IGBT的选型说明和参考

合集下载

IGBT驱动电路的选择及驱动电阻的选择

IGBT驱动电路的选择及驱动电阻的选择

IGBT驱动电路的选择及驱动电阻的选择IGBT驱动电路的选择绝缘栅双极型晶体管(IGBT)在今天的电力电子领域中已经得到广泛的应用,在实际使用中除IGBT自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。

驱动器的选择及输出功率的计算决定了换流系统的可靠性。

驱动器功率不足或选择错误可能会直接导致IGBT 和驱动器损坏。

以下总结了一些关于IGBT驱动器输出性能的计算方法以供选型时参考。

IGBT 的开关特性主要取决于IGBT的门极电荷及内部和外部的电阻。

图1是IGBT 门极电容分布示意图,其中CGE 是栅极-发射极电容、CCE 是集电极-发射极电容、CGC 是栅极-集电极电容或称米勒电容(Miller Capacitor)。

门极输入电容Cies 由CGE 和CGC 来表示,它是计算IGBT 驱动器电路所需输出功率的关键参数。

该电容几乎不受温度影响,但与IGBT 集电极-发射极电压VCE 的电压有密切联系。

在IGBT数据手册中给出的电容Cies 的值,在实际电路应用中不是一个特别有用的参数,因为它是通过电桥测得的,在测量电路中,加在集电极上C 的电压一般只有25V(有些厂家为10V),在这种测量条件下,所测得的结电容要比VCE=600V 时要大一些(如图2)。

由于门极的测量电压太低(VGE=0V )而不是门极的门槛电压,在实际开关中存在的米勒效应(Miller 效应)在测量中也没有被包括在内,在实际使用中的门极电容Cin 值要比IGBT 数据手册中给出的电容Cies 值大很多。

因此,在IGBT数据手册中给出的电容Cies值在实际应用中仅仅只能作为一个参考值使用。

确定IGBT 的门极电荷对于设计一个驱动器来说,最重要的参数是门极电荷QG(门极电压差时的IGBT 门极总电荷),如果在IGBT 数据手册中能够找到这个参数,那么我们就可以运用公式计算出:图一门极驱动能量E = QG ? UGE = QG ? [ VG(on) - VG(off) ] 门极驱动功率PG = E ? fSW = QG ? [ VG(on) - VG(off) ] ? fSW 驱动器总功率P = PG + PS(驱动器的功耗)平均输出电流IoutAV = PG / ΔUGE = QG ? fSW 最高开关频率fSW max. = IoutAV(mA) / QG(μC) 峰值电流IG MAX =ΔUGE / RG min = [ VG(on) - VG(off) ] / RG min 其中的RG min = RG extern + RG intern fsw max. : 最高开关频率IoutAV : 单路的平均电流QG : 门极电压差时的IGBT门极总电荷RG extern : IGBT 外部的门极电阻RG intern : IGBT 芯片内部的门极电阻但是实际上在很多情况下,数据手册中这个门极电荷参数没有给出,门极电压在上升过程中的充电过程也没有描述。

IGBT的选型方法

IGBT的选型方法

绝缘栅双极晶体管(IGBT)是总线电压几百至上千伏的应用的理想之选。

作为少数载流子器件,IGBT在该电压范围内具备优于MOSFET的导通特性,同时拥有与MOSFET十分相似的栅极结构,能实现轻松控制。

此外,由于无需采用集成式反向二极管,这使制造商能够灵活地选择针对应用优化的快速“复合封装(co-pak)”二极管(IGBT和二极管采用同一个封装),这与固有MOSFET二极管相反,固有MOSFET二极管的反向恢复电荷Qrr和反向恢复时间trr会随着额定电压的升高而增大。

