传感器实验3
烟雾传感器实验实验报告(3篇)

第1篇一、实验目的1. 了解烟雾传感器的原理和特性;2. 掌握烟雾传感器的应用领域;3. 学会使用烟雾传感器进行烟雾浓度检测;4. 提高动手实践能力。
二、实验原理烟雾传感器是一种将烟雾浓度转换为电信号的装置。
当烟雾浓度超过设定阈值时,传感器输出高电平信号,表示有烟雾存在;当烟雾浓度低于设定阈值时,传感器输出低电平信号,表示无烟雾。
烟雾传感器通常采用光散射原理进行检测。
当烟雾进入传感器内部时,部分光线被散射,散射光被传感器接收并转换成电信号。
根据散射光的强弱,可以判断烟雾浓度。
三、实验器材1. 烟雾传感器(MQ-2型)1个;2. Arduino开发板1块;3. 连接线若干;4. 电源适配器1个;5. 气球若干;6. 烟雾发生器1个(可选)。
四、实验步骤1. 将烟雾传感器连接到Arduino开发板的模拟输入端(A0);2. 将Arduino开发板连接到计算机,并安装Arduino IDE;3. 编写程序,设置烟雾传感器的阈值,并实时读取模拟输入端的数据;4. 通过串口监视器查看烟雾浓度变化情况;5. 使用气球或烟雾发生器模拟烟雾,观察传感器输出信号变化;6. 调整阈值,观察烟雾浓度与传感器输出信号的关系。
五、实验结果与分析1. 当无烟雾时,传感器输出低电平信号,串口监视器显示“无烟雾”;2. 当有烟雾时,传感器输出高电平信号,串口监视器显示“有烟雾”;3. 通过调整阈值,可以控制烟雾浓度检测的灵敏度。
六、实验结论1. 烟雾传感器可以有效地检测烟雾浓度,并在有烟雾时输出高电平信号;2. 通过调整阈值,可以控制烟雾浓度检测的灵敏度;3. 本实验验证了烟雾传感器的原理和应用,为后续烟雾报警系统的研究奠定了基础。
七、实验注意事项1. 实验过程中,注意安全,避免烟雾对人体的危害;2. 烟雾传感器对温度和湿度敏感,实验时尽量保持环境温度和湿度稳定;3. 实验过程中,注意观察传感器输出信号的变化,以便及时调整阈值。
自动化传感器实验三 差动变压器性能、零残及补偿、标定实验

传感器实验报告陈晓东 12061302实验三 差动变压器性能、零残及补偿、标定实验一、 差动变压器性能实验目的:了解差动变压器的原理及工作情况。
实验准备:预习实验仪器和设备:音频振荡器、测微头、双踪示波器、差动式电感。
实验原理:交流电通过偶合的线圈产生感应电势。
实验注意事项:旋钮初始位置是,音频振荡器4KHz ~6 KHz 左右,幅度适中,双踪示波器第一通道灵敏度500mV/cm ,第二通道灵敏度10mV /cm 。
其它还须注意的事项有: (1)差动变压器的激励源必须从音频振荡器的电源输出插口(LV 插口)输出。
(2)差动变压器的两个次级线圈必须接成差动形式,即,两个同名端短接,另两个同名端则构成输出。
(3)差动变压器与激励信号的连线应尽量短一些,以避免引入干扰。
实验内容:(1) 按图5接线,音频振荡器必须从LV 接出,LV 、GND 接差动式电感的Li ,2个L0构成差 动输出。
图 5 差动变压器接线方式(2)调整音频振荡器幅度旋钮,观察第一通道示波器,使音频LV 信号输入到初级线圈的电 压为VPP =2伏。
(3)调整测微头,使衔铁处于中间位置M (此时输出信号最小),记下此时测微头的刻度 值填入下表(4)旋动测微头,从示波器第二通道上读出次级差动输出电压的峰一峰值填入下表:*如果第二通道的信号实在太弱,可先接差放再行观察。
读数过程中应注意初、次级波形的相位关系:当铁芯从上至下过零位时,相位由 同 (同、反)相变为 反 (同、反)相;再由下至上过零位时,相位由反相变为同相;(5)仔细调节测微头使次级的差动输出电压为最小,必要时应将通道二的灵敏度打到最高档,这个最小电压叫做零点残余电压,可以看出它的基波与输入电压的相位差约为 90度。
(6) 根据所得结果,画出(Vop-p一X)曲线,指出线性工作范围,求出灵敏度:76.50mV/mm,更一般地,由于灵敏度还与激励电压有关,因此:19.125mV/mm二、差动变压器零点残余电压的补偿实验目的:了解零点残余电压的补偿及其方法。
温度技术测量实验报告(3篇)

第1篇一、实验目的1. 了解温度测量的基本原理和方法;2. 掌握常用温度传感器的性能特点及适用范围;3. 学会使用温度传感器进行实际测量;4. 分析实验数据,提高对温度测量技术的理解。
二、实验仪器与材料1. 温度传感器:热电偶、热敏电阻、PT100等;2. 温度测量仪器:数字温度计、温度测试仪等;3. 实验装置:电加热炉、万用表、连接电缆等;4. 待测物体:不同材质、不同形状的物体。
三、实验原理1. 热电偶测温原理:利用两种不同金属导体的热电效应,即当两种导体在两端接触时,若两端温度不同,则会在回路中产生电动势。
