第八章_季节性时间序列模型案例

合集下载

第八章时间序列分析

第八章时间序列分析

第⼋章时间序列分析第⼋章时间序列分析与预测【课时】6学时【本章内容】§ 时间序列的描述性分析时间序列的含义、时间序列的图形描述、时间序列的速度分析§ 时间序列及其构成分析时间序列的构成因素、时间序列构成因素的组合模型§ 时间序列趋势变动分析移动平均法、指数平滑法、模型法§ 时间序列季节变动分析[原始资料平均法、趋势-循环剔除法、季节变动的调整§ 时间序列循环变动分析循环变动及其测定⽬的、测定⽅法本章⼩结【教学⽬标与要求】1.掌握时间序列的四种速度分析2.掌握时间序列的四种构成因素3.掌握时间序列构成因素的两种常⽤模型4.掌握测定长期趋势的移动平均法5.了解测定长期趋势的指数平滑法6.;7.掌握测定长期趋势的线性趋势模型法8.了解测定长期趋势的⾮线性趋势模型法9.掌握分析季节变动的原始资料平均法10.掌握分析季节变动的循环剔出法11.掌握测定循环变动的直接法和剩余法【教学重点与难点】1.对统计数据进⾏趋势变动分析,利⽤移动平均法、指数平滑法、线性模型法求得数据的长期趋势;2.对统计数据进⾏季节变动分析,利⽤原始资料平均法、趋势-循环剔除法求得数据的季节变动;3.对统计数据进⾏循环变动分析,利⽤直接法、剩余法求得循环变动。

【导⼊】;很多社会经济现象总是随着时间的推移不断发展变化,为了探索现象随时间⽽发展变化的规律,不仅要从静态上分析现象的特征、内部结构以及相互关联的数量关系,⽽且应着眼于现象随时间演变的过程,从动态上去研究其发展变动的过程和规律。

这时需要⼀些专门研究按照时间顺序观测的序列数据的统计分析⽅法,这就是统计学中的时间序列分析。

通过介绍⼀些时间序列分析的例⼦,让同学们了解时间序列的应⽤,并激发学⽣学习本章知识的兴趣。

1.为了表现中国经济的发展状况,把中国经济发展的数据按年度顺序排列起来,据此来研究。

2.公司对未来的销售量作出预测。

这种预测对公司的⽣产进度安排、原材料采购、存货策略、资⾦计划等都⾄关重要。

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法时间序列是指观测值按照时间顺序排列的一组数据,其中具有季节性和非平稳性的时间序列数据具有特殊的分析需求。

本文将介绍非平稳和季节时间序列的分析方法。

一、非平稳时间序列分析方法非平稳时间序列是指其统计特征在时间上发生了变化,无法满足平稳性的要求。

非平稳时间序列具有趋势性、周期性、季节性和不规则性等特征。

对于非平稳时间序列的分析,我们可以采用以下方法:1.差分法:差分法是通过对时间序列取一阶或多阶差分来消除趋势性的影响。

通过差分后的时间序列进行分析,我们可以得到一个稳定的时间序列,并进行后续的建模和预测。

2.移动平均法:移动平均法是通过计算一定窗口范围内的观测值的平均值来消除短期波动的影响,从而得到一个平滑的时间序列。

通过移动平均后的时间序列进行分析,我们可以在一定程度上消除非平稳性的影响。

3.分解法:分解法是将非平稳时间序列分解为趋势项、季节项和随机项三个部分。

通过分解后的各个部分进行分析,我们可以了解趋势、季节和随机成分在时间序列中的作用,从而更好地进行建模和预测。

二、季节时间序列分析方法季节时间序列是指具有明显季节性的时间序列数据。

对于季节时间序列的分析,我们可以采用以下方法:1.季节性指数:季节性指数是用来描述季节性的强度和方向的指标。

通过计算每个季节的平均值与总平均值之比,可以得到季节性指数。

根据季节性指数的变化趋势,我们可以判断时间序列的季节性变化情况,并进行后续的建模和预测。

2.季节性趋势模型:季节性趋势模型是一种常用的季节时间序列建模方法。

该模型将时间序列分解为趋势项、季节项和随机项三个部分,并通过对这三个部分进行建模来分析季节性时间序列。

常用的季节性趋势模型包括季节性自回归移动平均模型(SARIMA)、季节性指数平滑模型等。

总结起来,非平稳和季节时间序列模型的分析方法主要包括差分法、移动平均法和分解法等对非平稳时间序列进行分析,以及季节性指数和季节性趋势模型等对季节性时间序列进行分析。

