20122017年全国高考文科导数大题官方解答
2017-2021年高考真题 导数 解答题全集 (学生版+解析版)

2017-2021年高考真题 导数 解答题全集 (学生版+解析版)1.(2021•新高考Ⅱ)已知函数f (x )=(x ﹣1)e x ﹣ax 2+b .(Ⅰ)讨论f (x )的单调性;(Ⅱ)从下面两个条件中选一个,证明:f (x )恰有一个零点.①12<a ≤e 22,b >2a ; ②0<a <12,b ≤2a .2.(2021•北京)已知函数f (x )=3−2x x 2+a. (1)若a =0,求y =f (x )在(1,f (1))处的切线方程;(2)若函数f (x )在x =﹣1处取得极值,求f (x )的单调区间,以及最大值和最小值.3.(2021•天津)已知a >0,函数f (x )=ax ﹣xe x .(1)求曲线f (x )在点(0,f (0))处的切线方程;(2)证明函数f (x )存在唯一的极值点;(3)若∃a ,使得f (x )≤a +b 对任意的x ∈R 恒成立,求实数b 的取值范围.4.(2021•浙江)设a ,b 为实数,且a >1,函数f (x )=a x ﹣bx +e 2(x ∈R ).(Ⅰ)求函数f (x )的单调区间;(Ⅱ)若对任意b >2e 2,函数f (x )有两个不同的零点,求a 的取值范围;(Ⅲ)当a =e 时,证明:对任意b >e 4,函数f (x )有两个不同的零点x 1,x 2,满足x 2>blnb 2e 2x 1+e 2b . (注:e =2.71828⋯是自然对数的底数)5.(2021•甲卷)设函数f (x )=a 2x 2+ax ﹣3lnx +1,其中a >0.(1)讨论f (x )的单调性;(2)若y =f (x )的图像与x 轴没有公共点,求a 的取值范围.6.(2021•乙卷)已知函数f (x )=ln (a ﹣x ),已知x =0是函数y =xf (x )的极值点.(1)求a ;(2)设函数g (x )=x+f(x)xf(x).证明:g (x )<1.7.(2021•新高考Ⅰ)已知函数f (x )=x (1﹣lnx ).(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且blna ﹣alnb =a ﹣b ,证明:2<1a +1b <e .8.(2021•乙卷)已知函数f (x )=x 3﹣x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.9.(2021•甲卷)已知a >0且a ≠1,函数f (x )=x a a x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.10.(2020•新课标Ⅰ)已知函数f (x )=e x ﹣a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.11.(2020•天津)已知函数f (x )=x 3+klnx (k ∈R ),f ′(x )为f (x )的导函数.(Ⅰ)当k =6时,(ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(ⅱ)求函数g (x )=f (x )﹣f ′(x )+9x 的单调区间和极值;(Ⅱ)当k ≥﹣3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.12.(2020•海南)已知函数f (x )=ae x ﹣1﹣lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积;(2)若f (x )≥1,求a 的取值范围.13.(2020•北京)已知函数f (x )=12﹣x 2.(Ⅰ)求曲线y =f (x )的斜率等于﹣2的切线方程;(Ⅱ)设曲线y =f (x )在点(t ,f (t ))处的切线与坐标轴围成的三角形的面积为S (t ),求S (t )的最小值.14.(2020•浙江)已知1<a ≤2,函数f (x )=e x ﹣x ﹣a ,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数y =f (x )在 (0,+∞)上有唯一零点;(Ⅱ)记x 0为函数y =f (x )在 (0,+∞)上的零点,证明:(ⅰ)√a −1≤x 0≤√2(a −1);(ⅱ)x 0f (e x 0)≥(e ﹣1)(a ﹣1)a .15.(2020•江苏)已知关于x 的函数y =f (x ),y =g (x )与h (x )=kx +b (k ,b ∈R )在区间D 上恒有f (x )≥h (x )≥g (x ).(1)若f (x )=x 2+2x ,g (x )=﹣x 2+2x ,D =(﹣∞,+∞),求h (x )的表达式;(2)若f (x )=x 2﹣x +1,g (x )=klnx ,h (x )=kx ﹣k ,D =(0,+∞),求k 的取值范围;(3)若f (x )=x 4﹣2x 2,g (x )=4x 2﹣8,h (x )=4(t 3﹣t )x ﹣3t 4+2t 2(0<|t |≤√2),D =[m ,n ]⊂[−√2,√2],求证:n ﹣m ≤√7.16.(2020•新课标Ⅲ)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点(12,f (12))处的切线与y 轴垂直.(1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.17.(2020•新课标Ⅱ)已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:|f (x )|≤3√38; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n 4n . 18.(2020•新课标Ⅱ)已知函数f (x )=2lnx +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0,讨论函数g (x )=f(x)−f(a)x−a的单调性. 19.(2020•新课标Ⅰ)已知函数f (x )=e x +ax 2﹣x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.20.