通过测量电动势的大小,可以计算出温度。
2. 热敏电阻测温原理:热敏电阻的电阻值随温度变化而变化,根据电阻值的变化,可以计算出温度。
3. PT100测温原理:PT100是一种铂电阻温度传感器,其电阻值随温度变化而线性变化,通过测量电阻值,可以计算出温度。
四、实验步骤1. 实验一:热电偶测温实验(1)将热电偶插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量热电偶冷端温度;(3)根据热电偶分度表,计算热电偶热端温度;(4)比较实验数据与实际温度,分析误差。
2. 实验二:热敏电阻测温实验(1)将热敏电阻插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量热敏电阻温度;(3)根据热敏电阻温度-电阻关系曲线,计算热敏电阻温度;(4)比较实验数据与实际温度,分析误差。
3. 实验三:PT100测温实验(1)将PT100插入电加热炉中,调整加热炉温度;(2)使用数字温度计测量PT100温度;(3)根据PT100温度-电阻关系曲线,计算PT100温度;(4)比较实验数据与实际温度,分析误差。
五、实验结果与分析1. 实验一:热电偶测温实验实验结果显示,热电偶测温具有较高的准确性,误差在±0.5℃以内。
分析误差原因,可能包括热电偶冷端补偿不准确、热电偶分度表误差等。
2. 实验二:热敏电阻测温实验实验结果显示,热敏电阻测温具有较高的准确性,误差在±1℃以内。
传感器实验总结报告范文(3篇)

第1篇一、实验背景随着科技的飞速发展,传感器技术在各个领域都得到了广泛的应用。
传感器作为一种将非电学量转换为电学量的装置,对于信息采集、处理和控制具有至关重要的作用。
本实验旨在通过一系列传感器实验,加深对传感器基本原理、工作原理和应用领域的理解。
二、实验目的1. 了解传感器的定义、分类和基本原理。
2. 掌握常见传感器的结构、工作原理和特性参数。
3. 熟悉传感器在信息采集、处理和控制中的应用。
4. 培养动手操作能力和分析问题、解决问题的能力。
三、实验内容本次实验共分为以下几个部分:1. 压电式传感器实验- 实验目的:了解压电式传感器的测量振动的原理和方法。
- 实验原理:压电式传感器由惯性质量块和受压的压电片等组成。
工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。
- 实验步骤:1. 将压电传感器装在振动台面上。
2. 将低频振荡器信号接入到台面三源板振动源的激励源插孔。
3. 将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。
将压电传感器实验模板电路输出端Vo1,接R6。
将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。
4. 合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。
5. 改变低频振荡器的频率,观察输出波形变化。
2. 电涡流传感器位移特性实验- 实验目的:了解电涡流传感器测位移的原理和方法。
- 实验原理:电涡流传感器利用电磁感应原理,当传感器靠近被测物体时,在物体表面产生涡流,通过检测涡流的变化来测量物体的位移。
- 实验步骤:1. 将电涡流传感器安装在实验平台上。
2. 调整传感器与被测物体的距离,观察示波器波形变化。
3. 改变被测物体的位移,观察示波器波形变化。
3. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。
实验三霍尔位置传感器测定杨氏模量

磁铁位置调整螺母
4、调整读数显微镜旳目镜,使得眼睛能清楚地观察到 十字叉丝及分划板刻度线和数字且转动读数显微镜上 方调整鼓轮时,十字叉丝能随之上下移动。
调整鼓轮
十字叉丝
目镜调整旋钮
5、移动读数显微镜前后位置(调焦),使能清楚看 到铜刀上旳画痕线。选定位于中间位置旳某一条画痕 为基准线。转动读数显微镜旳鼓轮使读数显微镜内十 字叉丝线自下往上移动并与看到旳铜刀上旳该基准线 重叠。从鼓轮记下初始读数值。
8、按公式求得样品旳杨氏模量,而且求出霍耳位 置传感器旳敏捷度(百分比系数)K0。
五、注意事项
❖ 1.霍耳片一定要垂直放置在磁场旳中心轴上。
❖ 2.用读数显微镜测量时,鼓轮只能单方向转动。 ❖ 3.加放砝码时动作一定要轻,千万不能碰动铜刀架。
三、试验环节:
1、将铜尺和各元件组装好,注意铜刀口带画痕旳一 面朝向读数显微镜。
画痕线