季节性时间序列分析方法(PPT37张)

季节性时间序列分析方法(PPT37张)
(1 1B S B S 1S B S 1 ) X t at 。
(1 1B n B n )(1 S B S ) X t at
(7.3.8)
由此可求得偏自相关函数。这种方法可以推广到 AR(n)模型
( B)U ( B S ) X t at ,
或更一般的情形 即
(7.2.6a)
只考虑不同年份同月的资料之间的相关关系。 (7.2.6b)
表示同年不同月之间几乎不存在依赖关系,但受前一期 扰动的影响。即时间序列资料消除了季节因素之后适合于一 个 MA(1)模型。 更一般的是模型(7.2.5)和(7.2.6)中的周期长度 12 可以用 S 替代。
3. (1 B S ) X t C (1 1B)(1 S B S )at 4. (1 B) X t (1 S B S )at 5. (1 B S ) X t (1 S B S )at 6. (1 1B)(1 B S ) X t (1 S B S )at 7. (1 1B S ) X t C (1 1B)at 8. (1 B S )2 X t C 2 S ( B)at
D (1 1 B S ) S X t et
一阶移动平均季节模型 Wt et 1et S ,或Wt (1 1B S )et
D S X t (1 1B S )et
一般的季节性 ARMA 模型 U ( B S )Wt V ( B S )et
D U ( B S ) S X t V ( B S )et
D X t V ( B S )et 在随机季节模型 U ( B S ) S
(7.1.6)
中,由于 et 不是独立的,因此不妨假设 et 适合一个 ARIMA(n,d,m): ( B) d et ( B)at ,

季节性时间序列分析方法

季节性时间序列分析方法

季节性时间序列分析方法在经济领域中得到的观测数据一般都具有较强的随时间变化的趋势,如果是季度或月度数据又有明显的季节变化规律。

因此研究经济时间序列必须考虑其趋势性和季节性的特点,既要考虑趋势变动,又要考虑季节变动,建立季节模型。

第一节 简单的时间序列模型一、 季节时间序列序列是季度数据或月度数据(周,日)表现为周期的波动。

二、随机季节模型例1 假定t x 是一个时间序列,通过一次季节差分后得到的平稳序列,且遵从一阶自回归季节模型,即有 t s s t t t x B x x w )1(-=-=-1tt s t w w 或 1(1)s t t B w 将t w =t s x )B (-1代入则有1(1)(1)s s t t B B x SARIMA(1,1,0)更一般的情况,随机序列模型的表达式为11(1)(1)(1)s s S t t B B x B SARIMA(1,1,1)第二节 乘积模型值得注意的是t a 不一定是白噪声序列。

因为我们仅仅消除了不同周期相同周期点之间具有的相关部分,相同周期而不同周期点之间的也有一定的相关性。

所以,在此情况下,模型有一定的拟合不足,如果假设t 是),(q p ARMA 模型,则1(1)(1)s s t t B B x 式可以改为1()(1)(1)()s s t t B B B x B如果序列}{t x 遵从的模型为()()()()s d D s s t t B U B x B V B (3.26) 其中ks k s s s B BB B U ΓΓΓ----= 2211)(ms m s s s B B B B V H H H ----= 2211)(p p B B B φφΦ---= 11)(q q B B B θθΘ---= 11)(d d B )1(-=∇D s D s B )1(-=∇则称(3.26)为乘积季节模型,记为),,(),,(q d p m D k ARIMA ⨯。

