 2y )2;(2)(2a +b )(b ﹣2a )﹣(a ﹣3b )2.22.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.23.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .24.因式分解:(1)43312x x -(2)2()a b x a b -+-(3)2169x -(4)(1)(5)4x x +++25.因式分解:(1)2()4()a x y x y ---(2)2242x x -+-(3)2616a a --26.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.27.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.28.启秀中学初一年级组计划将m 本书奖励给本次期中考试中取得优异成绩的n 名同学,如果每人分4本,那么还剩下78本;如果每人分8本,那么最后一人分得的书不足8本,但不少于4本.最终,年级组讨论后决定,给n 名同学每人发6本书,那么将剩余多少本书?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 2.D解析:D【解析】A 选项:(﹣2a 3)2=4a 6,故是错误的;B 选项:(a ﹣b )2=a 2-2ab+b 2,故是错误的;C 选项:6123a a +=+13,故是错误的; 故选D . 3.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A4.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A .不等式两边同时减去7,不等号方向不变,故A 选项正确;B .不等式两边同时加3,不等号方向不变,故B 选项正确;C .不等式两边同时除以5,不等号方向不变,故C 选项正确;D .不等式两边同时乘以-3,不等号方向改变,﹣3a <﹣3b ,故D 选项错误. 故选D .点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.5.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.6.C解析:C【解析】【分析】在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.【详解】∵5+8=13,8-5=3∴根据三角形三边关系,第三条边应在3cm~13cm 之间(不包含3和13).故选C【点睛】本题考查三角形三边关系,较为简单,熟练掌握三角形三边关系即可解题.7.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.8.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6+=,不满足三角形的三边关系定理此时336(2)当等腰三角形的腰为6时,三边为3,6,6+>,满足三角形的三边关系定理此时366++=则其周长为36615综上,该三角形的周长为15故选:B.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.9.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.10.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A、可以通过平移得到,故此选项正确;B、可以通过旋转得到,故此选项错误;C、是位似图形,故此选项错误;D、可以通过轴对称得到,故此选项错误;故选A.【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.二、填空题【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.12.【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把代入方程得:6m-10=﹣6,解得:m=故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右解析:2 3【分析】把x、y的值代入方程计算即可求出m的值.【详解】解:把62xy=⎧⎨=-⎩代入方程得:6m-10=﹣6,解得:m=2 3故答案为:2 3【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.13.±10【解析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 14.9【分析】根据题意直接将 代入方程mx ﹣y =7得到关于m 的方程,解之可得答案.【详解】解:将 代入方程mx ﹣y =7,得:m ﹣2=7,解得m =9,故答案为:9.【点睛】本题主要考查二元解析:9【分析】根据题意直接将12x y =⎧⎨=⎩代入方程mx ﹣y =7得到关于m 的方程,解之可得答案. 【详解】解:将12x y =⎧⎨=⎩ 代入方程mx ﹣y =7,得:m ﹣2=7, 解得m =9,故答案为:9.【点睛】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.15.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.17.【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,,故答案为:.【解析:541403276x y x y +=⎧⎨+=⎩【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,541403276x y x y +=⎧⎨+=⎩, 故答案为:541403276x y x y +=⎧⎨+=⎩.此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.18.x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).解析:x(x﹣4)【详解】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).19.243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x27y=32x解析:243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 20.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.三、解答题21.(1)0;(2)﹣5a 2+6ab ﹣8b 2.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式利用平方出根是,以及完全平方公式化简,去括号合并即可得到结果.