2019_2020学年新教材高中物理科学思维系列——圆周运动中的连接体问题、临界问题新人教版必修第二册
生活中的圆周运动(连接体问题)教学设计 高一下学期物理人教版(2019)必修第二册

“一课一研精准教学”记录表年 级 学 科 物理 分包领导 备课时间 备课地点 物理备课组 主备人 备课主题 圆周运动中的连接体问题 一、精准讲解:圆周运动中的连接体问题,是指两个或两个以上的物体通过一定的约束绕同一转轴做圆周运动的问题。
这种问题的一般解题思路是:分别隔离物体,准确地进行受力分析,正确画出受力示意图,确定轨道平面和半径,注意约束关系。
在连接体的圆周运动问题中,角速度相同是一种常见的约束关系。
常见实例如下: 情景示例 情景图示情景说明情景1两小球固定在轻杆M 、N 两点上,随杆一起绕杆的端点O 做圆周运动。
注意:计算杆OM 段的拉力时,应以M 点的小球为研究对象,而不能以M 、N 两点的小球整体为研究对象。
情景2A 、B 两物块用细绳相连沿半径方向放在转盘上,随转盘一起转动,当转盘转速逐渐增大时,物块B 先达到其最大静摩擦力,转速再增加,则A 、B 间绳子开始有拉力,当A 受到的静摩擦力达到其最大值后两物块开始滑动(设A 、B 两物块与转盘间的动摩擦因数相等)情景3A 、B 两物块叠放在一起随转盘一起转动,当求转盘对物体B 的摩擦力时,取A 、B 整体为研究对象比较简单;当研究A 、B 谁先发生离心运动时,注意比较两接触面间的动摩擦因数大小情景4A 、B 两小球用轻线相连穿在光滑轻杆上随杆绕转轴O 在水平面内做圆周运动时,两球所受向心力大小相等,角速度相同,圆周运动的轨道半径与小球质量成反比。
例一:如图所示,轻杆长3L ,在杆两端分别固定质量为m 的球A 和质量为2m 的球B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球A 运动到最高点时,杆对球A 恰好无作用力。
忽略空气阻力,重力加速度为g ,则球A 在最高点时(D )A .球A 的速度为零B .水平转轴对杆的作用力大小为4mg ,方向竖直向上C .水平转轴对杆的作用力大小为3mg ,方向竖直向上D .水平转轴对杆的作用力大小为6mg ,方向竖直向上 例二:如图所示,两个可视为质点的、相同的木块A 和B 放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K 倍,A 放在距离转轴L 处,整个装置能绕通过转盘中心的转轴O 1O 2转动(重力加速度为g )。
高中物理转盘连接体问题

高中物理转盘连接体问题高中物理中的转盘连接体问题是指有两个或多个转盘通过轴连接在一起的物理问题。
这种问题一般涉及到力的传递、转动惯量和角加速度等概念。
下面将详细讨论该问题。
首先,我们来考虑两个转盘通过轴连接在一起的情况。
设转盘1的转动惯量为I₁,转盘2的转动惯量为I₂,通过轴连接的转动惯量为I₃。
假设外力作用在转盘1上,转盘2无外力作用。
根据动量守恒定律,外力对转盘1的扭矩τ₁等于转盘1的转动惯量I₁乘以角加速度α:τ₁ = I₁α₁根据转盘2的转动惯量和角加速度,可以得到转盘2的角加速度α₂:τ₂ = I₂α₂由于转盘1和转盘2通过轴连接在一起,因此它们的角加速度相等:α₁ = α₂ = α而两个转动物体的牵引力的作用点重合,所以τ₁ = τ₂,从而有:I₁α = I₂α由此得到:I₁α = I₂α(I₁ + I₂)α = 0当(I₁ + I₂) ≠ 0时,上式成立的唯一解是α = 0,即两个转盘的角加速度为0.这说明,当通过轴连接的转动惯量不为零时,两个转盘的角加速度相等且均为零,即它们将保持静止。
