生物统计学
生物统计学基础知识讲解

生物统计学基础知识讲解生物统计学是一门将统计学原理和方法应用于生物学、医学、农学等领域的交叉学科。
它旨在通过收集、整理、分析和解释生物数据,帮助我们理解生命现象、解决生物问题以及做出科学决策。
一、什么是生物统计学生物统计学运用概率论和数理统计的原理和方法,来研究生物界中各种随机现象和数量规律。
简单来说,它就是帮助我们从看似杂乱无章的生物数据中找出有用的信息和规律。
比如,在医学研究中,通过对大量患者的治疗数据进行分析,确定某种药物的疗效和副作用;在农业领域,研究不同施肥量对作物产量的影响;在生态学中,分析物种的分布和数量变化等等。
二、生物统计学的基本概念1、总体与样本总体是我们所研究对象的全体,而样本则是从总体中抽取的一部分用于观察和分析的个体。
例如,要研究某个地区成年人的身高情况,该地区所有成年人的身高构成总体,而随机抽取的一定数量成年人的身高数据则是样本。
2、变量与数据变量是在研究中可以变化的因素,如身高、体重、血压等。
而数据则是对变量的观测值。
数据可以分为定量数据(如身高、体重等可以用数值表示的)和定性数据(如性别、血型等分类数据)。
3、频率与概率频率是指某一事件在多次重复试验中出现的次数与试验总次数的比值。
概率则是指某一事件在特定条件下发生的可能性大小。
当试验次数足够多时,频率会趋近于概率。
4、误差误差是指观测值与真实值之间的差异。
误差分为随机误差和系统误差。
随机误差是不可避免的,由多种偶然因素引起;而系统误差则是由于测量方法或仪器等原因导致的有规律的偏差。
三、数据的收集1、抽样方法常见的抽样方法有简单随机抽样、分层抽样、整群抽样等。
简单随机抽样是从总体中随机抽取个体,每个个体被抽取的概率相等。
分层抽样是先将总体按照某些特征分成不同层次,然后在各层中进行随机抽样。
整群抽样则是将总体划分为若干群,随机抽取部分群进行观察。
2、数据的质量收集的数据应具有准确性、完整性和可靠性。
准确性是指数据能准确反映实际情况;完整性是指数据应包含所需的所有信息;可靠性是指数据在不同条件下重复测量时能保持一致。
生物统计知识点总结

生物统计知识点总结生物统计学基本概念1. 总体和样本生物统计学中,研究对象的全体称为总体,而从总体中选取的部分个体称为样本。
样本是总体的代表,通过对样本进行研究和分析,可以对总体进行推断。
2. 参数和统计量总体的特征称为参数,它是总体的固有属性。
而样本的特征称为统计量,它是样本的统计学特征,用来推断总体的参数。
3. 随机变量在生物统计学中,用来研究某种现象的变量称为随机变量。
随机变量有两种类型,离散型和连续型。
离散型随机变量的取值是有限个或者可数个,而连续型随机变量的取值是连续的。
4. 抽样分布抽样分布是指在总体中随机抽取样本后得到的分布。
当样本容量足够大时,抽样分布具有一些特定的性质,如正态分布、t分布、F分布等,这些分布在生物统计学中是非常重要的。
生物统计学常用方法1. 描述统计描述统计是对数据进行整理、归纳和描述的过程,主要包括测量中心趋势的指标(如均值、中位数、众数)、测量离散程度的指标(如标准差、方差)以及数据的图表展示。
2. 推断统计推断统计是通过样本对总体参数进行推断的过程。
推断统计主要包括参数估计和假设检验两个部分。
参数估计是通过样本来估计总体参数的值,而假设检验是对总体参数的某种假设进行检验的过程。
3. 方差分析方差分析是一种用来比较两个或多个总体均值是否相等的统计方法。
它包括单因素方差分析和多因素方差分析,用于研究不同因素对总体均值的影响。
4. 回归分析回归分析是用来研究一个或多个自变量对因变量的影响程度和方向的统计方法。
回归分析分为简单线性回归和多元线性回归,以及非线性回归等方法。
5. 生存分析生存分析是研究生存时间或事件发生时间的统计方法,它包括生存曲线、生存率和生存分布等内容,主要用于临床医学和流行病学领域。