(2020•新课标Ⅲ)已知函数f (x )=x 3﹣kx +k 2.(1)讨论f (x )的单调性;(2)若f (x )有三个零点,求k 的取值范围.21.(2019•全国)已知函数f (x )=√x (x 2﹣ax ).(1)当a=1时,求f(x)的单调区间;(2)若f(x)在区间[0,2]的最小值为−23,求a.22.(2019•新课标Ⅲ)已知函数f(x)=2x3﹣ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.23.(2019•新课标Ⅲ)已知函数f(x)=2x3﹣ax2+2.(1)讨论f(x)的单调性;(2)当0<a<3时,记f(x)在区间[0,1]的最大值为M,最小值为m,求M﹣m的取值范围.24.(2019•浙江)已知实数a≠0,设函数f(x)=alnx+√1+x,x>0.(Ⅰ)当a=−34时,求函数f(x)的单调区间;(Ⅱ)对任意x∈[1e2,+∞)均有f(x)≤√x2a,求a的取值范围.注:e=2.71828…为自然对数的底数.25.(2019•新课标Ⅱ)已知函数f(x)=(x﹣1)lnx﹣x﹣1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.26.(2019•江苏)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤4 27.27.(2019•天津)设函数f(x)=lnx﹣a(x﹣1)e x,其中a∈R.(Ⅰ)若a≤0,讨论f(x)的单调性;(Ⅱ)若0<a<1 e,(ⅰ)证明f(x)恰有两个零点;(ⅱ)设x0为f(x)的极值点,x1为f(x)的零点,且x1>x0,证明3x0﹣x1>2.28.(2019•天津)设函数f (x )=e x cos x ,g (x )为f (x )的导函数.(Ⅰ)求f (x )的单调区间;(Ⅱ)当x ∈[π4,π2]时,证明f (x )+g (x )(π2−x )≥0; (Ⅲ)设x n 为函数u (x )=f (x )﹣1在区间(2n π+π4,2n π+π2)内的零点,其中n ∈N ,证明2n π+π2−x n <e −2nπsinx 0−cosx 0. 29.(2019•新课标Ⅰ)已知函数f (x )=2sin x ﹣x cos x ﹣x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.30.(2019•新课标Ⅱ)已知函数f (x )=lnx −x+1x−1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线.31.(2019•北京)已知函数f (x )=14x 3﹣x 2+x .(Ⅰ)求曲线y =f (x )的斜率为1的切线方程;(Ⅱ)当x ∈[﹣2,4]时,求证:x ﹣6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )﹣(x +a )|(a ∈R ),记F (x )在区间[﹣2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.32.(2019•新课标Ⅰ)已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间(﹣1,π2)存在唯一极大值点; (2)f (x )有且仅有2个零点.33.(2018•北京)设函数f (x )=[ax 2﹣(4a +1)x +4a +3]e x .(Ⅰ)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(Ⅱ)若f (x )在x =2处取得极小值,求a 的取值范围.34.(2018•北京)设函数f (x )=[ax 2﹣(3a +1)x +3a +2]e x .(Ⅰ)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ;(Ⅱ)若f (x )在x =1处取得极小值,求a 的取值范围.35.(2018•新课标Ⅲ)已知函数f (x )=(2+x +ax 2)ln (1+x )﹣2x .(1)若a =0,证明:当﹣1<x <0时,f (x )<0;当x >0时,f (x )>0;(2)若x=0是f(x)的极大值点,求a.36.(2018•新课标Ⅰ)已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥1e时,f(x)≥0.37.(2018•新课标Ⅲ)已知函数f(x)=ax2+x−1e x.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.38.(2018•新课标Ⅱ)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.39.(2018•浙江)已知函数f(x)=√x−lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.40.(2018•天津)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=−2lnlna lna;(Ⅲ)证明当a≥e 1e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.41.(2018•江苏)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S 点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=be xx.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.42.(2018•新课标Ⅱ)已知函数f(x)=13x3﹣a(x2+x+1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.43.(2018•新课标Ⅰ)已知函数f (x )=1x −x +alnx .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f(x 1)−f(x 2)x 1−x 2<a ﹣2.44.(2017•新课标Ⅰ)已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.45.