离散数学例题整编
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。
离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。
2. 存在三个可识别的状态A,B,C。
置换群 $S_3$ 作用在状态集上。
定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。
确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。
3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。
4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。
b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。
答案1. $A \cap B = \{2,4,6\}$。
2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。
这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。
所以合数的个数不小于任意$n$。
4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。
如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。
所以从这条路径中任意取出的子路径都是最短路径。
b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。
因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。
所以从$i$到$j$的最短路径可能不唯一。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。
A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。
A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。
A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。
A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。
A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。
A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。
A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。
A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。
A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。
答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。
全版离散数学 练习题及答案.ppt

课件
例3 对任意两个集合A, B,试证 A (A B) A B
证明 对于任意的x
x A (A B)
x {x x A x ( A B)} x {x x A (x A B)} x {x x A (x A x B)} x {x x A (x A x B)} x {x x A x B}
课件
例10 求图的最小生成树
A 1B34 Nhomakorabea5
2 E
6
1A 2
B
E
4
6
C7 D
C
D
课件
例11
• 无向树T有7片树叶, 3个3度顶点,其余的 都是4度顶点,则T有几个4度顶点?
• 解:设T有x个4度顶点 顶点度数之和: 7+3*3+4x 由树的性质可得总边数: 7+3+x-1 由握手原理可得: 7+3*3+4x=2(7+3+x-1)
求g f
g f { 1,b , 2,b , 3,b }
课件
例12 求复合函数
X {1,2,3}, Y {p, q}, Z {a,b} f { 1, p , 2, p , 3, q } g { p,b , q,b }
求g f
g f { 1,b , 2,b , 3,b }
课件
例: 求幺元、零元、逆元
x A B 因为 x 是任意的,所以有