生物统计学在生物学领域的应用生物统计学在生物学领域有着广泛的应用。
它可以用来设计实验、收集和整理数据、进行数据分析和结果解释。
以下是一些生物统计学在生物学领域的应用示例。
生物统计学与实验设计

生物统计学与实验设计生物统计学是一门研究生物学数据处理和解释的学科,是生物学实验设计和数据分析的重要工具。
合理的实验设计和有效的统计分析可以帮助我们得出可靠的结论和科学的推断。
本文将介绍生物统计学的基本原理和常用方法,以及如何进行合理的实验设计。
一、生物统计学的基本原理生物统计学是应用统计学原理和方法研究生物学数据的科学。
它的基本原理包括以下几个方面:1. 变量类型:生物学实验中通常涉及不同类型的变量,包括定性变量和定量变量。
定性变量是指描述事物属性的变量,如性别、颜色等;定量变量是指可以进行数值计量的变量,如体重、血压等。
2. 数据采集:在生物学实验中,我们需要收集相应的数据来进行分析。
数据采集应该尽量精确、全面和可靠。
采集数据的过程中要严格按照实验设计的要求进行,避免任何干扰因素的影响。
3. 数据整理和清洗:收集到的数据需要进行整理和清洗,包括去除异常值、缺失值的处理等。
数据整理和清洗是保证数据质量和准确性的重要环节。
4. 描述统计分析:描述统计是通过统计指标来描述数据的基本特征。
包括均值、标准差、频数分布等。
描述统计是对数据的第一层次的分析,可以帮助我们对数据有一个直观的认识。
5. 推断统计分析:推断统计是通过样本数据对总体进行推断。
常用的方法包括假设检验、置信区间估计等。
推断统计可以帮助我们从样本数据中得出总体特征的结论。
二、实验设计合理的实验设计是进行科学研究的基础,也是保证实验结果可靠性的重要因素。
一个良好的实验设计应具备以下几个要素:1. 研究目的和假设:明确研究的目的和假设,假设应具备可验证性和明确性。
2. 实验设计:选择适当的实验设计,包括对照组设计、随机分组设计等。
实验设计应遵循科学原理,能够有效控制干扰因素。
3. 样本大小确定:确定合适的样本大小是保证实验结果可靠性的重要环节。
样本大小的确定需要考虑效应大小、显著水平、样本方差等因素。
4. 随机分配:在实验中对实验对象进行随机分配是避免实验结果的偏倚和提高实验效力的重要手段。
生物统计学

1.总体:我们研究的全部对象2.样本:从总体中抽出的一个部分3.方差:4.对立事件:如果事件A1和A2必发生其一,但不能同时发生,我们称事件A1和A2为对立事件。
5.小概率事件:若随机事件的概率很小,例如小于、、,称之小概率事件。
6.小概率事件:原理小概率事件在一次试验中几乎是不会发生的。
若根据一定的假设条件计算出来该事件发生的概率很小,而在一次试验中竟然发生了,则可以认为假设的条件不正确,从而否定假设。
7.抽样分布:从一个已知的总体中,独立随机地抽取含量为 n 的样本,研究所得样本的各种统计量的概率分布。
8.标准正态分布:期望值μ=0,即曲线图象对称轴为Y 轴,标准差σ=1条件下的正态分布,记为N(0,1)。
9.统计推断:根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。
10.单尾测验:否定区位于分布的一尾的测验。
11.备择假设:与零假设相对立的假设称为备择假设。
12.接受区:接受无效假设的区间。
13.数学期望:随机变量Y 或者Y 的函数的理论平均数。
14.点估计:用样本数据所计算出来的单个数值,对总体参数所做的估计称为点估计1.算术平均数的重要特征之一是离均差之和 ( C )A 最小B 最大C 等于零D 接近零2.统计推断过程中,若我们拒绝H0,则 ( C )A 犯错误B 犯错误C 犯错误或不犯错误D 犯错误或不犯错误变数变异程度的度量,对于总体()22i Y N μσ-=∑, 对于样本22()1Y y s n -=-∑。