对于多个转盘通过轴连接在一起的情况,同样可以推导类似的结论。
假设第i个转盘的转动惯量为Iᵢ,通过轴连接的转动惯量为Iₙ,其中n为转盘的个数。
根据动量守恒定律和转动的叠加原理,可以得到:τ₁ + τ₂ + ... + τₙ = I₁α + I₂α + ... + Iₙα(I₁ + I₂ + ... + Iₙ)α = 0当(I₁ + I₂ + ... + Iₙ) ≠ 0时,上式成立的唯一解是α = 0,即所有转盘的角加速度为零。
这说明,当通过轴连接的转动惯量之和不为零时,所有转盘的角加速度均为零,它们将保持静止。
总结起来,转盘连接体问题中,通过轴连接的转动惯量之和为零时,转盘将保持静止;当转动惯量之和不为零时,转盘将保持静止。
这是由于转盘的转动惯量和角加速度之间存在一种固定的关系,通过轴连接的转动惯量之和可以看作是一个整体的转动惯量,在外力作用下,整体将保持静止。
(精品讲义)新高一物理衔接课程 第16讲 连接体问题

第16讲 连接体问题一、连接体:运动中几个物体或叠放在一起,或并排挤放在一起,或用轻绳、轻杆、轻弹簧连接在一起的物体组。
常见的连接体一般具有速度、加速度大小相同的特点。
二、解决这类问题的基本方法:整体法和隔离法思考与练习:1.如图,不计绳的质量及绳与滑轮的摩擦,物体A 的质量为M ,水平面光滑,当在绳B 端挂一质量为m 的物体时,物体A 的加速度为a 1,当在绳B 端施以F =mg 的竖直向下的拉力作用时,A 的加速度为a 2,则a 1与a 2的大小关系是( 答案:C )A .a 1=a 2B .a 1>a 2C .a 1<a 2D .无法确定解析:挂m 时,mg =(m +M )a 1,a 1=m m +Mg ;用F =mg 拉时,mg =Ma 2,a 2=m M g 2. 如图,A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿水平面匀加速向右运动,求下面几种情况下A 、B 间的弹力。
⑴ 水平面光滑⑵ 水平面摩擦系数μ⑶ 斜面光滑⑷ 斜面摩擦系数μ3. 如图,放在光滑水平面上的物体A和B质量分别为M和m,水平恒力F作用在A上,A、B间的作用力为F1;水平恒力F作用在B上,A、B间作用力为F2,则( AC ) A.F1+F2=F B.F1=F2C.F1/F2=m/M D.F1/F2=M/m4. 如图,五块完全相同的木块并排放在水平地面上,它们与地面间的摩擦不计.当用力F 推1使它们共同加速运动时,第2块木块对第3块木块的推力为___答案:F 53___.5.一根质量分布均匀的长绳AB ,在水平外力F 的作用下,沿光滑水平面做直线运动,如图甲所示.绳内距A 端x 处的张力F T 与x 的关系如图乙所示,由图可知(答案:AC )A .水平外力F =6 NB .绳子的质量m =3 kgC .绳子的长度l =2 mD .绳子的加速度a =2 m/s 2解析:取x =0,即A 端进行受力分析,F -F T =ma ,又A 端质量趋近于零,则F =F T =6 N ,A 正确;由于不知绳子的加速度,其质量也无法得知,B 、D 均错误;由图易知C 正确.6.如图,质量相同的物体1和2紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2,则1施于2的作用力大小为( 答案:D )A .F 1B .F 1-F 2 C. 12(F 1-F 2) D. 12(F 1+F 2) 解析:因为F 1>F 2,物体1和2一起以相同的加速度a 向右做匀加速直线运动,将1和2作为一个整体,有:F 1-F 2=2ma ,∴ a =F 1-F 22m. 