季节性时间序列模型

季节性时间序列模型

季节性时间序列模型季节性时间序列模型通常包括四个主要组成部分:趋势、周期、季节和残差。

趋势表示数据的长期增长或下降趋势,可以是线性或非线性的。

周期表示数据中的循环模式,例如月度或年度循环。

季节表示数据在特定季节中的重复模式,例如每年夏季销售增长。

残差表示无法通过趋势、周期和季节解释的部分,即剩余误差。

为了建立季节性时间序列模型,首先需要对数据进行季节性分解,以提取趋势、周期和季节成分。

常用的方法包括移动平均法和指数平滑法。

移动平均法通过计算一系列连续时间段内的平均值来平滑数据,并提取趋势和周期成分。

指数平滑法则通过加权计算最近一段时间内的数据,赋予更高的权重,以反映近期数据的影响力,进而提取趋势成分。

一旦趋势、周期和季节成分被提取,可以使用这些成分来预测未来的值。

最常用的方法是加法模型和乘法模型。

加法模型中,趋势、周期和季节成分相加得到预测值。

乘法模型中,趋势、周期和季节成分相乘得到预测值。

具体选择哪种模型取决于数据的性质。

季节性时间序列模型还可以通过调整模型参数和增加复杂度来提高预测性能。

常用的技术包括自回归(AR)模型、移动平均(MA)模型和自回归移动平均(ARMA)模型。

这些模型通过考虑多个时间点的数据来提高预测的准确性。

季节性时间序列模型在实际应用中具有广泛的价值。

例如,在销售领域,可以使用季节性时间序列模型预测未来几个月的销售量,以制定合理的库存管理策略。

在经济学中,可以使用该模型预测未来几个季度的经济增长率,以指导政府的宏观调控政策。

然而,季节性时间序列模型也面临一些挑战和限制。

首先,它依赖于数据中的季节性模式,如果季节性模式发生变化,则模型的准确性可能会下降。

其次,模型的复杂度和参数调整可能会带来计算上的困难。

此外,模型所能提供的准确度也取决于数据的质量和可用性。

总的来说,季节性时间序列模型是一种强大的工具,可以用于分析和预测数据中的季节性变化。

通过合理的调整和选择模型参数,可以提高预测的准确性。

第八章季节性时间序列模型

第八章季节性时间序列模型
第八章季节性时间序列模型
n
表4.1 单变量时间序列观测数据表
n 例如,1993~2000年各月中国社会消费品零售总额序列, 是一个月度资料,其周期S=12,起点为1993年1月,具 体数据见附录。
第八章季节性时间序列模型
n 二、季节时间序列的重要特征 n 季节性时间序列的重要特征表现为周期性。在一个序列
第八章季节性时间序列模型
第八章季节性时间序列模型
第八章季节性时间序列模型
n 可见当得到样本的自相关函数后,各滑动平均参数的矩 法估计式也就不难得到了。
n 更一般的情形,如果一个时间序列服从模型
n
n
(8.18)
n 其中,
。整理后可以看出该时间
序列模型是疏系数MA(ms+q),可以求出其自相关函数,
2348 2454.9 2881.7
1998 2549.5 2306.4 2279.7 2252.7 2265.2
2326 2286.1 2314.6 2443.1
2536 2652.2 3131.4
1999 2662.1 2538.4 2403.1 2356.8
2364 2428.8 2380.3 2410.9 2604.3 2743.9 2781.5 3405.7
n 如果这个比值小于1,就说明该季度的值 常常低于总平均值
n 如果序列的季节指数都近似等于1,那就 说明该序列没有明显的季节效应
第八章季节性时间序列模型源自例1 季节指数的计算第八章季节性时间序列模型
季节指数图
第八章季节性时间序列模型
二、综合分析
n 常用综合分析模型
n 加法模型
n 乘法模型
n 混合模型
个模型组合而成。由于序列存在季节趋势,故先

第八章 季节性时间序列分析方法

第八章 季节性时间序列分析方法

81❝§8.1 季节性时间序列的重要特征82❝§8.2 季节性时间序列模型❝§8.3 季节性检验❝§8.4 季节性时间序列模型的建立所谓是指具有某种周期性变化季节性时间序列,是指具有某种周期性变化规律的随机序列,并且这种周期性的变化规律往往是由于季节变化引起由于季节变化引起。

如果一个随机序列经过个时间间隔后观测数据呈现相似性比如同处于波峰或波谷则我们称该序S 呈现相似性,比如同处于波峰或波谷,则我们称该序列具有以为周期的周期特征,并称其为季节性时S 间序列,为季节长度。

S季节性时间序列存在着规则的周期如果我们把季节性时间序列存在着规则的周期,如果我们把原序列按周期重新排列,即可得到一个所谓的二维表。

对于季节性时间序列按周期进行重新排列是极其有益的不仅有助于考察同周期点的变化情况加有益的,不仅有助于考察同一周期点的变化情况、加深对序列周期性的理解,而且对于形成建模思想和理解季节模型的结构也都是很有帮助的。