3.两个平均数的假设测验用测验。
( C )A uB tC u或tD F4.总体参数在区间[L1,L2]内的概率为1-,其中L1和L2在统计上称为( D )A 置信区间 B 区间估计 C 置信距 D 置信限5.下列不是方差分析基本假定的是假定。
( C )A 可加性B 正态性C 无偏性D 同质性6.人口调查中,以人口性别所组成的总体是( C )总体A 正态分布B 对数正态C 二项分布D 指数分布7.下列有关标准正态分布概率公式的计算中错误的是( D )A P(0<U<u)=f (u) -1/2 B P(U>u)=f (-u)C P(| U| > u)= 2 f (-u)D P (u1<U<u2) = f (u1) - f (u2)8.在抽样分布的研究中,当总体标准差σ未知时样本平均数分布服从( B )分布。
生物统计学

s=
(x-x ) 2
n-1
总体
σ= (x-μ) 2
N
4. 变异系数(coefficient of variability, CV )
定义:样本的标准差除以样本平均数,所得到的比值 就是变异系数。
CV=s / x × 100%
第二章
概率 及其 分布
第一节 随机事件及其概率
随机事件的概念 事件的关系及其运算 概率的定义 概率的运算
第二步 t检验
u x1 x 2
x1 x 2
u x1 x2 s x1 x2
t x1 x 2 s x1 x 2
成对数据平均数的比较
将性质相同的两个样本(供试单位)配偶成 对,每一对除随机地给予不同处理外,其他试验条件 应尽量一致,以检验处理的效果,所得的观测值称为 成对数据。
二、泊松分布
泊松分布(Poisson distribution) 是一种可以用 来描述和分析随机地发生在单位空间或时间里的稀 有事件的概率分布,也是一种离散型随机变量的分 布。
泊松分布是二项分布的一种极限分布(p值很 小,n很大)。
泊松分布的概率函数
P(x) e-λ x
x!
λ为参数,λ=np x = 0,1,2,…
样本1 样本2
x1
d x1 x2
… …
n对
x2
d
d
n
(x1 x2 ) n
x1 n
x2 n
x1 x2
样本差数的平均数等于样本平均数的差数
样本差数的方差
样本差数平均数 的标准误 t值
H0: μd=0
sd2
(d d )2 n 1
生物统计学的主要内容和作用

生物统计学的主要内容和作用一、生物统计学的主要内容生物统计学是统计学在生物学领域的应用,主要涉及以下几个方面的内容:1. 数据收集和整理:生物统计学关注如何有效地收集和整理生物学实验或调查所得的数据。
这包括确定数据收集方法、样本选择和数据录入等环节。
2. 描述统计分析:描述统计分析是对生物学数据进行概括和描述的过程。
通过计算平均数、中位数、标准差等统计指标,可以帮助研究人员了解数据的中心趋势、离散程度和分布情况。
3. 推断统计分析:推断统计分析是根据样本数据推断总体特征的过程。
通过假设检验和置信区间等方法,可以判断样本与总体之间是否存在显著差异,并进行科学推断与决策。
4. 方差分析:方差分析是研究不同因素对生物学实验结果影响的统计方法。
通过比较不同组间的差异,可以确定哪些因素对实验结果具有显著影响,为生物学研究提供有力的支持。
5. 回归分析:回归分析是研究变量间关系的统计方法。
通过建立数学模型,可以预测和解释生物学现象中的变化,如药物剂量与疗效的关系、环境因素对生物种群的影响等。
6. 生存分析:生存分析是研究事件发生时间的统计方法。
在生物学研究中,常用于分析生物个体的存活时间、疾病的发展进程以及物种的演化历程等。
7. 多元统计分析:多元统计分析是研究多个变量之间关系的统计方法。
通过主成分分析、聚类分析、判别分析等方法,可以揭示生物学数据中隐藏的模式和规律。
二、生物统计学的作用生物统计学在生物学研究中具有重要的作用,主要体现在以下几个方面:1. 数据分析和解释:生物统计学可以对生物学实验或调查所得的数据进行科学的分析和解释。