要求1施于2的作用力F N ,应将1和2隔离,对物体2, F N -F 2=ma ,∴ F N =F 2+ma =12(F 1+F 2). 7. 如图,物体abc 叠放在水平桌面上,水平力F b =5 N ,F c =10 N 分别作用于物体b 、c 上,abc 仍保持静止.以f 1、f 2、f 3分别表示a 与b 、b 与c 、c 与桌面间的静摩擦力的大小,则( 答案:C )A. f 1=5N ,f 2=0,f 3=5NB. f 1=5N ,f 2=5N ,f 3=0C. f 1=0,f 2=5N ,f 3=5ND. f 1=0,f 2=10N ,f 3=5N8.在光滑水平面上有一小车A ,质量m A =2.0 kg ,小车上放一个物体B ,质量m B =1.0 kg ,给B 一个水平推力F ,如图甲,当F 增大到稍大于3.0 N 时,A 、B 开始相对滑动.若撤去F ,对A 施加一水平推力F ′,如图乙,要使A 、B 不相对滑动,求F ′的最大值Fmax .解析:对甲图,F =(m A +m B )a ,F f max =m A a对乙图,F f max =m B a ′,F max =(m A +m B )a ′,得F max =6.0 N.9.如图,A 、B 质量分别为m A 和m B ,叠放在倾角为θ的斜面上以相同的速度匀速下滑,则( 答案:BCD )A .A 、B 间无摩擦力作用B .B 受到的滑动摩擦力大小为(m A +m B )g sin θC .B 受到的静摩擦力大小为m A g sin θD .取下A 物体后,B 物体仍能匀速下滑解析:对AB 整体,(m A +m B )g sin θ=μ(m A +m B )g ,B 正确.对A ,静摩擦力f =m A g sin θ,C 正确,A 错误。
第四章--运动和力的关系--连接体问题(课件)-高中物理课件(人教版2019必修第一册)

m1 m2
擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同),与两物体间有无连接物
、何种连接物(轻绳、轻杆、轻弹簧)无关,与物体系统处于平面、斜面、竖直无关。
四.连接体问题的分析方法——整体法与隔离法
项目
适用条件
注意事项
优点
整 系统内各物体保持相
只分析系统外力,不分析系统内各 便于求解系统受到的
FN
FAB
mg
F ( m A mB ) g
a
mA mB
FAB
mB
F
mA mB
【例题2】两个物体A和B,质量分别为mA和mB,互相接触放在摩擦因数为µ水平地
面上,如图所示,对物体A施以水平的推力F,则物体A对物体B的作用力是?
FN
Ff
F
F
A
mA
B
mB
( m A mB ) g
图所示,对物体A施以水平的推力F,则物体A对物体B的作用力是?
FN
F
F
A
mA
( m A mB ) g
B
mB
FN
FAB
mg
解:根据题意对A、B整体进行受力分析
隔离B,对B进行受力分析:
FAB mB a
F (mA mB )a
F
a
mA mB
故 FAB
推荐方法
mB
F
mA mB
【例题2】两个物体A和B,质量分别为mA和mB,互相接触放在摩擦因数为µ水平地面
2.整体法可以求系统的加速度或外界对系统的作用力。整体法不涉及系统
间物体相互作用的内力。
3.若系统内各个物体具有相同的加速度a,整体所受到的合力为F,牛顿第