【详解】解:(1)原式=﹣4x 4y 2+4x 4y 2=0;(2)原式=﹣4a 2+b 2﹣(a 2﹣6ab +9b 2)=﹣4a 2+b 2﹣a 2+6ab ﹣9b 2=﹣5a 2+6ab ﹣8b 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.22.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.23.(1)()25a a +;(2)()()41t t +-. 【分析】(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.【详解】解:(1)()()23221025=10255a a a a a a a a ++++=+; (2)()()22(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.24.(1)3x 3(x ﹣4);(2)(a ﹣b )(1+2x );(3)(4﹣3x )(4+3x );(4)2(3)x +.【分析】(1)原式提取公因式3x 3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解.【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.26.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.27.(1)2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+;(2)19;(3)4【分析】(1)根据材料中的三种不同形式的配方,“余项“分别是常数项、一次项、二次项,可解答;(2)将x 2+y 2-6x+10y+34配方,根据平方的非负性可得x 和y 的值,可解答;(3)通过配方后,求得a ,b ,c 的值,再代入代数式求值.【详解】解:(1)249x x -+的三种配方分别为:2249(2)5x x x -+=-+;2249(3)10x x x x -+=+-;2249(3)2x x x x -+=-+(或2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭; (2)∵x 2+y 2-6x+10y+34=x 2-6x+9+y 2+10y+25=(x-3)2+(y+5)2=0,∴x-3=0,y+5=0,∴x=3,y=-5,∴3x-2y=3×3-2×(-5)=19(3)2223240a b c ab b c ++---+= ()2222134421044a ab b b bc c -++-++-+= 22213(2)(1)024a b b c ⎛⎫-+-+-= ⎪⎝⎭ ∴102a b -=,3(2)04b -=,10c -= ∴1a =,2b =,1c =,则4a b c ++=【点睛】本题考查的是配方法的应用,首先利用完全平方公式使等式变为两个非负数和一个正数的和的形式,然后利用非负数的性质解决问题.28.38本【分析】先表示书的总量,利用不等关系列不等式组,求不等式组的正整数解即可得到答案.【详解】解:由题意得:4788(1)84788(1)4n n n n +--⎧⎨+--≥⎩< ①②由①得:12 n>19由②得:1202 n≤∴不等式组的解集是:11 1922≤<n20n为正整数,20,n∴=478158,m n∴=+=15820638.∴-⨯=答:剩下38本书.【点睛】本题考查的是不等式组的应用,掌握利用不等关系列不等式组是解题的关键.。

2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷及答案解析

2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷及答案解析

2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的.)1.(3分)一个企业的log o(标志)代表着一种精神,一种企业文化.以下是深圳市四个公司的log o,其中是轴对称图形的是()A.B.C.D.2.(3分)华为近年来一直在努力自主研发核心领域,3月下旬,华为轮值董事长徐直军宣布完成了芯片14nm以上EDA工具国产化,年内将完成对其全面验证.14nm芯片即0.000000014m用科学记数法表示是()A.1.4×10﹣8m B.0.14×10﹣7m C.1.4×10﹣9m D.14×10﹣8m 3.(3分)某气象台预报“本市明天下雨的概率为90%”对此信息,下列说法正确的是()A.明天一定会下雨B.明天全市90%的地方在下雨C.明天90%的时间在下雨D.明天下雨的可能性比较大4.(3分)下列图形能够直观地解释(3b)2=9b2的是()A.B.C.D.5.(3分)如图,将两根同样的钢条AC和BD的中点O固定在一起,使其可以绕着O点自由转动,就做成了一个测量工件内径的工具.这时根据△OAB≌△OCD,CD的长就等于工件内槽的宽AB,这里判定△OAB≌△OCD的依据是()A.SAS B.ASA C.SSS D.AAS6.(3分)如图,以下条件不能判断AB∥CD的是()A.∠2=∠3B.∠1=∠2C.∠4=∠1+∠3D.∠ABC+∠BCD=180°7.(3分)下表是不同的海拔高度对应的大气压强的值,仔细分析表格中数据,下列说法中正确的是()海拔高度/m010002000300040005000600070008000大气压强/kpa101.290.780.070.761.353.947.241.336.0 A.当海拔高度为2000m时,大气压强为70.7kpaB.随着海拔高度的增加,大气压强越来越大C.海拔高度每增加1000m,大气压强减小的值是变化的D.珠穆朗玛峰顶端(海拔高度为8848.86m)的大气压强约为45kpa8.(3分)某同学做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD.则下列结论不一定正确的是()A.EH=FH B.∠DEH=∠DFHC.EF垂直平分DH D.点E与点F关于直线DH对称9.(3分)如图,折线A﹣B﹣C﹣D是一条灌溉水渠,水渠从A村沿北偏东65°方向到B 村,从B村沿北偏西35°方向到C村,若从C村修建的水渠CD与AB方向一致,则∠DCB的大小为()A.30°B.65°C.80°D.100°10.(3分)如图,在正方形ABCD中,点E,F,G,H分别是正方形各边的中点,则下列结论不正确的是()A.△ABF≌△BCG B.AF∥CHC.AR=DQ D.阴影部分面积为正方形ABCD面积的二、填空题(本大题共7小题,每小题3分,共21分.)11.(3分)计算:=.12.(3分)如图,△ABC≌△DEF,则x+y=.13.(3分)若a m=2,a n=8,则a m+n=.14.(3分)如图,假设可以随意在两个完全相同的正方形拼成的图案中取点,那么这个点取在阴影部分的概率是.15.