通过统计方法,可以揭示数据中的规律和趋势,从而帮助研究人员更好地理解生物学现象。
2. 假设检验和推断:生物统计学提供了假设检验和推断的工具,可以判断样本与总体之间是否存在显著差异,并进行科学推断与决策。
这对于生物学研究的可靠性和准确性至关重要。
3. 实验设计和样本选择:生物统计学可以指导实验设计和样本选择。
《生物统计学》课件

生物统计学方法
生物样本收集和处理
讨论如何收集、处理生物样本, 并保证数据的准确性。
数据可视化和描述统 计
介绍如何使用图表和统计指标 对数据进行可视化和描述。
假设检验和推断统计
学习如何对数据进行假设检验 和推断统计,以得出科学结论。
物统计学在研究中的应用
流行病学研究
了解生物统计学在流行病学 研究中的重要作用,如疾病 传播和危险因素分析。
总结与展望
1 对生物统计学的重要性
总结本次演示文稿,强调生物统计学在科学研究中的重要性和作用。
临床试验设计与分析
探讨生物统计学在临床试验 设计和结果分析中的应用, 以支持医学决策。
基因组学研究
探索生物统计学如何帮助基 因组学研究,如基因表达分 析和关联性研究。
生物统计学软件和工具
常用的生物统计学软件
介绍流行的生物统计学软件,如SPSS和R语言,并 展示其功能。
网络资源和数据库
推荐一些常用的在线资源和数据库,供学习和研究 使用。
《生物统计学》PPT课件
欢迎大家来到本次《生物统计学》PPT课件!将带你深入了解生物统计学的概 念和应用领域,以及在研究中扮演的重要角色。
引言
1 目的和背景
介绍本次演示文稿的目的以及其背景。
生物统计学简介
1 定义
探讨生物统计学的定义和其在科学研究中的重要性。
2 应用领域
介绍生物统计学在医学、环境科学和生物研究等领域的广泛应用。
生物统计学与数据分析

生物统计学与数据分析生物统计学是一门研究生物数据的数学方法和技术的学科。
它的研究对象包括生物医学、生态学、遗传学、分子生物学、神经科学等领域产生的数据。
生物统计学通过对数据进行系统性的处理和分析,能够帮助人们更好地理解生物学问题,并发现不同生物数据之间的变化趋势和关联性。
而数据分析则是生物统计学的应用之一,是指通过对数据进行收集、整理、处理、分析和解释,从而推断和预测未知的信息。
生物统计学的基本概念生物统计学有许多基本概念和方法。
其中最常见的就是描述性统计和推断性统计。
描述性统计是指对数据进行统计总结和描绘,例如计算平均值、中位数、标准差、方差、频率分布等等。
推断性统计则是通过对样本数据进行分析、计算和推断,得出关于总体的结论。
此外,生物统计学还有一些基本的假设检验和方差分析方法。
其中假设检验是通过对样本数据进行检验,得出对总体的假设是否成立的结论。
在这个过程中通常涉及到显著性水平、p值等统计学概念。
而方差分析则是通过对两组或多组数据的方差进行比较,从而判断它们之间是否存在显著差异。
生物数据的收集和处理不同类型的生物数据可以通过不同的方法进行收集和处理。
常见的生物数据类型包括基因表达数据、蛋白质组学数据、全基因组测序数据、微生物组学数据等等。
这些数据的收集和处理需要结合生物学实验的设计和目的,通常分为以下几个步骤:1.数据收集:选择合适的样本、控制变量、确定数据采集的方式和方法,例如单细胞测序、蛋白质质谱检测等等。
2.数据预处理:去除噪音、检查异常值、实施标准化和归一化等。
3.数据清洗:统一数据格式、基因或蛋白质注释、数据去重、筛选后的基因进行聚类等处理。
4.数据分析:利用各种统计学方法和算法对数据进行分析,例如假设检验、方差分析、机器学习等等。
数据可视化数据可视化是将大量的生物数据转换为有用的视觉图像的过程。