当然,导通效率的提高需要付出代价:IGBT通常具备相对较高的开关损耗,这可降低应用开关频率。

这二者之间的权衡以及其他应用和生产注意事项为数代IGBT以及不同的子类器件的诞生创造了条件。

众多的产品使得在选型时采用严格的流程变得十分重要,因为这可对电气性能和成本产生重大影响。

从用户角度而言,IGBT选型过程可实现简化,如图1所示。

由于该过程具备重复属性,因此十分适合实现自动化操作。

国际整流器公司现已开发出一个实用的在线选型工具,如图2所示。

这个工具包含IR公司200多种IGBT器件的电气模型和热模型。

电压选择以往用于110V至220V整流总线应用的IGBT的额定电压为600V,而用于三相380V 至440V整流总线应用的IGBT 的额定电压为1200V。

IR还推出数量有限的900V IGBT。

近几年来,IR为扩大客户的选型范围,又推出了330V器件(通常不用于直接连接市电的应用)。

与MOSFET不同,IGBT无雪崩额定值,因此确保在最差条件下IGBT的电压低于击穿电压额定值十分重要。

在这种最差条件下,通常需要考虑以下几点:* 采用最大线路输入电压的最大总线电压和最大总线过压(例如电机驱动应用的电气制动)* IGBT采用最大开关速度(di/dt)、最大杂散电感和最小总线电容关断时的最大过冲电压* 最低的工作温度(由于击穿电压具备负温度系数)短路安全工作区额定值这种特性指器件能够在一定时间内(单位:微秒)承受通过终端输入的最大总线电压,并能够安全关断。

英飞凌IGBT模块选用指南

英飞凌IGBT模块选用指南

英飞凌IGBT模块选用指南英飞凌IGBT模块选用指南对于一个具体的应用来说,在选择英飞凌IGBT模块时需考虑其在任何静态、动态、过载(如短路)的运行情况下:(i):器件耐压;(ii):在实际的冷却条件下,电流的承受力;(iii):最适合的开关频率;(iv):安全工作区(SOA)限制;(v):最高运行温度限制。

一、器件耐压的选择因为大多数IGBT模块工作在交流电网通过单相或三相整流后的直流母线电压下,所以通常IGBT模块的工作电压(600V、1200V、1700V)均对应于常用电网的电压等级。

考虑到过载,电网波动,开关过程引起的电压尖峰等因素,通常电力电子设备选择IGBT 器件耐压都是直流母线电压的一倍。

如果结构、布线、吸收等设计比较好,就可以使用较低耐压的IGBT模块承受较高的直流母线电压。

下面列出根据交流电网电压或直流母线电压来选择IGBT 耐压的参考表。

二、电流的选择半导体器件具有温度敏感性,因此IGBT模块标称电流与温度的关系比较大。

随着壳温的上升IGBT模块可利用的电流就会下降,英飞凌IGBT模块是按壳温TC=80℃来标称其最大允许通过的集电流极电流(IC)。

对于西门子/英飞凌NPT-IGBT 芯片来说,当TC≤25℃时,这个电流值通常是一个恒定值,但随着TC 的增加,这个可利用的电流值下降较快,有些公司是按TC=25℃的电流值来标称型号,这需用户特别注意。

需指出的是:IGBT 参数表中标出的IC 是集电极最大直流电流,但这个直流电流是有条件的,首先最大结温不能超过150℃,其次还受安全工作区(SOA)的限制,不同的工作电压、脉冲宽度,允许通过的最大电流不同。

同时,各大厂商也给出了2 倍于额定值的脉冲电流,这个脉冲电流通常是指脉冲宽度为1ms 的单脉冲能通过的最大通态电流值,即使可重复也需足够长的时间。

如果脉冲宽度限制在10μs 以内,英飞凌NPT-IGBT 短路电流承受能力可高达10 倍的额定电流值。

变 频 控 制 中 IGBTIPM 模 块 的 选 型 问 题

变 频 控 制 中 IGBTIPM 模 块 的 选 型 问 题
t
vEC
vout
iout
VEC
t
IEP : Max. peak emitter current =ICP
From application
IEP
iC
j
Power factor: cosj
From application
1-6
VEC @ IEP
From data-sheet
5) 续流二极管恢复损耗 (FWD recovery loss)
1-10
附录:三菱提供的IGBT-MODIPM功耗计算仿真软件
由于上述功耗计算是重点也是难点,三菱公司为此开发了一套关于 IGBT/IPM模块的功耗计算仿真软件,利用此软件便可方便地进行前述 的计算与判断。同时此仿真软件也给出了一些对设计人员进行设计判 断来说非常有用的参数曲线,如:在一定条件下,允许的最大负载峰 值电流随开关频率的变化情况,结温随峰值电流的变化情况,等等。 另外,计算出来的功耗还可用于进行散热器设计。 客户可从下列有关网站下载此计算仿真软件: 三菱电机半导体中文网站: /China/index.html
P ( Esw ( on ) Esw ( off ) ) f c sw
E
Esw(on) E
i
1