(2017•全国)已知函数f (x )=ax 3﹣3(a +1)x 2+12x .(1)当a >0时,求f (x )的极小值;(Ⅱ)当a ≤0时,讨论方程f (x )=0实根的个数.46.(2017•新课标Ⅰ)已知函数f (x )=e x (e x ﹣a )﹣a 2x .(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.47.(2017•天津)设a ∈Z ,已知定义在R 上的函数f (x )=2x 4+3x 3﹣3x 2﹣6x +a 在区间(1,2)内有一个零点x 0,g (x )为f (x )的导函数.(Ⅰ)求g (x )的单调区间;(Ⅱ)设m ∈[1,x 0)∪(x 0,2],函数h (x )=g (x )(m ﹣x 0)﹣f (m ),求证:h (m )h (x 0)<0;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且p q ∈[1,x 0)∪(x 0,2],满足|p q −x 0|≥1Aq 4. 48.(2017•新课标Ⅱ)设函数f (x )=(1﹣x 2)•e x .(1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求实数a 的取值范围.49.(2017•山东)已知函数f (x )=x 2+2cos x ,g (x )=e x (cos x ﹣sin x +2x ﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y =f (x )在点(π,f (π))处的切线方程;(Ⅱ)令h (x )=g (x )﹣af (x )(a ∈R ),讨论h (x )的单调性并判断有无极值,有极值时求出极值.50.(2017•天津)设a ,b ∈R ,|a |≤1.已知函数f (x )=x 3﹣6x 2﹣3a (a ﹣4)x +b ,g (x )=e x f (x ).(Ⅰ)求f (x )的单调区间;(Ⅱ)已知函数y =g (x )和y =e x 的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:f (x )在x =x 0处的导数等于0;(ii )若关于x 的不等式g (x )≤e x 在区间[x 0﹣1,x 0+1]上恒成立,求b 的取值范围.51.(2017•北京)已知函数f (x )=e x cos x ﹣x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间[0,π2]上的最大值和最小值. 52.(2017•江苏)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域;(Ⅱ)证明:b 2>3a ;(Ⅲ)若f (x ),f ′(x )这两个函数的所有极值之和不小于−72,求实数a 的取值范围.53.(2017•新课标Ⅱ)已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2. 54.(2017•浙江)已知函数f (x )=(x −√2x −1)e ﹣x (x ≥12). (1)求f (x )的导函数;(2)求f (x )在区间[12,+∞)上的取值范围. 55.(2017•新课标Ⅲ)已知函数f (x )=lnx +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明:f (x )≤−34a −2.56.(2017•新课标Ⅲ)已知函数f (x )=x ﹣1﹣alnx .(1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12)(1+122)…(1+12n )<m ,求m 的最小值.57.(2017•山东)已知函数f(x)=13x3−12ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cos x﹣sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.2017-2021年高考真题 导数 解答题全集(学生版+解析版)参考答案与试题解析1.(2021•新高考Ⅱ)已知函数f (x )=(x ﹣1)e x ﹣ax 2+b .(Ⅰ)讨论f (x )的单调性;(Ⅱ)从下面两个条件中选一个,证明:f (x )恰有一个零点.①12<a ≤e 22,b >2a ; ②0<a <12,b ≤2a .【解答】解:(Ⅰ)∵f (x )=(x ﹣1)e x ﹣ax 2+b ,f '(x )=x (e x ﹣2a ),①当a ≤0时,当x >0时,f '(x )>0,当x <0时,f '(x )<0,∴f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,②当a >0时,令f '(x )=0,可得x =0或x =ln (2a ),(i )当0<a <12时,当x >0或x <ln (2a )时,f '(x )>0,当ln (2a )<x <0时,f '(x )<0,∴f (x )在(﹣∞,ln (2a )),(0,+∞)上单调递增,在(ln (2a ),0)上单调递减, (ii )a =12时,f '(x )=x (e x ﹣1)≥0 且等号不恒成立,∴f (x )在R 上单调递增,(iii )当a >12时,当x <0或x >ln (2a )时,f '(x )>0,当0<x <ln (2a )时,f '(x )<0,f (x )在(﹣∞,0),(ln (2a ),+∞)上单调递增,在(0,ln (2a ))上单调递减. 综上所述:当 a ⩽0 时,f (x ) 在 (﹣∞,0)上单调递减;在 (0,+∞)上 单调递增;当 0<a <12 时,f (x ) 在 (﹣∞,ln (2a )) 和 (0,+∞)上单调递增;在 (ln (2a ),0)上单调递减;当 a =12 时,f (x ) 在 R 上单调递增;当 a >12 时,f (x ) 在 (﹣∞,0)和 (ln (2a ),+∞) 上单调递增;在 (0,ln (2a )) 上单调递减.(Ⅱ)证明:若选①,由 (Ⅰ)知,f (x ) 在 (﹣∞,0)上单调递增,(0,ln (2a ))单调递减,(ln(2a),+∞)上f(x)单调递增.