生物数据在其原始形式下往往很难直观地理解和解释,而数据可视化则可以将这些数据呈现为图表、热图、网络图、直方图等形式,方便人们理解和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物统计学名词解释:1.生物统计学:是数理统计在生物学研究中的应用,它是应用数理统计的原理,运用统计方法来认识、分析、推断和解释生命过程中的各种现象和试验调查资料的科学。
2.总体:具有相同性质或属性的个体所组成的集合称为总体,它是指研究对象的全体;3.个体:组成总体的基本单元称为个体;4.样本:从总体中抽出若干个体所构成的集合称为样本;5.集中性:资料中的观测值从某一数值为中心而分布的性质。
6.离散性:是变量有差离中心分散变异的性质。
7.变量(变数):指相同性质的事物间表现差异性或差异特征的数据。
8.常数:表示能代表事物特征和性质的数值,通常由变量计算而来,在一定过程中是不变的。
9.参数:描述总体特征的数量称为参数,也称参量。
常用希腊字母表示参数,例如用μ表示总体平均数,用σ表示总体标准差;10.统计数:描述样本特征的数量称为统计数,也称统计量。
常用拉丁字母表示统计数,例如用x表示样本平均数,用S表示样本标准差。
11.效应:通过施加试验处理,引起试验差异的作用称为效应。
效应是一个相对量,而非绝对量,表现为施加处理前后的差异。
效应有正效应与负效应之分。
12.互作(连应):是指两个或两个以上处理因素间相互作用产生的效应。
互作也有正效应(协同作用)与负效应(拮抗作用)之分。
13.准确性:也叫准确度,指在调查或试验中某一试验指标或性状的观测值与其真值接近的程度。
14.精确性:也叫精确度,指调查或试验中同一试验指标或性状的重复观测值彼此接近的程度。
15.随机误差:也叫抽样误差。
这是由于试验中无法控制的内在和外在的偶然因素所造成。
随机误差越小,试验精确性越高。
16.系统误差:也叫片面误差,这是由于试验条件控制不一致、测量仪器不准、试剂配制不当、试验人员粗心大意使称量、观测、记载、抄录、计算中出现错误等人为因素而引起的。
系统误差影响试验的准确性。
只要以认真负责的态度和细心的工作作风是完全可以避免的。
17.数量性状:是指能够以计数和测量或度量的方式表示其特征的性状。
18.质量性状:是指能观察到而不能直接测量的性状19.次数资料:由质量性状量化得来的资料叫做次数资料。
20.试验:是对已有的或没有的事物加以处理的方法。
21.大数定律:是概率论中用来阐述大量随机现象平均结果稳定性的一系列定律的总称。
主要内容:样本容量越大,样本统计数与总体参数之差越小。
22.泊松分布:是一种可以用来描述和分析随机地发生在单位空间或时间里的稀有事件的概率分布,也是一种离散型随机变量的分布。
23.假设检验:又称显著性检验,就是根据总体的理论分布和小概率原理,对未知或不完全知道的总体提出两种彼此对立的假设,然后由样本的实际原理,经过一定的计算,作出在一定概率意义上应该接受的那种假设的推断。
24.成组数据:如果两个样本的各个变量是从各自总体中随机抽取的,两个样本之间的变量没有任何关联,即两个抽样样本彼此独立,则不论两样本的容量是否相同,所得数据皆为成组数据。
25.成对数据:将性质相同的两个样本(供试单位)配偶成对,每一对除随机地给予不同处理外,其他试验条件应尽量一致,以检验处理的效果,所得的观测值称为成对数据。
26.第一类错误:由于二项总体的百分数(频率)是由某一属性的个体计算来的整数,所以是离散型的。
当样本不太大时,把它当作连续型的近似正态总体来处理,结果会有些出入,容易发生第一类错误。
27.χ2检验:对样本的频数分布所来自的总体分布是否服从某种理论分布或某种假设分布所作的假设检验,即根据样本的频数分布来推断总体的分布。
χ2检验就是统计样本的实际观测值与理论推算值之间的偏离程度。
28.适合性检验(吻合度检验):指测验观察的实际次数与某种理论次数是否相符的测验。