t
Tsw=1/fsw
i ICP ICP i
Esw(on) at ICP
From data-sheetsheet
fC : Carrier freq.
Rth(j-c)Q
ΔT(c-f)
功率模块的热等效电路
Rth(c-f)
Heat sink
1-8
ΔT(j-c)R
PD=PDC+Prr
Rth(j-c)R

IGBT参数

IGBT参数

IGBT的参数选择主要是门级电压和门级电阻的选择,下面就主要针对这两个方面进行说明.1 门级电压的选择IGBT的门级电压与短路耐量以及与集射极间电压(Vce(sat))之间关系非常密切.如果门级电压过低,通态电压增大,静态损耗要增加.如果门级电压过高,负载短路与故障时短路电流要增大,短路耐量随之降低.选定门级电压时,要考虑门级电压的最大极限与集电极电流的使用范围,还要考虑门级电路与器件参数的分散性.因此,电压选为15V较佳.另外,对于小容量的变换器中的IGBT不加负偏压也能正常工作,可是对于中大容量的变换器,为了保证IGBT可靠关断,加一定量的负偏压,不仅可以防止IGBT关断瞬间因dv/dt过高造成的误开通,提高被驱动IGBT抗干扰能力,还可以减少集电极浪涌电流,降低损耗2 门级电阻RG的选择门级驱动电路的阻抗,包括门级驱动电路的内阻抗和门级电阻两个部分.它们影响着驱动波形的上升、下降速率.在高频应用时,驱动电压的上升、下降速率应快一些,以提高IGBT的开关速率并降低开关损耗.在运行频率较低时,开关损耗所占比例较小,驱动电压的上升、下降速率可以减慢些.在正常状态下IGBT开通越快,开通损耗也越小.但在开通过程中如有正在续流二极管的反向恢复电流和吸收电容器的放电电流,则开通越快,IGBT承受的峰值电流也就越大,甚至急剧上升导致IGBT或续流二极管损坏.此时应降低门级驱动脉冲的上升速率,即增加门级电阻的阻值,抑制该电流的峰值.其代价是要付出较大的开通损耗.当门级电阻RG增加时,IGBT的开通与关断时间增加,进而使每脉冲开通能耗和关断能损也增加.当门级电阻RG减小时,IGBT的电流上升率di/dt增大,这也会引起IGBT的误导通,同时门级电阻RG上的损耗也增加.根据上述两种情况,RG的选择原则是,在开关损耗不太大的情况下,应选用较大的门级电阻RG.门级电阻的阻值对于驱动脉冲的波形也有较大的影响,电阻值过小时会造成驱动脉冲振荡,过大时驱动波形的前后沿会发生延迟和变缓.IGBT的输入电容CGE随着其额定电流容量的增加而增大.为了保持相同的驱动脉冲前后沿速率,对于电流容量较大的IGBT元件,应提供较大的前后沿充电电流.为此,门级电阻的电阻值应随着IGBT电流容量的增加而减小.IGBT门级电阻通常采用表1所列的数值.表中高频一般为大于15KHZ的工作频率,低频为小于5KHZ的工作频率.额定电流(A) 额定电压600V 额定电压1200V50 100 150 200 300 400 600 800 25 50 75 100 150 200 300 400Rg(Ω) 高频51 25 15 10 6.2 4.7 3.0 2.2 51 25 15 10 6.2 4.7 3.0 2.2低频150 75 51 30 20 15 10 6.8 150 75 51 30 20 15 10 6.8IGBT接线较长时易产生振荡,因此门级电阻Rg的接入尽量靠近IGBT.门级引线一般采用绞合线.另外,IGBT是压控器件,当集射极加有高电压时,很容易受外界干扰使门级间电压超过一定值引起器件误导通,甚至导致直通现象发生.为此,采用如下三种措施加以改善:(1)减小元件接入的电容.(2)在门-射极间并联两只反串联的稳压二极管,把浪涌电压限制在30V以下.(3)在门-射极间并接一电阻Rge,Rge一般取值在1000~5000Rg之间,而且将它并联在门射极最近处.RG的选择我不会这么选的,不同牌子的IGBT选用的RG值不同.一般我是按使用手册推荐的RG值.不同的牌子或是同一个牌子,电流电压等级一样,而不同型号其RG值不同. 例如:富士: 2MBI75F-120 RG=9.1Ω.2MBI75L-120 RG=16Ω.欧派克:FF75R12KS4 RG=7.5Ω.西门子:BSM75GB120DN2 RG=15Ω.三菱: CM75DU-12H RG=8.3Ω.同样是75A1200V的IGBT,型号不同,RG值不同.不知我这样选择对否?望指正.。