2.调整三维调整架旳上下调整螺丝,使铜杠杆 水平且传感器探测元件处于磁铁中间位置。
传感器元件
铜杠杆 可调高度旳螺丝
3、调整磁铁盒旳螺母使磁铁上下移动,同步观察 霍尔传感器输出电压值。当毫伏表数值很小时,停 止调整并固定螺丝,最终调整零点电位器使毫伏表 读数为零。
控制显微镜前后移 动位置旳固定螺丝
调焦后看到旳某 一条画痕线
十字叉丝
6、逐次增长砝码,每次增长10.00g。每加一次砝码, 都转动鼓轮使十字叉丝重新与选定旳基准线重叠并 读出此时读数显微镜旳读数。(mm)及毫伏表旳读 数(mv)。将测得旳数据填入试验数据表格。用逐 差法求出Z和V旳平均值。
7、用游标尺测量铜尺宽度b;用千分尺测量铜尺旳 厚度a(均测1次)。
霍尔位置传感器测定杨氏 模量
3 传感器实验-凝露传感器

2.将状态做简单的处理显示
1.硬件部分
(1)采集节点一个
(2)J-Link仿真器一个
(3)显示终端一台
(4)凝露传感器一个
2.软件部分
KeilμVision4开发环境,J-Link驱动程序
1.凝露传感器工作原理
电路中用到,凝露传感器电路、信号放大电路、单片机系统、状态显示系统构成。其基本工作原理:经过信号放大电路,凝露传感器电路将感受到凝露程度以高低电平形式输出至单片机系统,由状态显示系统进行显示。
图6-3硬件连接示意图
7.将ZigBee协调器接入智能网关,插好电源,并打开电源启动智能网关系统,运行传感器实验显示程序;
图6-4传感器实验显示程序
图6-5智能网关连接示意图
8.选择【Debug】->【Start/Stop Debug Session】,启动J-Link进行仿真调试;
9.选择【Debug】->【run】或者按快捷键“F5”,运行程序;
10.验证:将凝露传感器放入水中,观察显示屏上状态的变化;
11.验证完毕后,退出J-Link仿真界面,关闭KeilμVision4软件;关闭硬件电源,整理桌面;
12.实验完毕。
代码解释:
7.1 IO口初始化
void Sensor_init_TTL(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/*GPIOG clock enable */
RCC_APB2PeriphClockCmd(SENSOR_CLOCK, ENABLE);
GPIO_InitStructure.GPIO_Pin = Sensor_IO_PIN2;
实验3 AD型传感器采集实验

/**************************************************/
配置参数的原则:
参看实验 1 各参数的含义;
主控制和传感器的 RF_CHANNEL 与 PAN_ID 要一致;
主控制的 MY_ADDR 与传感器的 SEND_ADDR 要一致;
由于本例传感器不接收数据,故传感器的 MY_ADDR 可任意设置;
【实验相关代码】
主控器代码 主文档 collect.c 的相关代码 /********************MAIN START************************/ void main(void) { uint16 len = 0;
halBoardInit(); //模块相关资源的初始化 ConfigRf_Init(); //无线收发参数的配置初始化 halLedSet(1); halLedSet(2); while(1) {
sensor_val=get_adc(); //取模拟电压 //把采集数据传化成字符串,以便于在串口上显示观 察 printf_str(pTxData," 光 照 传 感 器 电 压:%d.%02dV\r\n",sensor_val/100,sensor_val%100); #endif #if defined (CO_SENDOR) //一氧化碳传感器 sensor_val=get_adc(); //取模拟电压 //把采集数据传化成字符串,以便于在串口上显示观 察 printf_str(pTxData," 一 氧 化 碳 传 感 器 电 压:%d.%02dV\r\n",sensor_val/100,sensor_val%100); #endif #if defined (KRQ_SENDOR) //可燃气传感器 sensor_val=get_adc(); //取模拟电压 //把采集数据传化成字符串,以便于在串口上显示观 察 printf_str(pTxData," 可 燃 气 传 感 器 电 压:%d.%02dV\r\n",sensor_val/100,sensor_val%100); #endif #if defined (FIR_SENDOR) //火焰传感器