圆周运动连接体问题

圆周运动连接体问题圆周运动连接体问题,听起来是不是有点高深莫测?别担心,咱们一点点儿捋清楚,慢慢理解。
这其实就跟我们日常生活中看到的很多场景有关系,虽然表面上看不出什么复杂的数学公式,但如果你仔细琢磨,就能发现很多原理和规律其实都藏在我们身边。
比如,坐摩天轮时,你就能直观地体会到圆周运动。
你想啊,当你坐在摩天轮的车厢里,车厢沿着一条圆形轨道转圈,不停地上下波动,你就是这个运动的一部分。
圆周运动就是物体沿着圆形轨迹做运动的方式。
比如,地球围绕太阳转,月亮围绕地球转,甚至你拿着手机拍照时,那旋转的镜头,也是个小小的圆周运动。
圆周运动连接体问题,通俗点说就是研究那些参与圆周运动的物体,它们之间怎么相互影响的。
就拿你坐摩天轮这个事儿来说吧。
你和摩天轮的车厢之间是不是有一个“连接”?你坐在车厢里,车厢在转,你和车厢之间就形成了一个“连接体”,而这个连接体会让你感受到一种叫做“向心力”的力量,这个力量的作用就是把你拉向圆心。
你转的时候感觉身体有点往外甩,那就是因为你想要继续沿着圆轨道转,而这个拉力让你保持在轨道上。
这时候你可能会问了,为什么坐摩天轮会感觉到这种力?你不觉得奇怪吗?其实这个力叫做“离心力”,虽然它听起来像是你要飞出摩天轮了,但实际上,离心力并不是一种真正存在的力。
它只是你因为转动而产生的惯性力,换句话说,当你转动时,你的身体并不想随同车厢一起转,它宁愿“飞出去”。
而车厢则像一个老大哥,牢牢地把你拖住,保持你在车厢内。
而向心力就是那个“老大哥”,它使得你始终保持在车厢里,不会被甩出去。
如果你还觉得有点晕,没关系,咱再举个简单的例子。
你玩甩鞭子的时候,不也是一样的吗?你把鞭子在手里甩来甩去,鞭子的末端就会做圆周运动,而你手里拉住鞭子的部分就像是摩天轮上的车厢,保持着对鞭子末端的控制。
而那条鞭子的末端会感受到一个向心力,就是你的手施加在鞭子上的力,使得它不至于飞出去。
这个例子是不是更形象了点?你看,这些看似简单的动作,背后其实有很多物理原理在支撑。
圆周运动中的连接体问题、临界问题—人教版高中物理必修二课件(共15张ppt)

2
7
解析:C 错:两个人做圆周运动,向心力的大小相等,质量 不同,角速度相同,所以他们的运动半径不同.D 对:设甲的半 径为 R1,则乙的半径为 0.9 m-R1,故 m 甲 ω2R1=m 乙 ω2(0.9 m- R1),解得 R1=0.3 m.B 错:再根据 9.2 N=m 甲 ω2R1 可知,角速 度 ω≈0.62 rad/s.A 错:两个人的角速度相同,半径不同,故他 们的线速度不相同.
互为向心力,角速度相同.设两球所需的向心力大小为 Fn,角 速度为 ω,则
对球 m1:Fn=m1ω2r1, 对球 m2:Fn=m2ω2r2, 由上述两式得 r1:r2=1:2. 答案:D
2
6
变式训练 2 甲、乙两名溜冰运动员,m 甲=80 kg,m 乙=40 kg,面对面拉着弹簧测力计做圆周运动的溜冰表演,如图所示.两 人相距 0.9 m,弹簧测力计的示数为 9.2 N,下列判断中正确的是
【答案】 D
2
11
变式训练 3 如图所示,两绳系一质量为 0.1 kg 的小球,两 绳的另一端分别固定于轴的 A、B 两处,上面绳长 2 m,两绳拉 直时与轴的夹角分别为 30°和 45°,问球的角速度在什么范围内 两绳始终都有张力?(g 取 10 m/s2)
2
12
解析:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如
10
rad/s 时,两绳始终都有张力.