IGBT模块选型参考

IGBT模块选型参考

IGBT模块选型参考1.IGBT模块的功率损耗IGBT关断截止时,I(t)≈o,损耗的功率可忽略。

为了便于分析,将损耗分为导通损耗和开关损耗。

另外,开关损耗也可分为两类:具有理想二极管时IGBT的开关损耗和考虑二极管反向恢复时间时IGBT的开关损耗。

IGBT导通时,如果电流为方波脉冲,那么导通能量就等于电流、电压降和导通时间三者之积。

IGBT在任意电流和温度时的最高电压降,根据数据表提供的数据,可按以下两步得到:首先,从IGBT集电极发射极饱和电压与壳温的关系曲线上找出能满足所需电流的集电极发射极饱和电压。

然后,为了得到最大压降,在给定结温下从该曲线上得出的电压降必须乘以电气特性表中给出的最大值与典型值之比。

如果栅极驱动电压不是15V,最大压降值还需要些修正,修正系数可参考器件公司的IGBT设计手册。

如果电流不是方波脉冲,导通损耗只能用积分计算。

这样必须建立电流波形和电压降的数学表达式,这些函数关系可参考器件公司的IGBT设计手册。

在负载为电感的电路中,开关导通引起续流二极管反向恢复,同时开关器件中产生很大的电流尖峰,从而使IGBT和续流二极管的开关损耗增加。

考虑到二极管反向恢复引起的开关损耗,IGBT总的开关损耗可由下式给出:Po = Pss + Psw式中:Esw(on)为每一个脉冲对应的IGBT开通能量(在tj= 125℃、峰值电流Icp条件下);Esw(off)为每个脉冲对应的IGBT关断能量(在tj=125℃、峰值电流Icp条件下);Psw为变频电源每臂的PWM开关功率;Icp为正弦输出电流的峰值;Uce(sat)为IGBT的饱和电压降(在Tj= 125℃、峰值电流Icp条件下);Fsw为开关频率;D为PWM信号占空比;θ为输出电压与电流之间的相位角(功率因数为cosθ)。