29.独立性检验:研究两个计数资料间是否互相独立的测验【H0:独立(不相关)HA:不独立(相关)】30.同质性检验:在连续型资料的假设检验中,对一个样本方差的同质性检验,也需进行χ2检验。
31.方差分析:又叫变量分析,它是用以检验两个或多个均数间差异的假设检验方法。
它是一类特定情况下的统计假设检验,或者说是平均数差异显著性检验的一种引伸。
32.试验指标:为衡量试验结果的好坏和处理效应的高低,在实验中具体测定的性状或观测的项目称为试验指标。
常用的试验指标有:身高、体重、日增重、酶活性、DNA含量等等。
33.试验误差:使观测值偏离真值的偶然影响造成的误差。
34.试验因素:试验中所研究的影响试验指标的因素叫试验因素。
当试验中考察的因素只有一个时,称为单因素试验;若同时研究两个或两个以上因素对试验指标的影响时,则称为两因素或多因素试验。
35.因素水平: 试验因素所处的某种特定状态或数量等级称为因素水平,简称水平。
如研究3个品种奶牛产奶量的高低,这3个品种就是奶牛品种这个试验因素的3个水平。
36.试验处理:事先设计好的实施在实验单位上的具体项目就叫试验处理。
如进行饲料的比较试验时,实施在试验单位上的具体项目就是具体饲喂哪一种饲料。
37.试验单位:在实验中能接受不同试验处理的独立的试验载体叫试验单位。
一只小白鼠,一条鱼,一定面积的小麦等都可以作为实验单位。
38.重复:在实验中,将一个处理实施在两个或两个以上的试验单位上,称为处理有重复;一处理实施的试验单位数称为处理的重复数。
例如,用某种饲料喂4头猪,就说这个处理(饲料)有4个重复。
39.多重比较:统计上把多个平均数两两间的相互比较称为多重比较。
40.因素:也叫因子,是指对试验指标有影响,在研究中加以(控制)考虑的试验条件。
41.水平:每个因素的不同状态(从质或量方面分成不同的等级)42.主效应:各试验因素的相对独立作用43.互作:某一因素在另一因素的不同水平上所产生的效应不同。
44.谐变关系:在实际研究中,事物之间的相互关系涉及两个或两个以上的变量,只要其中的一个变量变动了,另一个变量也会跟着发生变动,这种关系称为谐变关系。
45.正态分布的特征:①x=μ时,f(x)值最大,正态分布曲线以平均数μ为中心的分布。
②x-μ的绝对值相等时,f(x)也相等,正态分布密度曲线以μ为中心向左右两侧对称。
③f(x)是非负函数,以x轴为渐近线,x的取值区间为(-∞,+∞) 。
④正态分布曲线由参数μ,σ决定,μ确定正态分布曲线在x轴上的中心位置,σ确定正态分布的变异度。
⑤正态分布曲线在x=μ±σ处各有一个拐点,曲线通过拐点时改变弯曲度。
⑥分布曲线与x轴围成的全部面积为1。
填空:1.在五种不同饲料对仔猪增重效果影响的研究中,试验指标为增重量,试验因素为饲料种类,试验处理为5种饲料。
2.实验资料的类型分为数量性状资料、质量性状资料、等级资料。
前者又包括计数资料(非连续变量资料)和计量资料(连续变量资料)。
3.统计表编制的总原则:结构简单、层次分明、内容安排合理、重点突出、数据准确、便于比较和理解分析。
4.通常情况下,描述连续性资料(计量资料)时用直方图、折线图(多边形图),描述非连续性资料(计数资料)时用条形图、饼图。
5.任意一个变数的分布都有两个基本特征集中性、分散性,表示这两个数的统计数算术平均数、标准差。
6.t分布有自由度df 决定,当df越大时,t分布差异越小,决定t分布参数为V0。
7.F分布由参数V1和V2来决定,Fα读作显著水准为α时的F临界值,根据其分子、分母方差的自由度。
8.平均数表示变数的集中特征,标准差表示变数的离散特征。
9.在比较两个变数变异时用变异系数,采用随机单位组设计,单位组可集中可分散。
10.在比较两个性质不同,单位不同,平均数大小各异的样本变异度时,应该采用变异系数比较,而不采用标准差比较。
11.标准正态分布表示为N(0,1)。
12.统计推断是指根据抽样分布律和概率理论,由样本结果对总体特征进行推断,假设实验使用的原理小概率事件实际不可能的原理。