答案:
10 3 3
rad/s<ω<
10
rad/s
2020学年新教材高中物理 科学思维系列——圆周运动中的连接体问题、临界问题 新人教版必修第二册

科学思维系列——圆周运动中的连接体问题、临界问题一、圆周运动中的连接体问题圆周运动中的连接体问题,是指两个或两个以上的物体通过一定的约束绕同一转轴做圆周运动的问题.这类问题的一般求解思路是:分别隔离物体,准确分析受力,正确画出受力图,确定轨道半径,注意约束关系(在连接体的圆周运动问题中,角速度相同是一种常见的约束关系).【典例1】在一个水平转台上放有质量相等的A、B两个物体,用一轻杆相连,AB连线沿半径方向.A与平台间有摩擦,B与平台间的摩擦可忽略不计,A、B到平台转轴的距离分别为L、2L.某时刻一起随平台以ω的角速度绕OO′轴做匀速圆周运动.A与平台间的摩擦力大小为F f A,杆的弹力大小为F.现把转动角速度提高至2ω.A、B仍各自在原位置随平台一起绕OO′轴匀速圆周运动,则下面说法正确的是( )A.F f A、F均增加为原来的4倍B.F f A、F均增加为原来的2倍C.F f A大于原来的4倍,F等于原来的2倍D.F f A、F增加后,均小于原来的4倍【解析】根据牛顿第二定律,对A:F f A-F=mω2r A①,对B:F=mω2r B②.当ω增大到2ω时,由②式知,F增加到原来的4倍;由①式知:F f A=F+mω2r A,F f A增加为原来的4倍.故选A.【答案】 A变式训练1 如图所示,在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当杆匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r1与r 2之比为( )A.1:1 B.1: 2C.2:1 D.1:2解析:两个小球绕共同的圆心做圆周运动,它们之间的拉力互为向心力,角速度相同.设两球所需的向心力大小为F n,角速度为ω,则对球m1:F n=m1ω2r1,对球m2:F n=m2ω2r2,由上述两式得r1r2=1:2.答案:D变式训练2 甲、乙两名溜冰运动员,m甲=80 kg,m乙=40 kg,面对面拉着弹簧测力计做圆周运动的溜冰表演,如图所示.两人相距0.9 m,弹簧测力计的示数为9.2 N,下列判断中正确的是( )A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为5 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:C错:两个人做圆周运动,向心力的大小相等,质量不同,角速度相同,所以他们的运动半径不同.D对:设甲的半径为R1,则乙的半径为0.9 m-R1,故m甲ω2R1=m乙ω2(0.9 m-R1),解得R1=0.3 m.B错:再根据9.2 N=m甲ω2R1可知,角速度ω≈0.62 rad/s.A错:两个人的角速度相同,半径不同,故他们的线速度不相同.答案:D二、圆周运动中临界问题的解题策略关于圆周运动的临界问题,要特别注意分析物体做圆周运动的向心力来源,考虑达到临界条件时物体所处的状态,即临界速度、临界角速度,然后分析该状态下物体的受力特点,结合圆周运动知识列方程求解.(1)与绳的弹力有关的临界问题:此问题要分析出绳子恰好无弹力(或恰好断裂)这一临界状态下的角速度(或线速度)等.(2)与支持面弹力有关的临界问题:此问题要分析出恰好无支持力这一临界状态下的角速度(或线速度)等.(3)因静摩擦力而产生的临界问题:此问题要分析出静摩擦力达到最大这一临界状态下的角速度(或线速度)等.【典例2】如图所示,在光滑水平面上相距20 cm处有两个钉子A和B,长1.2 m的细绳一端系着质量为0.5 kg的小球,另一端固定在钉子A上.开始时,小球和钉子A、B在同一直线上,小球始终以2 m/s 的速率在水平面内做匀速圆周运动.若细绳能承受的最大拉力是5 N ,则从开始到细绳断开所经历的时间是( )A .1.2π s B.1.4π s C .1.8π s D.2π s【解析】 小球每转过180°,转动半径就减小x =0.20 m ,所需向心力F =mv 2L -nx(n =0,1,2,…),由F ≤5 N ,可得n ≤4,即小球转动半径缩短了4次,细绳第5次碰到钉子瞬间后,细绳断开.从开始到细绳断开,每转半周小球转动半径分别为L 、L -x 、L -2x 、L -3x 、L -4x ,则运动时间t =π5L -10xv.