注意到f(−√ba)=(−√b a−1)e−√ba<0,f(0)=b−1>2a−1>0.∴f(x)在(−√ba,0]上有一个零点;f(ln(2a))=(ln(2a)﹣1)⋅2a﹣a⋅ln22a+b>2aln(2a)﹣2a﹣aln22a+2a=aln(2a)(2﹣ln(2a)),由12<a⩽e22得0<ln(2a)⩽2,∴aln(2a)(2﹣ln(2a))⩾0,∴f(ln(2a))>0,当x⩾0 时,f(x)⩾f(ln(2a))>0,此时f(x)无零点.综上:f(x)在R上仅有一个零点.若选②,则由(Ⅰ)知:f(x)在(﹣∞,ln(2a))上单调递增,在(ln(2a),0)上单调递减,在(0,+∞)上单调递增.f(ln(2a))=(ln(2a)﹣1)2a﹣aln22a+b⩽2aln(2a)﹣2a﹣aln22a+2a=aln(2a)(2﹣ln(2a)),∵0<a<12,∴ln(2a)<0,∴aln(2a)(2﹣ln(2a))<0,∴f(ln(2a))<0,∴当x⩽0 时,f(x)⩽f(ln(2a))<0,此时f(x)无零点.当x>0 时,f(x)单调递增,注意到f(0)=b﹣1⩽2a﹣1<0,取c=√2(1−b)+2,∵b<2a<1,∴c>√2>1,又易证e c>c+1,∴f(c)=(c−1)e c−ac2+b>(c−1)(c+1)−ac2+b=(1−a)c2+b−1>12c2+b−1=1−b+1+b−1=1>0,∴f(x)在(0,c)上有唯一零点,即f(x)在(0,+∞)上有唯一零点.综上:f(x)在R上有唯一零点.2.(2021•北京)已知函数f(x)=3−2x x2+a.(1)若a=0,求y=f(x)在(1,f(1))处的切线方程;(2)若函数f(x)在x=﹣1处取得极值,求f(x)的单调区间,以及最大值和最小值.【解答】解:(1)f(x)=3−2xx2的导数为f′(x)=−2x2−2x(3−2x)x4=2x−6x3,可得y=f(x)在(1,1)处的切线的斜率为﹣4,则y=f(x)在(1,f(1))处的切线方程为y﹣1=﹣4(x﹣1),即为y=﹣4x+5;(2)f(x)=3−2xx2+a的导数为f′(x)=−2(x2+a)−2x(3−2x)(x2+a)2,由题意可得f′(﹣1)=0,即8−2a(a+1)2=0,解得a=4,可得f(x)=3−2x x2+4,f′(x)=2(x+1)(x−4) (x2+4)2,当x>4或x<﹣1时,f′(x)>0,f(x)递增;当﹣1<x<4时,f′(x)<0,f(x)递减.函数y=f(x)的图象如右图,当x→﹣∞,y→0;x→+∞,y→0,则f(x)在x=﹣1处取得极大值1,且为最大值1;在x=4处取得极小值−14,且为最小值−1 4.所以f(x)的增区间为(﹣∞,﹣1),(4,+∞),减区间为(﹣1,4);f(x)的最大值为1,最小值为−1 4.3.(2021•天津)已知a>0,函数f(x)=ax﹣xe x.(1)求曲线f(x)在点(0,f(0))处的切线方程;(2)证明函数f(x)存在唯一的极值点;(3)若∃a,使得f(x)≤a+b对任意的x∈R恒成立,求实数b的取值范围.【解答】(1)解:因为f'(x)=a﹣(x+1)e x,所以f'(0)=a﹣1,而f(0)=0,所以在(0,f(0))处的切线方程为y=(a﹣1)x(a>0);(2)证明:令f'(x)=a﹣(x+1)e x=0,则a=(x+1)e x,令g(x)=(x+1)e x,则g'(x)=(x+2)e x,令g'(x)=0,解得x=﹣2,当x∈(﹣∞,﹣2)时,g'(x)<0,g(x)单调递减,当x∈(﹣2,+∞)时,g'(x)>0,g(x)单调递增,当x→﹣∞时,g(x)<0,当x→+∞时,g(x)>0,作出图象所以当a>0时,y=a与y=g(x)仅有一个交点,令g(m)=a,则m>﹣1,且f(m)=a﹣g(m)=0,当x∈(﹣∞,m)时,a>g(m),f'(x)>0,f(x)为增函数;当x∈(m,+∞)时,a<g(m),f'(x)<0,f(x)为减函数;所以x=m时f(x)的极大值点,故f(x)仅有一个极值点;(3)解:由(2)知f(x)max=f(m),此时a=(1+m)e m,(m>﹣1),所以{f(x)﹣a}max=f(m)﹣a=(1+m)e m﹣m﹣me m﹣(1+m)e m=(m2﹣m﹣1)e m (m>﹣1),令h(x)=(x2﹣x﹣1)e x(x>﹣1),若存在a,使f(x)≤a+b对任意的x∈R恒成立,则等价于存在x∈(﹣1,+∞),使得h(x)≤b,即b≥h(x)min,而h'(x)=(x2+x﹣2)e x=(x﹣1)(x+2)e x,(x>﹣1),当x∈(﹣1,1)时,h'(x)<0,h(x)为单调减函数,当x∈(1,+∞)时,h'(x)>0,h(x)为单调增函数,所以h(x)min=h(1)=﹣e,故b≥﹣e,所以实数b的取值范围[﹣e,+∞).4.(2021•浙江)设a,b为实数,且a>1,函数f(x)=a x﹣bx+e2(x∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(Ⅲ)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2,满足x2>blnb 2e2x1+e2b.(注:e=2.71828⋯是自然对数的底数)【解答】解:(Ⅰ)f′(x)=a x lna﹣b,①当b≤0时,由于a>1,则a x lna>0,故f′(x)>0,此时f(x)在R上单调递增;②当b>0时,令f′(x)>0,解得x>ln blnalna,令f′(x)<0,解得x<ln blnalna,∴此时f(x)在(−∞,ln blnalna)单调递减,在(ln blnalna,+∞)单调递增;综上,当b≤0时,f(x)的单调递增区间为(﹣∞,+∞);当b>0时,f(x)的单调递减区间为(−∞,ln blnalna),单调递增区间为(ln blnalna,+∞);(Ⅱ)注意到x→﹣∞时,f(x)→+∞,当x→+∞时,f(x)→+∞,由(Ⅰ)知,要使函数f(x)有两个不同的零点,只需f(x)min=f(ln blnalna)<0即可,∴a ln blnalna−b⋅ln blnalna+e2<0对任意b>2e2均成立,令t=ln blnalna,则at﹣bt+e2<0,即e tlna﹣bt+e2<0,即e lnblna−b⋅ln blnalna+e2<0,即blna−b⋅ln