(3分)把两个同样大小的含30°角的三角尺像如图所示那样放置,其中M是AD与BC 的交点,若CM=4,则点M到AB的距离为.16.(3分)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,也被誉为“东方魔板”.如图把正方形ABCD木板分为7块,制作成七巧板,若正方形ABCD的边长为4,那么该七巧板中第④块图形的面积为.17.(3分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BD为△ABC的角平分线,过点C作CE⊥BD交BD的延长线于点E,若,则BD的长为.三、解答题(本大题共8小题,共69分.)18.(8分)计算:3a•a5+(2a2)3﹣a11÷a5.19.(8分)先化简,再求值:[(2x+y)2﹣(x﹣y)2]÷(﹣3x),其中x=2023,y=﹣1.20.(7分)某商场进行“6•18”促销活动,设计了如下两种摇奖方式:方式一:如图1,有一枚均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这个骰子掷出后,“6”朝上则获奖;方式二:如图2,一个均匀的转盘被等分成12份,分别标有1,2,3,4,5,6,7,8,9,10,11,12这12个数字.转动转盘,当转盘停止后,指针指向的数字为3的倍数则获奖.(1)若采用方式一,骰子掷出后,“5”朝上的概率为;(2)若采用方式二,当转盘停止后,指针指向的数字为“5”的概率为;(3)小明想增加获奖机会,应选择哪种摇奖方式?请通过相关计算,应用概率相关知识说明理由.21.(6分)如图,△ABC的三个顶点都在每个小正方形的边长为1个单位长度的网格格点上,请用无刻度直尺作图,并保留作图痕迹.(1)请以直线l为对称轴,画出与△ABC成轴对称的图形;(2)请在直线l上画出一个点P,使得PA+PB的值最小;(3)请画出边AC的垂直平分线.22.(8分)周末,小明与小杰相约到市图书馆参加阅读活动.他们同时从同一地点出发,小明先骑自行车行完部分路程然后再步行,小杰一直步行,结果他们同时到达图书馆.已知他们所走的路程s(km)与时间t(h)之间的关系图象如图所示.根据图象,回答如下问题:(1)点A表示的实际意义是;(2)小明骑自行车的速度是km/h;(3)小杰步行的过程中,他所走的路程s(km)与时间t(h)之间的关系是;(4)小明步行的路程是km.23.(10分)如图1,l1∥l2,直线l3分别交直线l1,l2于点A,B,点C,D分别为直线l1,l2上的点,且AC=BD,E,F是直线l3上不与点A,B重合的点,连接CE,DF.(1)请在图1中画出一个你设计的图形,并添加一个适当的条件:,使得△ACE 与△BDF全等,并说明理由;(2)如图2,连接AD,若AC=AD,∠CAB=55°,则∠ADB=.24.(10分)在学习《完全平方公式》时,某数学学习小组发现:已知a+b=5,ab=3,可以在不求a、b的值的情况下,求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab﹣2ab=(a+b)2﹣2ab=52﹣2×3=19.(1)若a+b=7,ab=6,则a2+b2=;(2)若m满足(8﹣m)(m﹣3)=3,求(8﹣m)2+(m﹣3)2的值,同样可以应用上述方法解决问题.具体操作如下:解:设8﹣m=a,m﹣3=b,则a+b=(8﹣m)+(m﹣3)=5,ab=(8﹣m)(m﹣3)=3,所以(8﹣m)2+(m﹣3)2=a2+b2=(a+b)2﹣2ab=52﹣2×3=19.请参照上述方法解决下列问题:若(3x﹣2)(10﹣3x)=6,求(3x﹣2)2+(10﹣3x)2的值;(3)如图,某校“园艺”社团在三面靠墙的空地上,用长12米的篱笆(不含墙AM,AD,DN)围成一个长方形花圃ABCD,花圃ABCD的面积为20平方米,其中墙AD足够长,墙AM⊥墙AD,墙DN⊥墙AD,AM=DN=1米.随着学校“园艺”社团成员的增加,学校在花圃ABCD旁分别以AB,CD边向外各扩建两个正方形花圃,以BC边向外扩建一个正方形花圃(如图所示虚线区域部分),请问新扩建花圃的总面积为_______平方米.25.(12分)【问题背景】△ABC中,∠ABC=90°,AB=BC,点D为直线BC上一点.【初步探究】(1)如图1,当点D在线段BC上时,连接AD,过点A作AE⊥AD于点A,且AD=AE,过点E作EH⊥AC于H点,交AB于F点.求证:EF=AC.请将证明过程补充完整:证明:∵AE⊥AD,∴∠EAD=90°即∠EAH+∠CAD=90°∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°(),∴∠AEH=().∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°.在Rt△AHF中,∠AFE=180°﹣∠AHF﹣∠HAF=180°﹣90°﹣45°=45°,∴∠AFE=∠DCA=45°.在△AEF与△DAC中,∴△AEF≌△DAC,∴EF=AC().【推广探究】(2)如图2,若点D为边BC延长线上一点,其他条件不变,则(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.【拓展应用】(3)若AC=6,AH=2,其它条件不变时,EH=.2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的.)1.【分析】根据轴对称图形的定义(如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形)对四个选项进行分析.【解答】解:A、C、D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.【点评】本题主要考查了轴对称图形的定义,掌握定义是解答的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.000000014m=1.4×10﹣8m.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据概率的意义,即可解答.【解答】解:某气象台预报“本市明天下雨的概率为90%”,意思是:明天下雨的可能性比较大,故选:D.【点评】本题考查了概率的意义,熟练掌握概率的意义是解题的关键.4.【分析】利用正方形的面积求解方法证得即可.【解答】解:∵3b=b+b+b,∴(3b)2可看作是边长为3b的正方形的面积.故选:A.【点评】此题考查了积的乘方的实际意义.此题比较新颖,注意抓住面积的不同表示方法是解题的关键.5.【分析】已知两边和夹角相等,利用SAS可证两个三角形全等.【解答】解:在△OAB与△OCD中,,∴△OAB≌△ODC(SAS).故选:A.【点评】本题考查了三角形全等的应用;根据题目给出的条件,观察图中有哪些相等的边和角,然后判断所选方法是解决问题的关键.6.【分析】由平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可判断.