影响一个季节性时间序列的因素除了季节因素外❝影响一个季节性时间序列的因素除了季节因素外,往往还存在趋势变动和随机变动等。

t t t tX S T I =++❝研究季节性时间序列的目的,就是分解影响经济指标变动的季节因素、趋势因素和随机因素,从而了解它们对经济的影响。

❝1. 简单季节模型❝2. 乘积季节模型季节性时间序列表现出也就是说时间 同期相关性,也就是说时间相隔为的两个时间点上的随机变量有较强的相关性。

比如对于月度数据S 12比如,对于月度数据则与相关性较强。

我们可以利用这种同期相关性在与之12,S =t X 12t X -t X 12t X -间进行拟合。

简单季节模型通过简单的趋势差分季节差分之通过简单的趋势差分、季节差分之后序列即可转化为平稳,它的模型结构通常表示如下:()(1)(),(*)S S D St tB B X B aΦ-=ΘSAR算子其中为白噪声序列,{}ta2()1,S S S pSB B B BΦ=-Φ-Φ--Φ12212()1.pS S S qSqB B B BΘ=-Θ-Θ--ΘSMA算子称(*)为简单季节模型,或季节性自回归求和移动SARIMA p D q平均模型,简记为模型。

季节ARIMA模型

季节ARIMA模型

2.8 季节时间序列模型在某些时间序列中,存在明显的周期性变化。

这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。

这类序列称为季节性序列。

比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。

在经济领域中,季节性序列更是随处可见。

如季度时间序列、月度时间序列、周度时间序列等。

处理季节性时间序列只用以上介绍的方法是不够的。

描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。

较早文献也称其为乘积季节模型(multiplicative seasonal model)。

设季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。

首先用季节差分的方法消除周期性变化。

季节差分算子定义为,∆s = 1- L s若季节性时间序列用y t表示,则一次季节差分表示为∆s y t = (1- L s) y t = y t- y t - s对于非平稳季节性时间序列,有时需要进行D次季节差分之后才能转换为平稳的序列。

在此基础上可以建立关于周期为s的P阶自回归Q阶移动平均季节时间序列模型(注意P、Q 等于2时,滞后算子应为(L s)2 = L2s。

A P (L s) ∆s D y t =B Q(L s) u t(2.60)对于上述模型,相当于假定u t是平稳的、非自相关的。

当u t非平稳且存在ARMA成分时,则可以把u t描述为Φp (L)∆d u t = Θq (L) v t(2.61)其中v t为白噪声过程,p, q分别表示非季节自回归、移动平均算子的最大阶数,d表示u t的一阶(非季节)差分次数。

由上式得u t = Φp-1(L)∆-dΘq (L) v t(2.62)把(2.62) 式代入(2.60) 式,于是得到季节时间序列模型的一般表达式。

Φp(L) A P(L s) (∆d∆s D y t) = Θq(L) B Q(L s) v t(2.63)其中下标P, Q, p, q分别表示季节与非季节自回归、移动平均算子的最大滞后阶数,d, D分别表示非季节和季节性差分次数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


季节模型
xij x S j Iij
上一页 下一页 返回本节首页
季节指数的计算

计算周期内各期平均数
xk
x
i 1
n
ik

计算总平均数
x
n
, k 1,2, , m
x
i 1 k 1
n
m
ik

计算季节指数
nm
xk Sk x
, k 1,2,, m
季节指数的理解
xt Tt St I t
X11过程获得的季节指数图
季节调整后的序列图
趋势拟合图
随机波动序列图
§第四节 季节时间序列模型

4.1季节时间序列的重要特征 一、季节时间序列表示 许多商业和经济时间序列都包含季节现象,例如,冰淇淋的销量的 季度序列在夏季最高,序列在每年都会重复这一现象。相应的周期 为4。类似地,在美国汽车的月度销售量和销售额数据在每年的7月 和8月也趋于下降,因为每年这时汽车厂家将会推出新的产品;在西 方,玩具的销售量在每年12月份会增加,主要是因为圣诞节的缘故; 在中国,每年农历5月份糯米的销售量大大地增加,这是因为中国的 端午节有吃粽子的习惯。到,很多的实际问题中,时间序列会显示出周期 变化的规律,这种周期性是由于季节变化或其他物理因素所致,我 们称这类序列为季节性序列。单变量的时间序列为了分析方便,可 以编制成一个二维的表格,其中一维表示周期,另一维表示某个周 期的一个观测值,如表8.1所示。
2549.5
2306.4 2279.7 2252.7 2265.2 2326 2286.1 2314.6
2662.1
2538.4 2403.1 2356.8 2364 2428.8 2380.3 2410.9
2774.7
2805 2627 2572 2637 2645 2597 2636
9
10 11 12
(5)残差检验
xt ˆ Tt I t ˆ S
t
(6)短期预测
ˆ T ˆ ˆt (l ) S x t l t l
三、X-11过程