blnalna+e2<0,∴b−b⋅lnblna+e2lna<0对任意b>2e2均成立,记g(b)=b−b⋅lnblna+e2lna,b>2e2,则g′(b)=1−(ln b lna+b⋅lna b⋅1lna)=ln(lna)−lnb,令g′(b)=0,得b=lna,①当lna>2e2,即a>e2e2时,易知g(b)在(2e2,lna)单调递增,在(lna,+∞)单调递减,此时g(b)≤g(lna)=lna﹣lna•ln1+e2lna=lna•(e2+1)>0,不合题意;②当lna≤2e2,即1<a≤e2e2时,易知g(b)在(2e2,+∞)单调递减,此时g(b)<g(2e2)=2e2−2e2⋅ln 2e2lna+e2lna=2e2﹣2e2[ln(2e2)﹣ln(lna)]+e2lna,故只需2﹣2[ln2+2﹣ln(lna)]+lna≤0,即lna+2ln(lna)≤2+2ln2,则lna≤2,即a≤e2;综上,实数a的取值范围为(1,e2];(Ⅲ)证明:当a=e时,f(x)=e x﹣bx+e2,f′(x)=e x﹣b,令f′(x)=0,解得x=lnb >4,易知f(x)min =f(lnb)=e lnb −b ⋅lnb +e 2=b −blnb +e 2<b −4b +e 2=e 2﹣3b <e 2﹣3e 4=e 2(1﹣3e 2)<0,∴f (x )有两个零点,不妨设为x 1,x 2,且x 1<lnb <x 2,由f(x 2)=e x 2−bx 2+e 2=0,可得x 2=e x 2b +e 2b ,∴要证x 2>blnb 2e 2x 1+e 2b ,只需证e x 2b >blnb 2e 2x 1,只需证e x 2>b 2lnb 2e 2x 1, 而f(2e 2b )=e 2e 2b −2e 2+e 2=e 2e 2b −e 2<e 2e 2−e 2<0,则x 1<2e 2b , ∴要证e x 2>b 2lnb 2e 2x 1,只需证e x 2>blnb ,只需证x 2>ln (blnb ), 而f (ln (blnb ))=e ln(blnb )﹣bln (blnb )+e 2=blnb ﹣bln (blnb )+e 2<blnb ﹣bln (4b )+e 2=b ⋅ln 14+e 2=e 2−bln4<0,∴x 2>ln (blnb ),即得证.5.(2021•甲卷)设函数f (x )=a 2x 2+ax ﹣3lnx +1,其中a >0.(1)讨论f (x )的单调性;(2)若y =f (x )的图像与x 轴没有公共点,求a 的取值范围.【解答】解:(1)f ′(x )=2a 2x +a −3x =2a 2x 2+ax−3x =(2ax+3)(ax−1)x ,x >0, 因为a >0,所以−32a <0<1a ,所以在(0,1a )上,f ′(x )<0,f (x )单调递减, 在(1a ,+∞)上,f ′(x )>0,f (x )单调递增. 综上所述,f (x )在(0,1a )上单调递减,在(1a ,+∞)上f (x )单调递增. (2)由(1)可知,f (x )min =f (1a )=a 2×(1a )2+a ×1a −3ln 1a +1=3+3lna , 因为y =f (x )的图像与x 轴没有公共点,所以3+3lna >0,所以a >1e ,所以a 的取值范围为(1e,+∞).6.(2021•乙卷)已知函数f (x )=ln (a ﹣x ),已知x =0是函数y =xf (x )的极值点.(1)求a ;(2)设函数g (x )=x+f(x)xf(x).证明:g (x )<1. 【解答】(1)解:由题意,f (x )的定义域为(﹣∞,a ),令t (x )=xf (x ),则t (x )=xln (a ﹣x ),x ∈(﹣∞,a ),则t '(x )=ln (a ﹣x )+x •−1a−x =ln(a −x)+−x a−x ,因为x =0是函数y =xf (x )的极值点,则有t '(0)=0,即lna =0,所以a =1, 当a =1时,t '(x )=ln(1−x)+−x 1−x =ln(1−x)+−11−x +1,且t '(0)=0,因为t ''(x )=−11−x +−1(1−x)2=x−2(1−x)2<0,则t '(x )在(﹣∞,1)上单调递减,所以当x ∈(﹣∞,0)时,t '(x )>0,当x ∈(0,1)时,t '(x )<0,所以a =1时,x =0是函数y =xf (x )的一个极大值点.综上所述,a =1;(2)证明:由(1)可知,xf (x )=xln (1﹣x ),要证x+f(x)xf(x)<1,即需证明x+ln(1−x)xln(1−x)<1,因为当x ∈(﹣∞,0)时,xln (1﹣x )<0,当x ∈(0,1)时,xln (1﹣x )<0,所以需证明x +ln (1﹣x )>xln (1﹣x ),即x +(1﹣x )ln (1﹣x )>0,令h (x )=x +(1﹣x )ln (1﹣x ),则h '(x )=(1﹣x )⋅−11−x +1−ln(1−x),所以h '(0)=0,当x ∈(﹣∞,0)时,h '(x )<0,当x ∈(0,1)时,h '(x )>0,所以x =0为h (x )的极小值点,所以h (x )>h (0)=0,即x +ln (1﹣x )>xln (1﹣x ),故x+ln(1−x)xln(1−x)<1, 所以x+f(x)xf(x)<1.7.(2021•新高考Ⅰ)已知函数f(x)=x(1﹣lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna﹣alnb=a﹣b,证明:2<1a+1b<e.