【解答】解:A、∠2=∠3,由内错角相等,两直线平行,能判定AB∥CD,故A不符合题意;B、∠1=∠2,不能判定AB∥CD,故B符合题意;C、∠4=∠1+∠3,由同位角相等,两直线平行,能判定AB∥CD,故C不符合题意;D、∠ABC+∠BCD=180°,由同旁内角互补,两直线平行,能判定AB∥CD,故D不符合题意.故选:B.【点评】本题考查平行线的判定,关键是掌握平行线的判定方法.7.【分析】根据表格中数据分别判断即可得出答案.【解答】解:A、当海拔高度为2000m时,大气压强为80.0kpa,故A选项不符合题意;B、随着海拔高度的增加,大气压强越来越小,故B选项不符合题意;C、海拔高度每增加1000m,大气压强减小的值是变化的,故C选项符合题意;D、珠穆朗玛峰顶端(海拔高度为8848.86m)的大气压强应该低于36.0kpa,故D选项不符合题意;故选:C.【点评】本题主要考查了函数的表示方法,以及正确读表,正确理解表中的变量的意义是解题的关键.8.【分析】证△DEH≌△DFH(SAS),得EH=FH,∠DEH=∠DFH,再由等腰三角形的性质得DH垂直平分EF,则点E与点F关于直线DH对称,即可得出结论.【解答】解:在△DEH和△DFH中,,∴△DEH≌△DFH(SAS),∴EH=FH,∠DEH=∠DFH,故选项A、B不符合题意;∵ED=FD,∠EDH=∠FDH,∴DH垂直平分EF,∴点E与点F关于直线DH对称,故选项C符合题意,选项D不符合题意;故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质以及轴对称等知识,熟练掌握全等三角形的判定与性质是解题的关键.9.【分析】根据方向角的定义以及平行线的性质进行计算即可.【解答】解:如图,由题意可知AB∥CD,AE∥BF,∴∠EAB+∠ABF=180°,∠DCB=∠ABC,∴∠DCB=∠ABC=180°﹣65°﹣35°=80°,故选:C.【点评】本题考查方向角,理解方向角的定义以及平行线的性质是正确解答的前提.10.【分析】根据正方形的性质得到AB=BC=CD=AD,∠BAD=∠ABC=∠ADC=∠BCD =90°,根据全等三角形的判定定理得到△ABF≌△BCG(SAS),故A正确;根据平行四边形的性质得到AF∥CH,故B正确;根据全等三角形的性质得到∠AED=∠DHC,得到∠DQH=90°,同理∠ARE=90°,∠EAR=∠HDQ,根据全等三角形的性质得到AR=DQ,故C正确,根据全等三角形的判定定理得到Rt△ADR≌Rt△DCQ(HL),求得DR=CQ,同理DQ=CP,得到QR=PQ,推出四边形ROPQ是正方形,设RQ=AR =DQ=a,得到DR=2a,根据勾股定理得到AD=a,根据正方形的面积公式得到阴影部分面积为正方形ABCD面积的,故D错误.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠BAD=∠ABC=∠ADC=∠BCD=90°,∵点E,F,G,H分别是正方形各边的中点,∴,∴BF=CG,∴△ABF≌△BCG(SAS),故A正确;∵,∴AH=CF,∴四边形AFCH是平行四边形,∴AF∥CH,故B正确;∵点E,F,G,H分别是正方形各边的中点,∴AE=DH,∴△ADE≌△DCH(SAS),∴∠AED=∠DHC,∵∠AED+∠ADE=90°,∴∠DEC+∠ADE=90°,∴∠DQH=90°,同理∠ARE=90°,∠EAR=∠HDQ,∴△AER≌△DHQ(AAS),∴AR=DQ,故C正确,∴Rt△ADR≌Rt△DCQ(HL),∴DR=CQ,同理DQ=CP,∴QR=PQ,∵OR∥PQ,RQ∥OP,∴四边形ROPQ是正方形,设RQ=AR=DQ=a,∴DR=2a,∴AD=a,∴正方形ABCD的面积为5a2,正方形ROPQ的面积为a2,∴阴影部分面积为正方形ABCD面积的,故D错误,故选:D.【点评】本题考查了中点四边形,正方形的判定和性质,全等三角形的判定和性质,平行四边形的判定和性质,正确地识别图形是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分.)11.【分析】先计算零指数幂、负整数指数幂,然后计算加法.【解答】解:=1+2=3.故答案为:3.【点评】本题主要考查了零指数幂、负整数指数幂,属于基础题,熟记运算法则即可.12.【分析】由全等三角形的性质,得到x=5,y=4,即可求出x+y的值.【解答】解:∵△ABC≌△DEF,∴BC=FE=5,DF=AC=4,∴x=5,y=4,∴x+y=5+4=9.故答案为:9.【点评】本题考查全等三角形的性质,关键是掌握全等三角形的性质:全等三角形的对应边相等.13.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.14.【分析】先设小正方形边长为a,求出阴影部分面积,再根据几何概率的求法即可得出答案.【解答】解:设小正方形边长为a,则阴影部分面积为2a2,图案总面积8a2﹣a2=7a2,因此这个点取在阴影部分的概率是=.故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15.【分析】先利用直角三角板性质求得∠CAM=∠DAB,根据角平分线性质可得点M到AB的距离等于点M到AC的距离,则可得结果.【解答】解:∵∠CAM=∠CAB﹣∠BAD=60°﹣30°,∴∠CAM=∠DAB=30°,∴点M到AB的距离等于点M到AC的距离,即点M到AB的距离等于CM的长为4.故答案为:4.【点评】此题主要是考查了角平分线的性质,能够熟练掌握角平分线上的点到角的两边距离相等是解答此题的关键.16.【分析】连接EH并延长交AB于L,延长FJ交AD于K,连接LK交AI于M,连接MJ、FI、IL、CG,则正方形ABCD被分成16个大小相等的等腰直角三角形,每个等腰直角三角形的面积为1,即得答案.【解答】解:如图:连接EH并延长交AB于L,延长FJ交AD于K,连接LK交AI于M,连接MJ、FI、IL、CG,则正方形ABCD被分成16个大小相等的等腰直角三角形,每个等腰直角三角形的面积为S正方形ABCD=×42=1,∴④块图形之一的正方形面积为2cm2.故答案为:2.【点评】本题考查了正方形的性质,将正方形分成16个面积相等的等腰直角三角形是解题的关键.17.【分析】延长CE交BA的延长线于点F,证△BAD≌△CAF(ASA),得BD=CF,再证∠BFC=∠BCF,得BC=BF,然后由等腰三角形的性质得FE=CE=,即可得出结论.【解答】解:如图,延长CE交BA的延长线于点F,∵∠BAC=90°,CE⊥BD,∴∠BAC=∠DEC,∵∠ADB=∠CDE,∴∠ABD=∠ACF,在△BAD和△CAF中,,∴△BAD≌△CAF(ASA),∴BD=CF,∵CE⊥DB,∴∠BEF=∠BEC=90°,∵BD平分∠ABC,∴∠FBE=∠CBE,∴∠BFC=∠BCF,∴BC=BF,∴FE=CE=,∴BD=CF=2CE=,故答案为:.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.三、解答题(本大题共8小题,共69分.)18.