传感器实验报告(电阻应变式传感器)

传感器技术实验报告院(系)机械工程系专业班级姓名同组同学实验时间 2014 年月日,第周,星期第节实验地点单片机与传感器实验室实验台号实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码(每只约20g)、、数显电压表、±15V、±4V电源、万用表(自备)。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。
图1-1通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压εk E R RR R R E U 4R 4E 21140=∆⋅≈∆⋅+∆⋅= (1-1) E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为%10021L ⋅∆⋅-=RR γ。
四、实验内容与步骤1.图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R 1、R 2、R 3、R 4上,可用万用表测量判别,R 1=R 2=R 3=R 4=350Ω。
2.从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端U i 短接,输出端Uo 2接数显电压表(选择2V 档),调节电位器Rw 3,使电压表显示为0V ,Rw 3的位置确定后不能改动,关闭主控台电源。
图1-2 应变式传感器单臂电桥实验接线图3.将应变式传感器的其中一个应变电阻(如R 1)接入电桥与R 5、R 6、R 7构成一个单臂直流电桥,见图1-2,接好电桥调零电位器Rw 1,直流电源±4V (从主控台接入),电桥输出接到差动放大器的输入端U i ,检查接线无误后,合上主控台电源开关,调节Rw 1,使电压表显示为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海理工大学
实验报告
课程名称:传感器实验
学号:
姓名:
专业:电气工程及其自动化
设计时间:2015.11.26 15:00-17:30
实验十一差动变压器(互感式)的性能
一、实验目的:了解差动变压器原理及工作情况。
二、基本原理:差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。
初级线圈作为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边,差动变压器是开磁路,工作是建立在互感基础上的。
其原理及输出特性见图15A。
三、需用器件与单元:音频振荡器、测微头、示波器、主、副电源、差动变压器、振动平台。
四、旋钮初始位置:音频振荡器4KHz~8KHz之间,双踪示波器第一通道灵敏度500mv/div,
第二通道灵敏度10mv/div,触发选择打到第一通道,主、副电源关闭。
五、实验步骤:
1、根据图15C接线,将差动变压器、音频振荡器(必须从L V输出)、双踪示波器连接起
来,组成一个测量线路。
开启主、副电源,将示波器探头分别接至差动变压器的输入和
输出端,调节差动变压器原边线圈音频振荡器激励信号峰-峰值为2V。
图15C
2、用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。
3、转动测微头使测微头与振动平台吸合,再向上转动测微头5mm,使振动平台往上位移。
4、向下旋转测微头,使振动平台产生位移。
每位移0.2mm,用示波器读出差动变压器输
出端峰-峰值填入下表,根据所得的数据计算灵敏度S。
S=∆V/∆X(式中∆V为电压变化,
∆X为相应振动平台的位移变化),作出V-X关系曲线。
读数过程中应注意初、次级波形
的相应关系。
六、思考题:
1、根据实验结果,指出线性范围。
答:线性范围:位移(-2.0mm~2.0mm)、电压(0~82mv)。
2、当差动变压器中磁棒的位置由上到下变化时,双踪示波器观察到的波形相位会发生怎样的变化?
答:相位改变180度。
零点残余电压的波形十分复杂,主要是基波和高次谐波组成。
基波的产生主要是传感器的两次级绕组的电器参数,几何尺寸不对称,导致它们产生的感应电势幅值不等、相位不同,因此不论怎样调整衔铁位置,两线圈中感应电势都不能完全抵消。
高次谐波中起主要作用的是三次谐波,产生的原因是由于磁性材料磁化曲线的非线性(磁饱和、磁带)。
3、用测微头调节振动平台位置,使示波器上观察到的差动变压器的输出阻抗端信号为最小,这个最小电压是什么?是由于什么原因造成的?