【解答】(1)解:由函数的解析式可得f'(x)=1﹣lnx﹣1=﹣lnx,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由blna﹣alnb=a﹣b,得−1aln1a+1b ln1b=1b−1a,即1a (1−ln1a)=1b(1−ln1b),由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2﹣x1>1,先证2<x1+x2,即证x2>2﹣x1,即证f(x2)=f(x1)<f(2﹣x1),令h(x)=f(x)﹣f(2﹣x),则h′(x)=f′(x)+f′(2﹣x)=﹣lnx﹣ln(2﹣x)=﹣ln[x(2﹣x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2﹣x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e﹣x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e﹣x1),令φ(x)=f(x)﹣f(e﹣x),x∈(0,1),则φ'(x)=﹣ln[x(e﹣x)],令φ′(x0)=0,x∈(0,x0),φ'(x)>0,φ(x)单调递增,x∈(x0,1),φ'(x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0φ(x)=0,φ(1)=f(1)﹣f(e﹣1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1﹣lnx1)=x2(1﹣lnx2),又x1∈(0,1),故1﹣lnx1>1,x1(1﹣lnx1)>x1,故x1+x2<x1(1﹣lnx1)+x2=x2(1﹣lnx2)+x2,x2∈(1,e),令g(x)=x(1﹣lnx)+x,g′(x)=1﹣lnx,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1﹣lnx2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.8.(2021•乙卷)已知函数f(x)=x3﹣x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.【解答】解:(1)f′(x)=3x2﹣2x+a,△=4﹣12a,①当△≤0,即a≥13时,由于f′(x)的图象是开口向上的抛物线,故此时f′(x)≥0,则f(x)在R上单调递增;②当△>0,即a<13时,令f′(x)=0,解得x1=1−√1−3a3,x2=1+√1−3a3,令f′(x)>0,解得x<x1或x>x2,令f′(x)<0,解得x1<x<x2,∴f(x)在(﹣∞,x1),(x2,+∞)单调递增,在(x1,x2)单调递减;综上,当a≥13时,f(x)在R上单调递增;当a<13时,f(x)在(−∞,1−√1−3a3),(1+√1−3a3,+∞)单调递增,在(1−√1−3a3,1+√1−3a3)单调递减.(2)设曲线y=f(x)过坐标原点的切线为l,切点为(x0,x03−x02+ax0+1),f′(x0)= 3x02−2x0+a,则切线方程为y−(x03−x02+ax0+1)=(3x02−2x0+a)(x−x0),将原点代入切线方程有,2x 03−x 02−1=0,解得x 0=1,∴切线方程为y =(a +1)x ,令x 3﹣x 2+ax +1=(a +1)x ,即x 3﹣x 2﹣x +1=0,解得x =1或x =﹣1,∴曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标为(1,a +1)和(﹣1,﹣a ﹣1).9.(2021•甲卷)已知a >0且a ≠1,函数f (x )=x a a x (x >0). (1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.【解答】解:(1)a =2时,f (x )=x 22x , f ′(x )=2x⋅2x −2x ln2⋅x 2(2x )2=x(2−xln2)2x =ln2⋅x(2ln2−x)2x , 当x ∈(0,2ln2)时,f ′(x )>0,当x ∈(2ln2,+∞)时,f ′(x )<0, 故f (x )在(0,2ln2)上单调递增,在(2ln2,+∞)上单调递减.(2)由题知f (x )=1在(0,+∞)有两个不等实根,f (x )=1⇔x a =a x ⇔alnx =xlna ⇔lnx x =lna a , 令g (x )=lnx x ,g ′(x )=1−lnx x 2,g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,又lim x→0g (x )=﹣∞,g (e )=1e ,g (1)=0,lim x→+∞g (x )=0, 作出g (x )的图象,如图所示:由图象可得0<lna a <1e ,解得a >1且a ≠e ,即a 的取值范围是(1,e )∪(e ,+∞).10.(2020•新课标Ⅰ)已知函数f (x )=e x ﹣a (x +2).(1)当a =1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【解答】解:由题意,f (x )的定义域为(﹣∞,+∞),且f ′(x )=e x ﹣a .(1)当a =1时,f ′(x )=e x ﹣1,令f ′(x )=0,解得x =0.∴当x ∈(﹣∞,0)时,f ′(x )<0,f (x )单调递减,当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.∴f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增;(2)当a ≤0时,f ′(x )=e x ﹣a >0恒成立,f (x )在(﹣∞,+∞)上单调递增,不合题意;当a >0时,令f ′(x )=0,解得x =lna ,当x ∈(﹣∞,lna )时,f ′(x )<0,f (x )单调递减,当x ∈(lna ,+∞)时,f ′(x )>0,f (x )单调递增.∴f (x )的极小值也是最小值为f (lna )=a ﹣a (lna +2)=﹣a (1+lna ).又当x →﹣∞时,f (x )→+∞,当x →+∞时,f (x )→+∞.∴要使f (x )有两个零点,只要f (lna )<0即可,则1+lna >0,可得a >1e .综上,若f (x )有两个零点,则a 的取值范围是(1e ,+∞). 11.(2020•天津)已知函数f (x )=x 3+klnx (k ∈R ),f ′(x )为f (x )的导函数.(Ⅰ)当k =6时,(ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程;(ⅱ)求函数g (x )=f (x )﹣f ′(x )+9x 的单调区间和极值;(Ⅱ)当k ≥﹣3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.【解答】解:(I )(i )当k =6时,f (x )=x 3+6lnx ,故f ′(x )=3x 2+6x,∴f ′(1)=9,∵f (1)=1,∴曲线y =f (x )在点(1,f (1))处的切线方程为y ﹣1=9(x ﹣1),即9x ﹣y ﹣8=0.