2.IGBT模块参数的选择IGBT已广泛应用于20KHz的硬开关变换器及频率更高的软开关变换器中。

通常情况下,选择IGBT模块的参数时应考虑以下几个方面的因素。

英飞凌的IGBT选型问题

英飞凌的IGBT选型问题

本文介绍一下Infineon的IGBT选型问题。

Infineon的IGBT模块:可以从开始的2个字得出大概的内部拓扑图。

·2单元的半桥IGBT拓扑:以BSM和FF开头。

·4单元的全桥IGBT拓扑:以F4开头。

这个目前已经停产,大家不要选择。

·6单元的三项全桥IGBT拓扑:以FS开头。

·三项整流桥+6单元的三项全桥IGBT拓扑:以FP开头。

·专用斩波IGBT模块:以FD开头。

其实这个完全可以使用FF半桥来替代。

只要将另一单元的IGBT处于关闭状态,只使用其反向恢复二极管即可。

IGBT模块主要是根据工作电压,工作电流,封装形式和开关频率来进行选择。

·工作电压:Infineon的IGBT模块常用的电压为:600V,1200V,1700V。

这个电压为系统的直流母线工作电压。

普通的交流220V供电,使用600V的IGBT。

交流380V 供电,使用1200V的IGBT。

Infineon也有大功率的3300V,4500V,6500V的IGBT可供选择,一般用于机车牵引和电力系统中。

最近,电动汽车概念也火的一塌糊涂,Infineon推出了650V等级的IGBT,专门用于电动汽车行业。

不过,这些IGBT是汽车级别的,属于特种模块,价格偏贵。

这里跑题一下:一般电子器件的等级分为5个等级:航空航天—军工—汽车—工业—民用。

一听名字,就知道他们的价格趋势。

Infineon的IGBT,除了电动汽车用的650V以外,都是工业等级的。

貌似IGBT都没有军工等级的,也不知道军队用的IGBT是怎么弄出来的,这里汗一个!!!·工作电流和封装形式:这2个参数要同时介绍。

因为,不同封装形式的IGBT,其实主要就是为了照顾IGBT的散热。

IGBT属于功率器件,散热不好,就会直接烧掉。

当然,封装也涉及到IGBT内部的杂散电感之类的问题,这里就先不介绍了。

单管IGBT:TO-247这种形式的封装。

IGBT驱动电路的选择及驱动电阻的选择

IGBT驱动电路的选择及驱动电阻的选择

IGBT驱动电路的选择及驱动电阻的选择IGBT驱动电路的选择绝缘栅双极型晶体管(IGBT)在今天的电力电子领域中已经得到广泛的应用,在实际使用中除IGBT自身外,IGBT 驱动器的作用对整个换流系统来说同样至关重要。

驱动器的选择及输出功率的计算决定了换流系统的可靠性。

驱动器功率不足或选择错误可能会直接导致IGBT 和驱动器损坏。

以下总结了一些关于IGBT驱动器输出性能的计算方法以供选型时参考。

IGBT 的开关特性主要取决于IGBT的门极电荷及内部和外部的电阻。

图1是IGBT 门极电容分布示意图,其中CGE 是栅极-发射极电容、CCE 是集电极-发射极电容、CGC 是栅极-集电极电容或称米勒电容(Miller Capacitor)。

门极输入电容Cies 由CGE 和CGC 来表示,它是计算IGBT 驱动器电路所需输出功率的关键参数。

该电容几乎不受温度影响,但与IGBT 集电极-发射极电压VCE 的电压有密切联系。

在IGBT数据手册中给出的电容Cies 的值,在实际电路应用中不是一个特别有用的参数,因为它是通过电桥测得的,在测量电路中,加在集电极上C 的电压一般只有25V(有些厂家为10V),在这种测量条件下,所测得的结电容要比VCE=600V 时要大一些(如图2)。

由于门极的测量电压太低(VGE=0V )而不是门极的门槛电压,在实际开关中存在的米勒效应(Miller 效应)在测量中也没有被包括在内,在实际使用中的门极电容Cin 值要比IGBT 数据手册中给出的电容Cies 值大很多。

因此,在IGBT数据手册中给出的电容Cies值在实际应用中仅仅只能作为一个参考值使用。

确定IGBT 的门极电荷对于设计一个驱动器来说,最重要的参数是门极电荷QG(门极电压差时的IGBT 门极总电荷),如果在IGBT 数据手册中能够找到这个参数,那么我们就可以运用公式计算出:图一门极驱动能量E = QG ? UGE = QG ? [ VG(on) - VG(off) ] 门极驱动功率PG = E ? fSW = QG ? [ VG(on) - VG(off) ] ? fSW 驱动器总功率P = PG + PS(驱动器的功耗)平均输出电流IoutAV = PG / ΔUGE = QG ? fSW 最高开关频率fSW max. = IoutAV(mA) / QG(μC) 峰值电流IG MAX =ΔUGE / RG min = [ VG(on) - VG(off) ] / RG min 其中的RG min = RG extern + RG intern fsw max. : 最高开关频率IoutAV : 单路的平均电流QG : 门极电压差时的IGBT门极总电荷RG extern : IGBT 外部的门极电阻RG intern : IGBT 芯片内部的门极电阻但是实际上在很多情况下,数据手册中这个门极电荷参数没有给出,门极电压在上升过程中的充电过程也没有描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、什么是IGBTIGBT(Insulated Gate Bipolar Transistor),绝缘栅极型功率管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。