【分析】先算单项式乘单项式,积的乘方,同底数幂的除法,再合并同类项即可.【解答】解:3a•a5+(2a2)3﹣a11÷a5=3a6+8a6﹣a6=10a6.【点评】本题主要考查单项式乘单项式,积的乘方,同底数幂的除法,解答的关键是对相应的运算法则的掌握.19.【分析】先利用完全平方公式计算括号里,再算括号外,然后把x,y的值代入化简后的式子进行计算,即可解答.【解答】解:[(2x+y)2﹣(x﹣y)2]÷(﹣3x)=(4x2+4xy+y2﹣x2+2xy﹣y2)÷(﹣3x)=(3x2+6xy)÷(﹣3x)=﹣x﹣2y,当x=2023,y=﹣1时,原式=﹣2023﹣2×(﹣1)=﹣2023+2=﹣2021.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.20.【分析】(1)用数字5的面的个数除以总个数即可得;(2)根据概率公式即可得到结论;(3)分别计算两种方式获奖的概率,然后通过比较概率的大小进行判断.【解答】解:(1)“5”朝上的概率是;故答案为:;(2)指针指向的数字为“5”的概率为,故答案为:;(3)选择摇奖方式二.理由如下:标有数字5和6的都有5个面,面最多,选择摇奖方式一获奖的概率为,选择摇奖方式二获奖的概率为=,因为>,所以摇奖方式二获奖的机会大,选择摇奖方式二.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数21.【分析】(1)根据轴对称变换的性质找出对应点即可求解;(2)连接AB'交直线l于点P,则点P即为所求;(3)根据线段垂直平分线的性质结合网格,连接BD,则直线BD即为所求.【解答】解:(1)如图所示,△A'B'C即为所求;(2)如图所示,点P即为所求;(3)如图所示,直线BD即为所求.【点评】本题考查了轴对称变换的性质,线段垂直平分线的性质,熟练掌握轴对称变换的性质,线段垂直平分线的性质是解题的关键.22.【分析】(1)结合图象可得点A表示的实际意义;(2)根据小明骑自行车行0.2小时行驶3km可得答案;(3)根据小杰0.2小时步行1.2km可得答案;(4)根据“路程=速度×时间”可得答案.【解答】解:(1)由题意得,点A表示的实际意义是小明先骑自行车行行驶了0.2小时,路程为3千米.故答案为:小明先骑自行车行行驶了0.2小时,路程为3千米;(2)小明骑自行车的速度是:3÷0.2=15(km/h),故答案为:15;(3)小杰步行的速度为:1.2÷0.2=6(km/h),所以小杰步行的过程中,他所走的路程s(km)与时间t(h)之间的关系是s=6x(0<x ≤0.8),故答案为:s=6x(0<x≤0.8);(4)0.8×6﹣3=1.8(km),即小明步行的路程是1.8km.故答案为:1.8.【点评】本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.23.【分析】(1)根据平行线的性质得到∠CAE=∠DBF,根据全等三角形的判定定理即可得到结论;(2)如图2,连接BC,根据平行四边形的判定和性质以及菱形的判定和性质定理即可得到结论.【解答】解:(1)添加一个适当的条件:AE=BF,理由:如图1,∵l1∥l2,∴∠CAE=∠DBF,在△ACE与△BDF中,,∴△ACE≌△BDF(SAS);故答案为:AE=BF;(2)如图2,连接BC,∵l1∥l2,即AC∥BD,∵AC=BD,∴四边形ACBD是平行四边形,∵AC=AD,∴四边形ACBD是菱形,∴∠DAB=∠CAB=∠ABD=55°,∴∠ADB=180°﹣55°﹣55°=70°.解法2:∵l1∥l2,∴∠CAB=∠ABD,∠CAD+∠BDA=180°,∵AC=BD,AC=AD,∴BD=AD,∴∠DAB=∠ABD,∵∠CAB=55°,∴∠ABD=∠BAD=55°,∴∠ADB=180°﹣110°=70°,故答案为:70°.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.24.【分析】(1)利用完全平方公式进行转化后代入计算可求解;(2)仿照题目中的例子利用完全平方公式计算可求解;(3)设BM=m米,则AB=(m+1)米,BC=(12﹣2m)米,结合长方形ABCD的面积可求出(2m+2)(12﹣2m)=40平方米,由(2m+2)+(12﹣2m)=14米,根据题干中的解决方法计算可求解.【解答】解:(1)∵a+b=7,ab=6,∴(a+b)2=49,∴a2+b2=(a+b)2﹣2ab=49﹣2×6=37,故答案为:37;(2)设3x﹣2=a,10﹣3x=b,则a+b=(3x﹣2)+(10﹣3x)=8,ab=(3x﹣2)(10﹣3x)=6,所以(3x﹣2)2+(10﹣3x)2=a2+b2=(a+b)2﹣2ab=82﹣2×6=52;(3)设BM=m米,则AB=(m+1)米,BC=(12﹣2m)米,=AB•BC=(m+1)(12﹣2m)=20平方米,∵S长方形ABCD∴(2m+2)(12﹣2m)=40平方米,∵(2m+2)+(12﹣2m)=14米,∴新扩建花圃的总面积为:4AB2+BC2=4(m+1)2+(12﹣2m)2=(2m+2)2+(12﹣2m)2=[(2m+2)+(12﹣2m)]2﹣2(2m+2)(12﹣2m)=142﹣2×40=116(平方米),故答案为:116.【点评】本题主要考查因式分解的应用,完全平方公式的几何背景,整式的运算,理解题目中的解题方法是解题的关键.25.【分析】【初步探究】(1)由直角三角形的性质及全等三角形的性质可得出结论;【推广探究】(2)证明△AEF≌△DAC(AAS),由全等三角形的性质得出EF=AC;【拓展应用】(3)分三种情况,由等腰直角三角形的性质可得出答案.【解答】解:【初步探究】(1)∵AE⊥AD,即∠EAH+∠CAD=90°,∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°(直角三角形的两锐角互余),∴∠AEH=∠CAD(同角的余角相等),∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°,在Rt△AHF中,∠AFE=180°﹣∠AHF﹣∠HAF=180°﹣90°﹣45°=45°,∴∠AFE=∠DCA=45°,在△AEF与△DAC中,,∴△AEF≌△DAC(AAS),∴EF=AC(全等三角形的对应边相等);故答案为:直角三角形的两锐角互余;∠CAD;同角的余角相等;AD=AE;全等三角形的对应边相等;【推广探究】(2)(1)中的结论仍然成立,证明如下:∵AE⊥AD,∴∠EAD=90°,∴∠EAH+∠CAD=90°,∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°,∴∠AEH=∠CAD,∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°,∴∠ACD=180°﹣∠ACB=180°﹣45°=135°,∵∠HAF=∠BAC=45°,∴∠AFE=∠H+∠HAF=90°+45°=135°,∴∠AFE=∠DCA=135°,在△AEF与△DAC 中,,∴△AEF≌△DAC(AAS),∴EF=AC.