(ii )g (x )=f (x )﹣f ′(x )+9x =x 3+6lnx ﹣3x 2+3x,x >0,∴g ′(x )=3x 2﹣6x +6x −3x 2=3(x−1)3(x+1)x 2,令g ′(x )=0,解得x =1, 当0<x <1,g ′(x )<0, 当x >1,g ′(x )>0,∴函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增, x =1是极小值点,极小值为g (1)=1,无极大值 证明:(Ⅱ)由f (x )=x 3+klnx ,则f ′(x )=3x 2+kx, 对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2=t ,t >1,则(x 1﹣x 2)[f ′(x 1)+f ′(x 2)]﹣2[f (x 1)﹣f (x 2)]=(x 1﹣x 2)(3x 12+kx 1+3x 22+kx 2)﹣2(x 13﹣x 23+klnx 1x 2),=x 13﹣x 23﹣3x 12x 2+3x 1x 22+k (x 1x 2−x 2x 1)﹣2klnx 1x 2,=x 23(t 3﹣3t 2+3t ﹣1)+k (t −1t−2lnt ),① 令h (x )=x −1x −2lnx ,x >1, 当x >1时,h ′(x )=1+1x2−2x =(1−1x )2>0, ∴h (x )在(1,+∞)单调递增,∴当t >1,h (t )>h (1)=0,即t −1t −2lnt >0, ∵x 2≥1,t 3﹣3t 2+3t ﹣1=(t ﹣1)3>0,k ≥﹣3,∴x 23(t 3﹣3t 2+3t ﹣1)+k (t −1t −2lnt )≥t 3﹣3t 2+3t ﹣1﹣3(t −1t −2lnt )=t 3﹣3t 2+6lnt +3t −1,②,由(Ⅰ)(ii )可知当t ≥1时,g (t )>g (1) 即t 3﹣3t 2+6lnt +3t >1,③,由①②③可得(x 1﹣x 2)[f ′(x 1)+f ′(x 2)]﹣2[f (x 1)﹣f (x 2)]>0, ∴当k ≥﹣3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f′(x 1)+f′(x 2)2>f(x 1)−f(x 2)x 1−x 2.12.(2020•海南)已知函数f (x )=ae x ﹣1﹣lnx +lna .(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.【解答】解:(1)当a=e时,f(x)=e x﹣lnx+1,∴f′(x)=e x−1 x,∴f′(1)=e﹣1,∵f(1)=e+1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣(e+1)=(e﹣1)(x﹣1),当x=0时,y=2,当y=0时,x=−2e−1,∴曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积S=12×2×2e−1=2e−1.(2)方法一:由f(x)≥1,可得ae x﹣1﹣lnx+lna≥1,即e x﹣1+lna﹣lnx+lna≥1,即e x﹣1+lna+lna+x﹣1≥lnx+x=e lnx+lnx,令g(t)=e t+t,则g′(t)=e t+1>0,∴g(t)在R上单调递增,∵g(lna+x﹣1)≥g(lnx)∴lna+x﹣1≥lnx,即lna≥lnx﹣x+1,令h(x)=lnx﹣x+1,∴h′(x)=1x−1=1−x x,当0<x<1时,h′(x)>0,函数h(x)单调递增,当x>1时,h′(x)<0,函数h(x)单调递减,∴h(x)≤h(1)=0,∴lna≥0,∴a≥1,故a的范围为[1,+∞).方法二:由f(x)≥1可得ae x﹣1﹣lnx+lna≥1,x>0,a>0,即ae x﹣1﹣1≥lnx﹣lna,设g(x)=e x﹣x﹣1,∴g′(x)=e x﹣1>0恒成立,∴g(x)在(0,+∞)单调递增,∴g(x)>g(0)=1﹣0﹣1=0,∴e x﹣x﹣1>0,即e x>x+1,再设h(x)=x﹣1﹣lnx,∴h′(x)=1−1x=x−1x,当0<x<1时,h′(x)<0,函数h(x)单调递减,当x>1时,h′(x)>0,函数h(x)单调递增,∴h(x)≥h(1)=0,∴x﹣1﹣lnx≥0,即x﹣1≥lnx∴e x﹣1≥x,则ae x﹣1≥ax,此时只需要证ax≥x﹣lna,即证x(a﹣1)≥﹣lna,当a≥1时,∴x(a﹣1)>0>﹣lna恒成立,当0<a<1时,x(a﹣1)<0<﹣lna,此时x(a﹣1)≥﹣lna不成立,综上所述a的取值范围为[1,+∞).方法三:由题意可得x∈(0,+∞),a∈(0,+∞),∴f′(x)=ae x﹣1−1 x,易知f′(x)在(0,+∞)上为增函数,①当0<a<1时,f′(1)=a﹣1<0,f′(1a )=a e1a−1−a=a(e1a−1−1)>0,∴存在x0∈(1,1a)使得f′(x0)=0,当x∈(1,x0)时,f′(x)<0,函数f(x)单调递减,∴f(x)<f(1)=a+lna<a<1,不满足题意,②当a≥1时,e x﹣1>0,lna>0,∴f(x)≥e x﹣1﹣lnx,令g(x)=e x﹣1﹣lnx,∴g′(x)=e x﹣1−1 x,易知g′(x)在(0,+∞)上为增函数,∵g′(1)=0,∴当x∈(0,1)时,g′(x)<0,函数g(x)单调递减,当x∈(1,+∞)时,g′(x)>0,函数g(x)单调递增,∴g(x)≥g(1)=1,即f(x)≥1,综上所述a的取值范围为[1,+∞).方法四:∵f(x)=ae x﹣1﹣lnx+lna,x>0,a>0,∴f′(x)=ae x﹣1−1x,易知f′(x)在(0,+∞)上为增函数,∵y=ae x﹣1在(0,+∞)上为增函数,y=1x在0,+∞)上为减函数,∴y=ae x﹣1与y=1x在0,+∞)上有交点,∴存在x0∈(0,+∞),使得f′(x0)=a e x0−1−1x0=0,则a e x0−1=1x0,则lna+x0﹣1=﹣lnx0,即lna=1﹣x0﹣lnx0,当x∈(0,x0)时,f′(x)<0,函数f(x)单调递减,当x∈(x0,+∞)时,f′(x)>0,函数f(x)单调递增,∴f(x)≥f(x0)=a e x0−1−lnx0+lna=1x0−lnx0+1﹣x0﹣lnx0=1x−2lnx0+1﹣x0≥1∴1x0−2lnx0﹣x0≥0设g(x)=1x−2lnx﹣x,易知函数g(x)在(0,+∞)上单调递减,且g(1)=1﹣0﹣1=0,∴当x∈(0,1]时,g(x)≥0,∴x0∈(0,1]时,1x0−2lnx0﹣x0≥0,设h(x)=1﹣x﹣lnx,x∈(0,1],∴h′(x)=﹣1−1x<0恒成立,∴h(x)在(0,1]上单调递减,∴h(x)≥h(1)=1﹣1﹣ln1=0,当x→0时,h(x)→+∞,∴lna≥0=ln1,∴a≥1.