【答案】 D变式训练3 如图所示,两绳系一质量为0.1 kg 的小球,两绳的另一端分别固定于轴的A 、B 两处,上面绳长2 m ,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终都有张力?(g 取10 m/s 2)解析:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如图甲所示.由牛顿第二定律得:mg tan 30°=mω21r ,又有r =L s in 30°,解得ω1=1033rad/s ; 当下绳绷紧,上绳恰好伸直无张力时,小球受力如图乙所示. 由牛顿第二定律得:mg tan 45°=mω22r ,解得ω2=10 rad/s ,故当 1033rad/s<ω<10 rad/s 时,两绳始终都有张力.答案:1033rad/s<ω<10 rad/s。
(最新优质)高一物理专题五 : 圆周运动中的动力学 学科素养部分(附解析)

专题五圆周运动中的动力学学科素养部分一.核心素养聚焦考点一物理观念水平面内圆周运动与相互作用的观念例题1.质量不计的轻质弹性杆P插入桌面上的小孔中,杆的另一端套有一个质量为m的小球,今使小球在水平面内做半径为R的匀速圆周运动,且角速度为ω,如图所示,则杆的上端受到球对其作用力的大小为()A.mω2R B.m g2-ω4R2C.m g2+ω4R2D.不能确定【答案】C【解析】对小球进行受力分析,小球受两个力:一个是重力mg,另一个是杆对小球的作用力F,两个力的合力充当向心力.由平行四边形定则可得:F=m g2+ω4R2,再根据牛顿第三定律,可知杆受到球对其作用力的大小为F=m g2+ω4R2.故选项C正确.考点二.科学思维圆周运动中临界问题例题2.如图所示,置于圆形水平转台上的小物块随转台转动.若转台以角速度ω0=2rad/s.转动时,物块恰好与平台发生相对滑动.现测得小物块与转轴间的距离l1=0.50m,设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2.则( AC )A.小物块与转台间的摩擦因数为μ=0.2B.若小物块与转轴间距离变为l2=1.0m,则水平转台转动的角速度最大为1rad/s.C.若小物块与转轴间距离变为l2=1.0m,则水平转台转动的角速度最大为2rad/s.D. 若小物块质量变为原来2倍,则水平转台转动的角速度最大为2rad/s【答案】AC【解析】物块恰好与平台发生相对滑动时摩擦力恰好等于最大静摩擦力.由于物块在水平面内做圆周运动,向心力只能由摩擦力提供,故有21ωμml mg =,解得2.0201==gl ωμ,A 正确。
若22m ml mg ωμ=,可知最大角速度s rad l gm /22==μω,B 错误C 正确。
若小物块质量变为原来2倍,虽然物块所受静摩擦力的最大值变为原来的2倍,但同样角速度的情况下物体所需向心力也是原来的2倍,故不发生相对滑动的最大角速度与原来相同,或直接由lgm μω=可以看出故不发生相对滑动的最大角速度与物块的质量无关,D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学思维系列——圆周运动中的连接体问题、临界问题
一、圆周运动中的连接体问题
圆周运动中的连接体问题,是指两个或两个以上的物体通过一定的约束绕同一转轴做圆周运动的问题.这类问题的一般求解思路是:分别隔离物体,准确分析受力,正确画出受力图,确定轨道半径,注意约束关系(在连接体的圆周运动问题中,角速度相同是一种常见的约束关系).
【典例1】在一个水平转台上放有质量相等的A、B两个物体,用一轻杆相连,AB连线沿半径方向.A与平台间有摩擦,B与平台间的摩擦可忽略不计,A、B到平台转轴的距离分别为L、2L.某时刻一起随平台以ω的角速度绕OO′轴做匀速圆周运动.A与平台间的摩擦力大小为F f A,杆的弹力大小为F.现把转动角速度提高至2ω.A、B仍各自在原位置随平台一起绕OO′轴匀速圆周运动,则下面说法正确的是( )
A.F f A、F均增加为原来的4倍
B.F f A、F均增加为原来的2倍
C.F f A大于原来的4倍,F等于原来的2倍
D.F f A、F增加后,均小于原来的4倍
【解析】根据牛顿第二定律,对A:F f A-F=mω2r A①,对B:F=mω2r B②.当ω增大到2ω时,由②式知,F增加到原来的4倍;由①式知:F f A=F+mω2r A,F f A增加为原来的4倍.故选A.