(3)当点D在线段BC上时,∵△ABC为等腰直角三角形,且EH⊥AC,∠HAF=∠HFA=45°,∴FH=AH=2,∵EF=AC=6,∴EH=EF﹣HF=6﹣2=4;当点D为边CB延长线上一点时,∵△AHF为等腰直角三角形,∴FH=AH=2,∵EF=AC=6,∴EH=EF﹣HF=6﹣2=4;当点D为边BC延长线上一点时,∵△AHF为等腰直角三角形,∴FH=AH=2,∵EF=AC=6,∴EH=EF+HF=6+2=8;故答案为:4或8.【点评】本题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定与性质是解本题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳市七年级下册期末数学试卷一、选择题1.(3分)计算32的结果是()A.6B.9C.8D.52.(3分)下列图形中,是轴对称图形的是()A.B.C.D.3.(3分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米4.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b25.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°6.(3分)以下事件中,必然事件是()A.打开电视机,正在播放体育节目B.三角形内角和为180°C.同位角相等D.掷一次骰子,向上一面是5点7.(3分)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m8.(3分)下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④9.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.10.(3分)如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不是()A.AB=CD B.∠B=∠D C.∠BCA=∠DAC D.AD∥BC 11.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.12.(3分)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1B.2C.3D.4二、填空题(共4小题)13.(3分)n为正整数,若a9÷a n=a5,则n=.14.(3分)已知a2+b2=5,a+b=3,则ab=.15.(3分)若等腰三角形的边长分别为3和6,则它的周长为.16.(3分)如图,D、E分别是等边三角形ABC的边AC、AB上的点,AD=BE,∠BCE=15°,则∠BDC=.三.解答题(共7小题)17.计算:(1)(﹣1)2018+()﹣2﹣(3.14﹣π)0(2)20192﹣2018×202018.先化简,再求值:(x﹣y)2﹣3x(x﹣3y)+2(x+2y)(x﹣2y),其中x=,y=2.19.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是黄色球的概率是.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应)(2)在(1)的结果下,连接BB1,AB1,则△A1BB1面积是;(3)在对称轴上有一点P,当△PBC周长最小时,P点在什么位置,在图中标出P点.21.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.22.如图,完成下列推理过程如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB,求证:AC=AE.证明:∵∠2=∠3(已知),∠AFE=∠DFC(),∴∠E=∠C(),又∵∠1=∠2,∴+∠DAC=+∠DAC(),即∠BAC=∠DAE,在△ABC和△ADE中∠E=∠C(已证)∵AB=AD(已知)∠BAE=∠DAE(已证)∴△ABC≌△ADE()∴AC=AE()23.四边形ABCD是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A点重合,角的两边分别交BC于E,交CD的延长线于F,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE=15,DF=2,试求线段EF的长.深圳市七年级下册期末数学试卷答案一、选择题1.(3分)计算32的结果是()A.6B.9C.8D.5【分析】根据有理数的乘方意义计算即可得出正确选项.【解答】解:32=3×3=9.故选:B.【点评】本题主要考查了有理数的乘方,a n表示有n个a相乘.2.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、C、D中的图形都不是轴对称图形,B中图形是轴对称图形,故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3分)2015年4月,生物学家发现一种病毒的长度约为0.0000043米,利用科学记数法表示为()A.4.3×106米B.4.3×10﹣5米C.4.3×10﹣6米D.43×107米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000043=4.3×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b2【分析】利用两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.5.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为()A.140°B.60°C.50°D.40°【分析】先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.【解答】解:∵∠CDE=140°,∴∠ADC=180°﹣140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)以下事件中,必然事件是()A.打开电视机,正在播放体育节目B.三角形内角和为180°C.同位角相等D.掷一次骰子,向上一面是5点【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视机,正在播放体育节目是随机事件;B、三角形内角和为180°是必然事件;C、同位角相等是随机事件;D、掷一次骰子,向上一面是5点是随机事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m【分析】根据三角形的三边关系定理得到8<AB<48,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:28﹣20<AB<28+20,即:8<AB<48,则AB的值在8和48之间.