13.统计推断包括假设检验、参数估计。
14.假设检验又称显著性测验,常有的是t检验、F检验和X2检验。
15.假设实验中的两类错误α错误、β错误,降低两类错误的措施降低试验各环节中的误差。
16.降低犯α、β错误的方法:增加样本容量、减小方差、合理设计试验、正确实验技术。
17.进行假设检验的步骤:①对研究总体的参数提出假设;②确定或否定H0的概率水准α;③在无效假设正确的条件下,根据统计数的抽样分布率计算实际实验结果中误差造成的概率;④根据计算结果作出显著性判断。
18.常用来进行平均数多重比较的方法最小显著差数法LSD 、最小显著极差法LSR 。
19.X2测验对计数资料时,df=1时需要矫正,适合性测验时,X2自由度df=k-1,独立性测验时,自由度df=(r-1)(c-1)。
20.方差分析是在处理数K>=3时进行平均数统计假设测验的方法,进行方差分析的资料服从效应的可加性、分布的正态性、方差的同质性。
21.适合性检验的用途遗传学中用以检验实际结果是否符合遗传过滤,检验样本分布与理论是否相等。
22.分析指标若是种子发芽率进行比较,方差分析时应注意,首先数据转换,常用方法是反正弦转换法。
23.两项百分数资料转换常用方法反正弦转换法。
24.拉丁方设计特点试验处理数=重复次数,每行每列都构成单位组。
25.在应用所得回归方程g=a+bx,应注意:①两变数间的线性相关程度︱r︱>=0.7;②要在x的取值区间内去用,不能超过这个范围;③要在获得该方程的原条件下去用。
26.在两个变数的相关回归研究中,相关系数,回归数的假设,测验结果一致可以由其中任意一种测验结果来推断相关回归关系是否显著,若两变数具有回归关系,则必有相关关系;而两变数具有相关关系,则不一定有回归关系。
27.试验设计3条基本原理重复、随机、局部控制,在同时重复研究多个因素试验中,全部实施处理太多,此时考虑和采用正交设计。
28.试验误差的来源实验材料固有差异、试验条件不一致、操作技术不一致、偶然因素的来源、疏忽大意造成。
29.试验设计的目的:避免系统误差,控制、降低试验误差,无偏估计处理效应,从而对样本所在总体作出可靠、正确的推断。
30.试验设计的要求:试验目的明确、试验条件要有代表性、试验结果可靠、试验结果可重演判断:1.根据抽样试验验平均数和标准差均是其相应参数的无偏估计值(X)2.对于固定模型资料中,当方差分析中的F检验达到显著后应进行多重比较(√)3.进行X2检验时,凡是资料中的df=1都需要进行连续矫正(X)4.两项百分数资料课直接进行方差分析(X)5.由于标准差可以反映变数的离散性,因此可以用来比较任意两个变数(X)6.用SSR法进行多重比较时,任意两个平均数差值秩次距与同一显著尺度进行比较并作出判断(√)7.进行F检验时应根据平均数秩次距和误差自由度dfe查Fα(X)8.由于回归系数和相关系数的正负号一致,所以根据回归系数也可以知道两个变数之间的相关性质(√)9.在非配对检验中,如果两个样本容量综合不变化,n1=n2时可以获得最小的实验误差,所以进行非配对实验时,两样本容量最好相等(√)10.一个变数平均数的代表性强弱可以用变异系数说明(X)11.用PLSD法进行多重比较,任意两个平均数方差值应与相应的秩次距下显示尺度作出比较判断(X)12.随机模型与固定模型的资料在推断时都仅限于供试处理范围之内(X)13.保证F检验正确的有效条件之一是其分子期望均方比分母的期望均方多一个分量(√)14.相关系数与决定系数均可反映两个变数之间的相关性质(X)15.在试验中获得数据时,使得做方差分析时,用各小区观察值,本身就是一个平均值,是使方差分析满足基本假设的一种有效手段(√)简答题:1.标准差与变异系数的异同:相同:都能反映变异数离散程度大小的值不同:①标准差:是一个绝对值,带变数单位,反映变数的平均变异量。