应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。

IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。

由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。

虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。

较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。

导通IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。

如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。

基片的应用在管体的P+和N+ 区之间创建了一个J1结。

当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。

如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。

最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流);空穴电流(双极)。

关断当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。

在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。

这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。

少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。

鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。

因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的,尾流特性与VCE、IC和TC之间的关系如图2所示。

反向阻断当集电极被施加一个反向电压时,J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。

因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。

另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。

第二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。

正向阻断当栅极和发射极短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制。

此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。

闩锁IGBT在集电极与发射极之间有一个寄生PNPN晶闸管,如图1所示。

在特殊条件下,这种寄生器件会导通。

这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。

晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。

通常情况下,静态和动态闩锁有如下主要区别:当晶闸管全部导通时,静态闩锁出现。

只在关断时才会出现动态闩锁。

这一特殊现象严重地限制了安全操作区。

为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施:防止NPN部分接通,分别改变布局和掺杂级别。

降低NPN和PNP晶体管的总电流增益。

此外,闩锁电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。

因此,器件制造商必须注意将集电极最大电流值与闩锁电流之间保持一定的比例,通常比例为1:5。

正向导通特性在通态中,IGBT可以按照“第一近似”和功率MOSFET驱动的PNP晶体管建模。

图3所示是理解器件在工作时的物理特性所需的结构元件(寄生元件不考虑在内)。

如图所示,IC是VCE的一个函数(静态特性),假如阴极和阳极之间的压降不超过0.7V,即使栅信号让MOSFET沟道形成(如图所示),集电极电流IC也无法流通。

当沟道上的电压大于VGE -Vth 时,电流处于饱和状态,输出电阻无限大。

由于IGBT结构中含有一个双极MOSFET 和一个功率MOSFET,因此,它的温度特性取决于在属性上具有对比性的两个器件的净效率。

功率MOSFET的温度系数是正的,而双极的温度系数则是负的。

本图描述了VCE(sat) 作为一个集电极电流的函数在不同结温时的变化情况。

当必须并联两个以上的设备时,这个问题变得十分重要,而且只能按照对应某一电流率的VCE(sat)选择一个并联设备来解决问题。

有时候,用一个NPT进行简易并联的效果是很好的,但是与一个电平和速度相同的PT器件相比,使用NPT会造成压降增加。

动态特性动态特性是指IGBT在开关期间的特性。

鉴于IGBT的等效电路,要控制这个器件,必须驱动MOSFET 元件。

这就是说,IGBT的驱动系统实际上应与MOSFET的相同,而且复杂程度低于双极驱动系统。

如前文所述,当通过栅极提供栅正偏压时,在MOSFET部分形成一个N沟道。

如果这一电子流产生的电压处于0.7V范围内,P+ / N- 则处于正向偏压控制,少数载流子注入N区,形成一个空穴双极流。

导通时间是驱动电路的输出阴抗和施加的栅极电压的一个函数。

通过改变栅电阻Rg (图4)值来控制器件的速度是可行的,通过这种方式,输出寄生电容Cge和Cgc可实现不同的电荷速率。

换句话说,通过改变Rg值,可以改变与Rg (Cge+C**) 值相等的寄生净值的时间常量(如图4所示),然后,改变*V/dti。

数据表中常用的驱动电压是15V。

一个电感负载的开关波形见图5,di/dt是Rg的一个函数,如图6所示,栅电阻对IGBT的导通速率的影响是很明显的。

因为Rg数值变化也会影响dv/dt斜率,因此,Rg值对功耗的影响很大。

在关断时,再次出现了我们曾在具有功率MOSFET和BJT 器件双重特性的等效模型中讨论过的特性。

当发送到栅极的信号降低到密勒效应初始值时,VCE开始升高。

如前文所述,根据驱动器的情况,VCE达到最大电平而且受到Cge和Cgc的密勒效应影响后,电流不会立即归零,相反会出现一个典型的尾状,其长度取决于少数载流子的寿命。