故选:B.【点评】此题主要考查了三角形的三边关系定理,能正确运用三角形的三边关系定理是解此题的关键.8.(3分)下列说法中正确的是()①角平分线上任意一点到角的两边的距离相等;②等腰三角形两腰上的高相等;③等腰三角形的中线也是它的高;④线段垂直平分线上的点(不在这条线段上)与这条线段两个端点构成等腰三角形A.①②③④B.①②③C.①②④D.②③④【分析】根据角平分线的定义和性质判断①;根据三角形面积公式即可判断②:根据等腰三角形的性质判断③:根据线段垂直平分线的性质判断④.【解答】解:①角平分线上任意一点到角两边的距离相等是正确的.②根据三角形面积公式即可得到等腰三角形两腰上的高相等,说法是正确;③等腰三角形的中线不一定是它的高,说法是错误;④线段垂直平分线上的点到这条线段两个端点的距离相等,说法正确.故选:C.【点评】本题考查了角平分线、线段垂直平分线的性质,等腰三角形的性质,是基础知识,需熟练掌握.9.(3分)如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A.B.C.D.【分析】由随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,共有6种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:在序号①②③④⑤中的一个小正方形涂黑,有6种等可能结果,其中与图中的阴影部分构成轴对称图形的有②③④这3种结果,所以与图中的阴影部分构成轴对称图形的概率为=,故选:A.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.10.(3分)如图,已知AD=CB,再添加一个条件使△ABC≌△CDA,则添加的条件不是()A.AB=CD B.∠B=∠D C.∠BCA=∠DAC D.AD∥BC【分析】根据需要满足的判定定理来添加条件即可.【解答】解:在△ABC与△CDA中,AD=CB,AC=CA,A、添加AB=CD,由全等三角形的判定定理SSS可以使△ABC≌△CDA,故本选项不符合题意.B、添加∠B=∠D,由全等三角形的判定定理SSA不可以使△ABC≌△CDA,故本选项符合题意.C、添加∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.D、添加AD∥BC,则∠BCA=∠DAC,由全等三角形的判定定理SAS可以使△ABC≌△CDA,故本选项不符合题意.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.(3分)一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象表示正确的是()A.B.C.D.【分析】根据题意可以写出火车行驶的各个阶段中y与x的函数关系,从而可以解答本题.【解答】解:由题意可得,火车头刚进入隧道到火车尾刚进入隧道的这一过程中,y随x的增大而增大,火车尾刚进入隧道到火车头刚要驶离隧道的这一过车中,y随x的增加不发生变化,火车头刚出隧道到火车尾刚驶离隧道这一过程中,y随x的增大而减小,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,写出各段过程中与x的函数关系.12.(3分)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1B.2C.3D.4【分析】由等边三角形的性质得出AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB =∠EAC=60°,则∠DAC=∠BAE,由SAS证得△DAC≌△BAE得出BE=DC,∠ADC =∠ABE,则∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=60°,即①正确;②正确;∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,则∠BDO=∠CEO错误,即③错误;由平行线的性质得出∠DAB=∠ABC=60°,推出∠ACB=30°,则BC⊥CE,④正确.【解答】解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴∠BDO=∠CEO错误,∴③错误;∵DA∥BC,∴∠DAB=∠ABC=60°,∵∠BAC=90°,∴∠ACB=30°,∵∠ACE=60°,∴∠ECB=90°,∴BC⊥CE,④正确,综上所述,①②④正确,故选:C.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质、直角三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.二、填空题(共4小题)13.(3分)n为正整数,若a9÷a n=a5,则n=4.【分析】根据同底数幂的除法法则:底数不变,指数相减,可得9﹣n=5,解方程即可得到答案.【解答】解:∵a9÷a n=a5,∴9﹣n=5,n=4.故答案为:4.【点评】此题主要考查了同底数幂的除法,关键是把握同底数幂的除法法则.14.(3分)已知a2+b2=5,a+b=3,则ab=2.【分析】把a+b=3两边平方,再与a2+b2=5相减即可.【解答】解:∵a+b=3,∴(a+b)2=a2+2ab+b2=9,∵a2+b2=5,∴5+2ab=9,解得ab=2.【点评】本题是对完全平方公式的考查,学生经常漏掉乘积二倍项而导致出错.15.(3分)若等腰三角形的边长分别为3和6,则它的周长为15.【分析】因为3和6不知道那个是底那个是腰,所以要分不同的情况讨论,当3是腰时,当6是腰时等.【解答】解:当3是腰时,边长为3,3,6,但3+3=6,故不能构成三角形,这种情况不可以.当6是腰时,边长为6,6,3,且3+6>6,能构成三角形故周长为6+6+3=15.故答案为:15.【点评】本题考查等腰三角形的性质,等腰三角形的两边相等,以及三角形的三边关系,两个小边的和必须大于大边才能组成三角形.16.(3分)如图,D、E分别是等边三角形ABC的边AC、AB上的点,AD=BE,∠BCE=15°,则∠BDC=75°.【分析】由等边三角形的性质得出∠A=∠EBC=60°,AB=BC,由SAS证得△ABD≌△BCE得出∠BCE=∠ABD=15°,则∠BDC=∠A+∠ABD=75°.【解答】解:∵△ABC是等边三角形,∴∠A=∠EBC=60°,AB=BC,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BCE=∠ABD=15°,∴∠BDC=∠A+∠ABD=60°+15°=75°,故答案为:75°.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.三.解答题(共7小题)17.计算:(1)(﹣1)2018+()﹣2﹣(3.14﹣π)0(2)20192﹣2018×2020【分析】(1)根据乘方的运算法则,零指数幂的意义以及负整数指数幂的意义即可求出答案.