x ((x A (A B)) (x A B)) 的真值为T,
因此 A ( A B)课件 A B
例4 判断关系的性质
R1 { a, a , a,b , b,b , c,c }
a
1 1 0
M R 1 0 1 0
0 0 1
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。
A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。
B. 有些狗不会游泳。
C. 所有的狗都不会游泳。
D. 以上都不是真命题。
4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。
A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。
B. 有些鸟不会飞。
C. 所有的哺乳动物都是温血动物。
D. 以上都不是假命题。
9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。
A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。
A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。
2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。
离散数学习题集十五套含答案

离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(N:自然数集,E+正偶数)则=⋃BA{0,1,2,3,4,6} 。
2.A,B,C表示三个集合,文图中阴影部分的集合表达式为ACB-⊕)(。
3.设P,Q 的真值为0,R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。
4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。
5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。
6.设A={1,2,3,4},A上关系图为则R2 = {<>,<a,c>,<a,d>,<b,d>,<c,d> 。
7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<>,<a,c>,<a,d>,<b,d>,<c,d>}IA。
8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:* a b c dabcda b c db c d ac d a bd a b c那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。
10.下图所示的偏序集中,是格的为 c 。
二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有( C )个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;A BCB .若R ,S 是反自反的, 则S R 是反自反的;C .若R ,S 是对称的, 则S R 是对称的;D .若R ,S 是传递的, 则S R 是传递的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章定律证明:(1) A⋃B=B⋃A (交换律)证∀x x∈A⋃B⇒ x∈A 或x∈B, 自然有x∈B 或x∈A ⇒ x∈B⋃A得证A⋃B⊆B⋃A.同理可证B⋃A⊆A⋃B.(2) A⋃(B⋂C)=(A⋃B)⋂(A⋃C) (分配律) 证∀x x∈A⋃(B⋂C)⇒ x∈A或(x∈B且x∈C )⇒(x∈A或x∈B)且(x∈A或x∈C)⇒x∈(A⋃B)⋂(A⋃C)得证A⋃(B⋂C)⊆(A⋃B)⋂(A⋃C).类似可证(A⋃B)⋂(A⋃C)⊆A⋃(B⋂C). (3) A⋃E=E (零律)证根据并的定义, 有E⊆A⋃E.根据全集的定义, 又有A⋃ E⊆E. (4) A⋂E=A (同一律)证根据交的定义, 有A⋂E⊆A.又, ∀x x∈A,根据全集E的定义,x∈E, 从而x∈A且x∈E,⇒x∈A⋂E得证A⊆A⋂E.