在IGBT处于正偏压期间,这些电荷被注入到N区,这是IGBT与MOSFET开关对比最不利特性之主要原因。

降低这种有害现象有多种方式。

例如,可以降低导通期间从P+基片注入的空穴数量的百分比,同时,通过提高掺杂质水平和缓冲层厚度,来提高重组速度。

由于VCE(sat) 增高和潜在的闩锁问题,这种排除空穴的做法会降低电流的处理能力。

安全运行区SOA按电流和电压划分,一个IGBT的安全运行区可以分为三个主要区域,如下表所示:这三个区域在图8中很容易识别。

通常每一张数据表都提供了正向导通(正向偏置安全运行区FBSOA)、反向(反向偏置安全运行区RBSOA)和短路(短路安全运行SCSOA)时描述强度的曲线。

详细内容:FBSOA这部分安全运行区是指电子和空穴电流在导通瞬态时流过的区域。

在IC处于饱和状态时,IGBT所能承受的最大电压是器件的物理极限,如图8所示。

RBSOA这个区域表示栅偏压为零或负值但因空穴电流没有消失而IC依然存在时的关断瞬态。

如前文所述,如果电流增加过多,寄生晶体管会引发闩锁现象。

当闩锁发生时,栅极将无法控制这个器件。

最新版的IGBT没有这种类型的特性,因为设计人员改进了IGBT的结构及工艺,寄生SCR的触发电流较正常工作承受的触发电流(典型Ilatch>5 IC 正常)高出很多。

关于闭锁电流分别作为结温和栅电阻的一个函数的变化情况,见图9和10。

SCSOASCSOA是在电源电压条件下接通器件后所测得的驱动电路控制被测试器件的时间最大值。

图11所示是三个具有等效特性但采用不同技术制造的器件的波形及关断时间。

最大工作频率开关频率是用户选择适合的IGBT时需考虑的一个重要的参数,所有的硅片制造商都为不同的开关频率专门制造了不同的产品。

特别是在电流流通并主要与VCE(sat)相关时,把导通损耗定义成功率损耗是可行的。

这三者之间的表达式:Pcond = VCE IC ,其中,是负载系数。

开关损耗与IGBT的换向有关系;但是,主要与工作时的总能量消耗Ets相关,并与终端设备的频率的关系更加紧密。

Psw = Ets总损耗是两部分损耗之和:Ptot = Pcond + Psw在这一点上,总功耗显然与Ets 和VCE(sat)两个主要参数有内在的联系。

这些变量之间适度的平衡关系,与IGBT技术密切相关,并为客户最大限度降低终端设备的综合散热提供了选择的机会。

因此,为最大限度地降低功耗,根据终端设备的频率,以及与特殊应用有内在联系的电平特性,用户应选择不同的器件。

二、IGBT的保护若在IGBT的栅极和发射极之间加上驱动正电压,则MOSFET导通,这样PNP晶体管的集电极与基极之间成低阻状态而使得晶体管导通;若IGBT的栅极和发射极之间电压为0V,则MOSFET截止,切断PNP晶体管基极电流的供给,使得晶体管截止。

由此可知,IGBT的安全可靠与否主要由以下因素决定:——IGBT栅极与发射极之间的电压;——IGBT集电极与发射极之间的电压;——流过IGBT集电极-发射极的电流;——IGBT的结温。

如果IGBT栅极与发射极之间的电压,即驱动电压过低,则IGBT不能稳定正常地工作,如果过高超过栅极-发射极之间的耐压则IGBT可能永久性损坏;同样,如果加在IGBT集电极与发射极允许的电压超过集电极-发射极之间的耐压,流过IGBT集电极-发射极的电流超过集电极-发射极允许的最大电流,IGBT的结温超过其结温的允许值,IGBT都可能会永久性损坏。

2保护措施在进行电路设计时,应针对影响IGBT可靠性的因素,有的放矢地采取相应的保护措施。

2.1IGBT栅极的保护2.2集电极与发射极间的过压保护过电压的产生主要有两种情况,一种是施加到IGBT集电极-发射极间的直流电压过高,另一种为集电极-发射极上的浪涌电压过高。

2.2.1直流过电压直流过压产生的原因是由于输入交流电源或IGBT的前一级输入发生异常所致。

相关文档
最新文档