答:最小电压被称为零点残余电压。
当衔铁位于中心位置时,差动变压器输出电压并不等于零,我们把差动变压器在零位移时的输出电压称为零点残余电压,记作Ux,它的存在使传感器的输出特性曲线不过零点,造成实际特性与理论特性不完全一致。
零点残余电压的产生的原因主要是传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性等问题引起的。
注意:示波器的第二通道为悬浮工作状态。
七、小结:
差变电压器的两个次级线圈必须接成差动形式,及同名端相连。
被测量带动铁心移动时,输出电动势与铁心位移呈线性变换。
差动变压器式进气压力传感器的检测与转换过程是:先将压力的变化转换成差动变压器铁心的位移,然后通过差动变压器再将铁心位移转换成电信号输出。
所以这个实验也是实现了非电量的电测量。
在实验过程中,由于试验设备的故障问题,做试验时花费时间较多(还有就是对有些设备的操作不太熟悉)。
试验步骤中是先找到用手提起变压器磁芯时示波器中电压波形是否过零翻转,然后再过零点附近调整位移变化找到线性变化范围。
试验过程中对有些故障我们跟老师很好的交流了,初始的时候感觉有点不会(好多东西不能调节出来),但做完实验发现原理还是简单的(预习的不够充分)。
处理数据误差是有的,主要有:测微头调节、测波形时线路接触不好、测量过程中有人体等一些电子设备产生的静电。
实验十二差动变压器(互感式)零残余电压的补偿
一、实验目的:说明如何用适当的网络线路对残余电压进行补偿。
二、基本原理:零残电压中主要包含两种波形成份:(1)基波分量:这是由于差动变压器两个次级绕组因材料或工艺差异造成等效电路参数(M、L、R)不同,线圈中的铜损电阻及导磁材料的铁损,线圈中线间电容的存在,都使得激励电流所产生的磁通不同相。
(2)高次谐波分量:主要是由导磁材料化曲线非线性引起的,由于磁滞损耗和铁磁饱和的影响,使激励电流与磁通波形不一致,产生了非正弦波(主要是三次谐波)磁通,从而在二次绕组中感应出非正弦波的电动势。
减少零残电压的办法有:(1)从设计和工艺制作上尽量保证线路和磁路的对称;(2)采用相敏检波电路;(3)选用补偿电路。
三、需用器件与单元:音频振荡器、测微头、电桥、示波器、差动变压器、差动放大器、振动平台、主、副电源。
四、旋钮初始位置:音频振荡器4KHz~8 KHz之间,双踪示波器第一通道灵敏度500mv/div,第二通道灵敏度1V/div,触发选择打到第一通道,差动放大器的增益旋到最大。
五、实验步骤:1、按图17接线,音频振荡器必须L V插口输出,W1、W2、C、r,为电桥单元中调平衡网络。
图17
2、开启主、副电源,利用示波器,调整音频振荡器幅度钮使示波器一通道显示为2V峰-峰值。
调节音频振荡器频率,使示波器二通道波形不失真。
3、调整测微头,使差动放大器输出电压最小。
4、依次调整W1、W2,使输出电压进一步减小,必要时重新调节测微头,尽量使输出电压最小。
5、将二通道的灵敏度提高,观察零点残余电压的波形,注意与激励电压波形相比较。
经过补偿后的残余电压波形为正弦波形。
6、将经过补偿后的残余电压与实验十未经补偿残余电压相比较。
7、实验完毕后,关闭主、副电源。
注意事项:
1、由于该补偿线路要求差动变压器的输出必须悬浮。
因此次级输出波形难以用一般示波器来看,要用差动放大器使双端输出转换为单端输出。
2、音频信号必须从L V端插口引出。
六、思考题:
本实验也可把电桥平衡网络搬到次级线圈上进行零点残余电压补偿。
答:如下图
七、小结:
从以上波形可看出加了初级线圈的平衡网络补偿电路后,经过差动放大器放大后的残余电压波形基本平稳了(即将残余电压消除了)。
由于基本原理中已经给出了零残电压的产生原因及补偿措施,故此我们本次实验只是进行验证(对变压器的初级线圈加平衡电路的时候)。
由于时间急迫,所以并没有对次级线圈加平衡电路时的情况进行讨论。
本次实验做完以后的感觉就是:电路设计的好补偿出的效果就会很明显。
在实验过程中,想的比较少,但是明白了如果由于设计等工艺上的因素造成误差,那么所引起的误差可以通过加其他平衡电路来补偿。