例4 证明A⋃(A⋂B)=A(吸收律)证利用例3证明的4条等式证明A⋃(A⋂B)= (A⋂E)⋃(A⋂B) (同一律)= A⋂(E⋃B) (分配律)= A⋂(B⋃E) (交换律)= A⋂E (零律)= A (同一律)例5 证明(A-B)-C=(A-C)-(B-C)证(A-C)-(B-C)= (A ⋂~C) ⋂ ~(B ⋂ ~C) (补交转换律)= (A ⋂~C) ⋂ (~B ⋃ ~~C) (德摩根律)= (A ⋂~C) ⋂ (~B ⋃ C) (双重否定律)= (A ⋂~C⋂ ~B)⋃(A ⋂~C⋂ C) (分配律)= (A ⋂~C⋂ ~B)⋃(A ⋂∅) (矛盾律)= A ⋂~C⋂ ~B (零律,同一律)= (A ⋂~B) ⋂ ~C (交换律,结合律)= (A –B) –C (补交转换律)例6 证明(A⋃B)⊕(A⋃C)= (B⊕C) - A证(A⋃B)⊕(A⋃C)=((A⋃B) - (A⋃C))⋃((A⋃C) - (A⋃B))=((A⋃B)⋂~A⋂~C)⋃((A⋃C)⋂~A⋂~B)= (B⋂~A⋂~C)⋃(C⋂~A⋂~B)=((B⋂~C)⋃(C⋂~B))⋂~A=((B-C)⋃(C-B))⋂~A= (B⊕C) - A例7 设A,B为任意集合, 证明:若A⊆B, 则P(A)⊆P(B)证∀x x∈P(A) ⇔x⊆A⇒x⊆B (已知A⊆B)⇔x∈P(B)例8 证明A⊕B=A⋃B-A⋂B.A⊕B=(A⋂~B)⋃(~A⋂B)=(A⋃~A)⋂(A⋃B)⋂(~B⋃~A)⋂(~B⋃B)=(A⋃B)⋂(~B⋃~A)=(A⋃B)⋂~(A⋂B)=A⋃B-A⋂B直接法若n是奇数, 则n2也是奇数.假设n是奇数, 则存在k∈N, n=2k+1.于是n2 = (2k+1)2 = 2(2k2+2k)+1得证n2是奇数.间接法若n2是奇数, 则n也是奇数.只证:若n是偶数, 则n2也是偶数.假设n是偶数, 则存在k∈N, n=2k.于是n2 = (2k)2= 2(2k2)得证n2是偶数.归谬法若A-B=A, 则A⋂B=∅证用归谬法, 假设A⋂B≠∅, 则存在x,使得x∈A⋂B ⇔x∈A且x∈B⇒x∈A-B且x∈B(A-B=A)⇔ (x∈A且x∉B)且x∈B⇒x∉B且x∈B, 矛盾构造性对每正整数n, 存n个连的正合数. 证令x=(n+1)! +1考虑如下n个连续正整数:x+1, x+2,…, x+n,对于i(i=1,2,3,…,n),x+i=(n+1)! +(1+i),此式含有因子1+i,而1+i不等于1也不等于x+i,因此x+i是合数。
所以x+1, x+2,…,x+n是n个连续的正合数。
非构造性对每个正整数n, 存在大于n的素数.令x等于所有小于等于n的素数的乘积加1,则x不能被所有小于等于n的素数整除.于是, x或者是素数, 或者能被大于n的素数整除.因此,存在大于n的素数.数学归:对所有n≥1, 1+3+5+ …+(2n-1)=n2归纳基础. 当n=1时, 1=12, 结论成立.归纳步骤. 假设对n(n≥1)结论成立,则考虑n+1的情况有1+3+5+ …+(2n-1)+(2n+1)=n2 +(2n+1) = (n+1)2得证当n+1时结论也成立.第二数学归任>=2的整数均可表成素数的乘积证归纳基础. 对于2, 结论显然成立.归纳步骤. 假设对所有的k(2≤k≤n)结论成立, 要证结论对n+1也成立. 若n+1是素数, 则结论成立; 否则n+1=ab, 2≤a,b<n. 由归纳假设, a,b均可表成素数的乘积, 从而n+1 也可表成素数的乘积. 得证结论对n+1成立.命题为假的证明——举反例例11 证明下述命题不成立:若A⋂B=A⋂C, 则B=C.证明反例: 取A={a,b}, B={a,b,c}, C={a,b,d},有A⋂B=A⋂C = {a,b}但B≠C, 故命题不成立.第二章例3 证明p→(q→r) ⇔ (p∧q)→r证p→(q→r)⇔⌝p∨(⌝q∨r) (蕴涵等值式)⇔ (⌝p∨⌝q)∨r(结合律)⇔⌝(p∧q)∨r(德摩根律)⇔ (p∧q) →r(蕴涵等值式)(1) q∧⌝(p→q)解q∧⌝(p→q)⇔q∧⌝(⌝p∨q) (蕴涵等值式)⇔q∧(p∧⌝q) (德摩根律)⇔p∧(q∧⌝q) (交换律,结合律)⇔p∧0 (矛盾律)⇔ 0 (零律)该式为矛盾式.(2) (p→q)↔(⌝q→⌝p)解(p→q)↔(⌝q→⌝p)⇔ (⌝p∨q)↔(q∨⌝p) (蕴涵等值式)⇔ (⌝p∨q)↔(⌝p∨q) (交换律)⇔ 1该式为重言式.