【答案】 A
变式训练1 如图所示,在光滑杆上穿着两个小球m1、m2,且m1=2m2,用细线把两球连起来,当杆匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r1与r 2之比为( )
A.1:1 B.1: 2
C.2:1 D.1:2
解析:两个小球绕共同的圆心做圆周运动,它们之间的拉力互为向心力,角速度相同.设
两球所需的向心力大小为F n,角速度为ω,则
对球m1:F n=m1ω2r1,
对球m2:F n=m2ω2r2,
由上述两式得r1r2=1:2.
答案:D
变式训练2 甲、乙两名溜冰运动员,m甲=80 kg,m乙=40 kg,面对面拉着弹簧测力计做圆周运动的溜冰表演,如图所示.两人相距0.9 m,弹簧测力计的示数为9.2 N,下列判断中正确的是( )
A.两人的线速度相同,约为40 m/s
B.两人的角速度相同,为5 rad/s
C.两人的运动半径相同,都是0.45 m
D.两人的运动半径不同,甲为0.3 m,乙为0.6 m
解析:C错:两个人做圆周运动,向心力的大小相等,质量不同,角速度相同,所以他们的运动半径不同.D对:设甲的半径为R1,则乙的半径为0.9 m-R1,故m甲ω2R1=m乙ω2(0.
9 m-R1),解得R1=0.3 m.B错:再根据9.2 N=m甲ω2R1可知,角速度ω≈0.62 rad/s.A错:两个人的角速度相同,半径不同,故他们的线速度不相同.
答案:D
二、圆周运动中临界问题的解题策略
关于圆周运动的临界问题,要特别注意分析物体做圆周运动的向心力来源,考虑达到临界条件时物体所处的状态,即临界速度、临界角速度,然后分析该状态下物体的受力特点,结合圆周运动知识列方程求解.
(1)与绳的弹力有关的临界问题:此问题要分析出绳子恰好无弹力(或恰好断裂)这一临界状态下的角速度(或线速度)等.
(2)与支持面弹力有关的临界问题:此问题要分析出恰好无支持力这一临界状态下的角速度(或线速度)等.
(3)因静摩擦力而产生的临界问题:此问题要分析出静摩擦力达到最大这一临界状态下的角速度(或线速度)等.
【典例2】如图所示,在光滑水平面上相距20 cm处有两个钉子A和B,长1.2 m的细绳一端系着质量为0.5 kg的小球,另一端固定在钉子A上.开始时,小球和钉子A、B在
同一直线上,小球始终以2 m/s 的速率在水平面内做匀速圆周运动.若细绳能承受的最大拉力是5 N ,则从开始到细绳断开所经历的时间是( )
A .1.2π s B.1.4π s C .1.8π s D.2π s
【解析】 小球每转过180°,转动半径就减小x =0.20 m ,所需向心力F =mv 2
L -nx
(n =
0,1,2,…),由F ≤5 N ,可得n ≤4,即小球转动半径缩短了4次,细绳第5次碰到钉子瞬间后,细绳断开.从开始到细绳断开,每转半周小球转动半径分别为L 、L -x 、L -2x 、L -3x 、
L -4x ,则运动时间t =
π5L -10x
v
.
【答案】 D
变式训练3 如图所示,两绳系一质量为0.1 kg 的小球,两绳的另一端分别固定于轴的A 、B 两处,上面绳长2 m ,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终都有张力?(g 取10 m/s 2
)
解析:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如图甲所示.
由牛顿第二定律得:mg tan 30°=mω2
1r ,又有r =L s in 30°,解得
ω1=
103
3
rad/s ; 当下绳绷紧,上绳恰好伸直无张力时,小球受力如图乙所示. 由牛顿第二定律得:mg tan 45°=mω2
2r ,解得ω2=10 rad/s ,故当 103
3
rad/s<ω<10 rad/s 时,两绳始终都有张力.
答案:
103
3
rad/s<ω<10 rad/s。