(2)根据平方差公式即可求出答案.【解答】解:(1)原式=1+4﹣1=4;(2)原式=20192﹣(2019﹣1)(2019+1)=20192﹣(20192﹣1)=1.【点评】本题考查学生的运算能力,解题额关键是熟练运用运算法则,本题属于基础题型.18.先化简,再求值:(x﹣y)2﹣3x(x﹣3y)+2(x+2y)(x﹣2y),其中x=,y=2.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣2xy+y2﹣3x2+9xy+2x2﹣8y2=7xy﹣7y2,当x=﹣,y=2时,原式=﹣2﹣28=﹣30.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是黄色球的概率是.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.【分析】(1)设口袋里有x个黄球,根据概率公式列出算式,再进行求解即可;(2)用红球的个数除以总球的个数,即可得出摸出一个球是红色的概率.【解答】解:(1)设口袋里有x个黄球,根据题意得:=,解得:x=3,经检验,x=3是分式方程的解;答:口袋里黄球的个数有3个;(2))∵红球有4个,一共有4+5+3=12个,∴P(红球)==.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上)(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应)(2)在(1)的结果下,连接BB1,AB1,则△A1BB1面积是4;(3)在对称轴上有一点P,当△PBC周长最小时,P点在什么位置,在图中标出P点.【分析】(1)依据轴对称的性质,即可得到△ABC关于直线l对称的△A1B1C1;(2)依据三角形面积公式即可得出结论;(3)连接B1C,与l的交点即为所求的点P.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图,△A1BB1面积是×2×4=4,故答案为:4;(3)如图所示,点P即为所求.【点评】此题主要考查了利用轴对称求短路线以及轴对称变换,正确得出对应点位置是解题关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为18千米/小时;汽车的速度为45千米/小时;(2)汽车比摩托车早1小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.【分析】(1)根据题意和函数图象中的数据可以解答本题;(2)根据函数图象中的数据可以求得汽车比摩托车早多长时间到达B地;(3)根据题意和(1)中的答案可以解答本题.【解答】解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.如图,完成下列推理过程如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB,求证:AC=AE.证明:∵∠2=∠3(已知),∠AFE=∠DFC(对顶角相等),∴∠E=∠C(三角形内角和定理),又∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC(等量代换),即∠BAC=∠DAE,在△ABC和△ADE中∠E=∠C(已证)∵AB=AD(已知)∠BAE=∠DAE(已证)∴△ABC≌△ADE(AAS)∴AC=AE(全等三角形对应边相等)【分析】由内错角相等得出∠AFE=∠DFC,由三角形内角和定理得出∠E=∠C,由等量代换得出∠1+∠DAC=∠2+∠DAC,由AAS证得△ABC≌△ADE,由全等三角形对应边相等得出AC=AE.【解答】证明:∵∠2=∠3(已知),∠AFE=∠DFC(对顶角相等),∴∠E=∠C(三角形内角和定理),又∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC(等量代换),即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS)∴AC=AE(全等三角形对应边相等)故答案为:对顶角相等,三角形内角和定理,∠1,∠2,等量代换,AAS,全等三角形对应边相等.【点评】本题考查了全等三角形的判定与性质、三角形内角和定理、等量代换等知识,熟练掌握全等三角形的判定是解题的关键.23.四边形ABCD是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A点重合,角的两边分别交BC于E,交CD的延长线于F,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE=15,DF=2,试求线段EF的长.【分析】(1)根据题中所给条件证明△ABE≌△ADF即可.(2)如图2,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合,证明△EAF≌△E'AF(SAS),得EF=E'F,可得结论;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,通过角的计算可得出∠EAF′=∠EAF,结合AF=AF′、AE=AE即可证出△EAF≌△EAF′(SAS),进而得出EF=EF′,即可得出结论.【解答】证明:(1)∵正方形ABCD是正方形,∴AD=AB,∠BAD=∠B=∠ADC=90°,∵∠EAF=90°,∴∠BAE+∠EAD=∠EAD+∠DAF=90°,∴∠BAE=∠DAF,在△BAE和△DAF中,∵,∴△ABE≌△ADF(ASA),∴BE=DF;(2)如图2,∵AD=AB,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合.由旋转可得∠BAE =∠DAE',BE=DE',∠B=∠ADE'=90°.∴∠ADF+∠ADE'=90°+90°=180°,∴点F、D、E'在同一条直线上,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠DAE'=45°=∠EAF,在△EAF和△E'AF中,∵,∴△EAF≌△E'AF(SAS),∴EF=E'F,∵E'F=DF+DE'=DF+BE,∴EF=BE+DF;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,如图3所示,由四边形ABCD为正方形可知点B、C、F′在一条直线上,∵∠BAF′=∠DAF,∠EAF=∠EAD+∠DAF=45°,∴∠EAF′+∠EAD+∠DAF=90°,∴∠EAF′=∠EAF=45°.在△EAF和△EAF′中,,∴△EAF≌△EAF′(SAS),∴EF=EF′,∴EF=EF'=BE﹣BF'=BE﹣DF=15﹣2=13.【点评】本题是四边形的综合题,考查了全等三角形的判定与性质以及正方形的性质,熟练掌握全等三角形的判定与性质是解题的关键,在正方形中可利用旋转作辅助线构建三角形全等.。

相关文档
最新文档