⌝(p→q)∨⌝r 的析取范式与合取范式解⌝(p→q)∨⌝r⇔⌝(⌝p∨q)∨⌝r⇔ (p∧⌝q)∨⌝r析取范式⇔ (p∨⌝r)∧(⌝q∨⌝r) 合取范式⌝(p→q)∨⌝r 的主析取范式主合取范式解(1) ⌝(p→q)∨⌝r⇔ (p∧⌝q)∨⌝rp∧⌝q⇔ (p∧⌝q)∧1 同一律⇔ (p∧⌝q)∧(⌝r∨r) 排中律⇔ (p∧⌝q∧⌝r)∨(p∧⌝q∧r) 分配律⇔m4∨m5⌝r ⇔ (⌝p∨p)∧(⌝q∨q)∧⌝r 同一律, 排中律⇔ (⌝p∧⌝q∧⌝r)∨(⌝p∧q∧⌝r)∨(p∧⌝q∧⌝r)∨(p∧q∧⌝r) ⇔m0∨m2∨m4∨m6 分配律得⌝(p→q)∨⌝r⇔m0∨m2∨m4 ∨m5 ∨m6可记作⇔∑(0,2,4,5,6)(2) ⌝(p→q)∨⌝r⇔ (p∨⌝r)∧(⌝q∨⌝r)p∨⌝r⇔p∨0∨⌝r 同一律⇔p∨(q∧⌝q)∨⌝r 矛盾律⇔ (p∨q∨⌝r)∧(p∨⌝q∨⌝r)分配律⇔M1∧M3⌝q∨⌝r⇔ (p∧⌝p)∨⌝q∨⌝r 同一律, 矛盾律⇔ (p∨⌝q∨⌝r)∧(⌝p∨⌝q∨⌝r) 分配律⇔M3∧M7得⌝(p→q)∨⌝r⇔M1∧M3∧M7可记作⇔∏(1,3,7)快速求A ⇔ (⌝p∧q)∨(⌝p∧⌝q∧r)∨r的主析取范式(1) ⌝p∧q⇔ (⌝p∧q∧⌝r)∨(⌝p∧q∧r) ⇔m2∨m3⌝p∧⌝q∧r⇔m1r⇔(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)⇔m1∨m3∨m5∨m7得A⇔m1∨m2∨m3∨m5∨m7 ⇔∑(1,2,3,5,7) (2) 求B⇔⌝p∧(p∨q∨⌝r)的主合取范式解⌝p⇔ (⌝p∨q∨r)∧(⌝p∨q∨⌝r)∧(⌝p∨⌝q∨r)∧(⌝p∨⌝q∨⌝r)⇔M4∧M5∧M6∧M7p∨q∨⌝r⇔M1得B⇔M1∧M4∧M5∧M6∧M7 ⇔∏(1,4,5,6,7)例3 用主析取范式判断公式的类型:(1) A⇔⌝(p→q)∧q (3) C⇔ (p∨q)→rA⇔⌝(⌝p∨q)∧q ⇔ ( p∧⌝q)∧q ⇔ 0 矛盾式(2) B⇔p→(p∨q)B⇔⌝p∨(p∨q) ⇔ 1 ⇔m0∨m1∨m2∨m3重言式(3) C⇔ (p∨q)→rC ⇔⌝(p∨q)∨r ⇔ (⌝p∧⌝q)∨r⇔ (⌝p∧⌝q∧r)∨(⌝p∧⌝q∧⌝r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)⇔ m0∨m1∨m3∨m5∨m7非重言式的可满足式用主析取范式判断下面2组公式是否等值:(1) p与(⌝p∨q)→(p∧q)解p ⇔p∧(⌝q∨q) ⇔ (p∧⌝q)∨(p∧q) ⇔m2∨m3 (⌝p∨q)→(p∧q) ⇔⌝(⌝p∨q)∨(p∧q)⇔ (p∧⌝q)∨(p∧q) ⇔m2∨m3故p ⇔ (⌝p∨q)→(p∧q)(2) (p∧q)∨r 与p∧(q∨r)解(p∧q)∨r⇔ (p∧q∧⌝r)∨(p∧q∧r) ∨(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)⇔ m1∨m3∨m5∨m6∨m7p∧(q∨r) ⇔ (p∧q)∨(p∧r)⇔(p∧q∧⌝r)∨(p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)⇔ m5∨m6∨m7故(p∧q)∨r 不等于p∧(q∨r)例5 某单位要从A,B,C三人中选派若干人出国考察, 需满足下述条件:(1) 若A去, 则C必须去;(2) 若B去, 则C不能去;(3) A和B必须去一人且只能去一人.问有几种可能的选派方案?解记p:派A去, q:派B去, r:派C去(1) p→r, (2) q→⌝r, (3) (p∧⌝q)∨(⌝p∧q)求下式的成真赋值A=(p→r)∧(q→⌝r)∧((p∧⌝q)∨(⌝p∧q))求A的主析取范式A=(p→r)∧(q→⌝r)∧((p∧⌝q)∨(⌝p∧q))⇔ (⌝p∨r)∧(⌝q∨⌝r)∧((p∧⌝q)∨(⌝p∧q))⇔ ((⌝p∧⌝q)∨(⌝p∧⌝r)∨(r∧⌝q)∨(r∧⌝r)) ∧((p∧⌝q)∨(⌝p∧q))⇔ ((⌝p∧⌝q)∧(p∧⌝q))∨((⌝p∧⌝r)∧(p∧⌝q)) ∨((r∧⌝q)∧(p∧⌝q))∨((⌝p∧⌝q)∧(⌝p∧q))∨((⌝p∧⌝r)∧(⌝p∧q))∨((r∧⌝q)∧(⌝p∧q)) ⇔ (p∧⌝q∧r)∨(⌝p∧q∧⌝r)成真赋值:101,010结论: 方案1 派A与C去方案2派B去A=(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧q∧r)的主合取范式解 A ⇔m1∨m3∨m7⇔M0∧M2∧M4∧M5∧M6第二章判断若今天是1号, 则明天是5号.今天是1号. 所以, 明天是5号.解设p: 今天是1号, q: 明天是5号推理的形式结构为(p q)p q证明用等值演算法(p q)p q((p q)p)q((p q)p)qp q q 1得证推理正确判断若下午气温超过30度, 则小燕必去游泳,若她去游泳她就不去看电影了. 所以若小燕没去看电影, 下午气温必定超过了30度. m1解设p: 下午气温超过30度, q: 小燕去游泳,r: 小燕去看电影.推理的形式结构为((p q)q r)r p)证明主析取范式法((p q)q r)r p)p rm1∨m3∨m4∨m5∨m6 ∨m7主析取范式中缺少m0,m2,不是重言式,不正确。