简介

X-11过程是美国国情调查局编制的时间序列季节调整过 程。它的基本原理就是时间序列的确定性因素分解方法

因素分解


长期趋势起伏 季节波动 不规则波动 交易日影响
2743.9 2781.5 3405.7
2854
3029 3108 3680
(1)绘制时序图
(2)选择拟合模型

长期递增趋势和以年为固定周期的季节 波动同时作用于该序列,因而尝试使用 混合模型(b)拟合该序列的发展
xt S t (Tt I t )
(3)计算季节指数
月份 季节指数 月份 季节指数




季节指数反映了该季度与总平均值之间 的一种比较稳定的关系 如果这个比值大于1,就说明该季度的值 常常会高于总平均值 如果这个比值小于1,就说明该季度的值 常常低于总平均值 如果序列的季节指数都近似等于1,那就 说明该序列没有明显的季节效应
例1 季节指数的计算
季节指数图
二、综合分析

常用综合分析模型
第八章 季节性时间序列模型
第一节 第二节 第三节 第四节
季节指数 综合分析 X11过程 随机季节差分
【例】以北京市1995年——2000年月平均 气温序列为例,介绍季节性时间序列模 型的基本思想和具体操作步骤。
时序图
一、季节指数

季节指数的概念

所谓季节指数就是用简单平均法计算的周期 内各时期季节性影响的相对数


表4.1 单变量时间序列观测数据表

例如,1993~2000年各月中国社会消费品零售总额序列, 是一个月度资料,其周期S=12,起点为1993年1月,具 体数据见附录。



二、季节时间序列的重要特征 季节性时间序列的重要特征表现为周期性。在一个序列 中,如果经过S个时间间隔后观测点呈现出相似性,比如 同处于波峰或波谷,我们就说该序列具有以S为周期的周 期特性。具有周期特性的序列称为季节时间序列,S为周 期的长度,不同的季节时间序列会表现出不同的周期, 季度资料的一个周期表现为一年的四个季度,月度资料 的周期表现为一年的12各月,周资料表现为一周的7天或 5天。 例如,图4.16的数据是1993年1月到2000年12月的中国 社会消费品月销售总额。
1023.3
1051.1 1102 1415.5
1396.2
1444.1 1553.8 1932.2
1756
1818 1935.2 2389.5
2083.5
2148.3 2290.1 2848.6
2239.6
2348 2454.9 2881.7
2443.1
2536 2652.2 3131.4
2604.3

加法模型
xt Tt St I t

乘法模型
xt Tt S t I t

混合模型
a) xt S t Tt I t b) xt S t (Tt I t )
上一页 下一页 返回本节首页
例2
月份
对1993年——2000年中国社会消费品零售
总额序列进行确定性时序分析
加法模型 乘法模型
上一页 下一页 返回本节首页

模型

方法特色

普遍采用移动平均的方法


用多次短期中心移动平均消除随机波动 用周期移动平均消除趋势 用交易周期移动平均消除交易日影响
例2 续


对1993年——2000年中国社会消费品零 售总额序列使用X-11过程进行季节调整 选择模型(无交易日影响)
1
2 3 4 5 6
0.982
0.943 0.920 0.911 0.925 0.951
7
8 9 10 11 12
0.929
0.940 1.001 1.054 1.100 1.335
季节指数图
季节调整后的序列图
xt Tt I t ˆ S
t
(4)拟合长期趋势
ˆ 1015 T .522 20.93178 t t
1993 1994 1995 1996 1997 1998 1999 2000
1
2 3 4 5 6 7 8
977.5
892.5 942.3 941.3 962.2 1005.7 963.8 959.8
1192.2
1162.7 1167.5 1170.4 1213.7 1281.1 1251.5 1286
1602.2
1491.5 1533.3 1548.7 1585.4 1639.7 1623.6 1637.1
1909.1
1911.2 1860.1 1854.8 1898.3 1966 1888.7 1916.4
2288.5
2213.5 2130.9 2100.5 2108.2 2164.7 2102.5 2104.4
相关文档
最新文档