方法五:f(x)≥1等价于ae x﹣1﹣lnx+lna≥1,该不等式恒成立.当x=1时,有a+lna≥1,其中a>0.设g(a)=a+lna﹣1,则g'(a)=1+1a>0,则g(a)单调递增,且g(1)=0.所以若a+lna≥1成立,则必有a≥1.∴下面证明当a≥1时,f(x)≥1成立.设h(x)=e x﹣x﹣1,∴h′(x)=e x﹣1,∴h(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增,∴h(x)≥h(0)=1﹣0﹣1=0,∴e x﹣x﹣1≥0,即e x≥x+1,把x换成x﹣1得到e x﹣1≥x,∵x﹣1≥lnx,∴x﹣lnx≥1.∴f(x)=ae x﹣1﹣lnx+lna≥e x﹣1﹣lnx≥x﹣lnx≥1,当x=1时等号成立.综上,a≥1.13.(2020•北京)已知函数f(x)=12﹣x2.(Ⅰ)求曲线y=f(x)的斜率等于﹣2的切线方程;(Ⅱ)设曲线y=f(x)在点(t,f(t))处的切线与坐标轴围成的三角形的面积为S(t),求S(t)的最小值.【解答】解:(Ⅰ)f(x)=12﹣x2的导数f′(x)=﹣2x,令切点为(m,n),可得切线的斜率为﹣2m=﹣2,∴m=1,∴n=12﹣1=11,∴切线的方程为y=﹣2x+13;(Ⅱ)曲线y=f(x)在点(t,f(t))处的切线的斜率为k=﹣2t,切线方程为y﹣(12﹣t2)=﹣2t(x﹣t),令x=0,可得y=12+t2,令y=0,可得x=12t+6t,∴S(t)=12•|12t+6t|•(12+t2),由S(﹣t)=S(t),可知S(t)为偶函数,不妨设t>0,则S(t)=14(t+12t)(12+t2),∴S′(t)=14(3t2+24−144t2)=34•(t2−4)(t2+12)t2,由S′(t)=0,得t=2,当t>2时,S′(t)>0,S(t)递增;当0<t<2时,S′(t)<0,S(t)递减,则S(t)在t=2和﹣2处取得极小值,且为最小值32,所以S(t)的最小值为32.14.(2020•浙江)已知1<a≤2,函数f(x)=e x﹣x﹣a,其中e=2.71828…为自然对数的底数.(Ⅰ)证明:函数y=f(x)在(0,+∞)上有唯一零点;(Ⅱ)记x0为函数y=f(x)在(0,+∞)上的零点,证明:(ⅰ)√a−1≤x0≤√2(a−1);(ⅱ)x0f(e x0)≥(e﹣1)(a﹣1)a.【解答】证明:(Ⅰ)∵f(x)=e x﹣x﹣a=0(x>0),∴f′(x)=e x﹣1>0恒成立,∴f(x)在(0,+∞)上单调递增,∵1<a≤2,∴f(2)=e2﹣2﹣a≥e2﹣4>0,又f(0)=1﹣a<0,∴函数y=f(x)在(0,+∞)上有唯一零点.(Ⅱ)(i)f(x0)=0,∴e x0−x0﹣a=0,∴√a−1≤x0≤√2(a−1),∴e x0−x0−1≤x02≤2(e x0−x0−1),令g(x)=e x﹣x﹣1﹣x2(0<x<2),h(x)=e x﹣x﹣1−x22,(0<x<2),一方面,h′(x)=e x﹣1﹣x=h1(x),ℎ1′(x)=e x−1>0,∴h′(x)>h′(0)=0,∴h(x)在(0,2)单调递增,∴h(x)>h(0)=0,∴e x﹣x﹣1−x22>0,2(ex﹣x﹣1)>x2,另一方面,1<a≤2,∴a﹣1≤1,∴当x0≥1时,√a−1≤x0成立,∴只需证明当0<x<1时,g(x)=e x﹣x﹣1﹣x2≤0,∵g′(x)=e x﹣1﹣2x=g1(x),g1'(x)=e x﹣2=0,∴x=ln2,当x∈(0,ln2)时,g1'(x)<0,当x∈(ln2,1)时,g1'(x)>0,∴g′(x)<max{g′(0),g′(1)},g′(0)=0,g′(1)=e﹣3<0,∴g′(x)<0,∴g(x)在(0,1)单调递减,∴g(x)<g(0)=0,∴e x﹣x﹣1<x2,综上,e x0−x0−1≤x02≤2(e x0−x0−1),∴√a−1≤x0≤√2(a−1).(ii)要证明x0f(e x0)≥(e﹣1)(a﹣1)a,只需证x0f(x0+a)≥(e﹣1)(a﹣1)a,由(i)得只需证e√a−1+a−√a−1−2a≥(e﹣1)a√a−1,∵e x≥1+x+12x2,∴只需证1+12(√a−1+a)2﹣a≥(e﹣1)a√a−1,只需证a2−(√a−1)2−2(e﹣2)a√a−1≥0,即证√a−1−√a−1a≥2(e﹣2),∵√a−1=√a−1+√a−1∈[2,+∞),∴√a−1−√a−1a≥2−12=32≥2(e−2),∴x0f(e x0)≥(e﹣1)(a﹣1)a.15.(2020•江苏)已知关于x的函数y=f(x),y=g(x)与h(x)=kx+b(k,b∈R)在区间D上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x2+2x,g(x)=﹣x2+2x,D=(﹣∞,+∞),求h(x)的表达式;(2)若f(x)=x2﹣x+1,g(x)=klnx,h(x)=kx﹣k,D=(0,+∞),求k的取值范围;(3)若f(x)=x4﹣2x2,g(x)=4x2﹣8,h(x)=4(t3﹣t)x﹣3t4+2t2(0<|t|≤√2),D=[m,n]⊂[−√2,√2],求证:n﹣m≤√7.【解答】解:(1)由f(x)=g(x)得x=0,又f′(x)=2x+2,g′(x)=﹣2x+2,所以f′(0)=g′(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x,经检验:h(x)=2x,符合任意,(2)h(x)﹣g(x)=k(x﹣1﹣lnx),设φ(x)=x﹣1﹣lnx,设φ′(x)=1−1x=x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当h(x)﹣g(x)≥0时,k≥0,令p(x)=f(x)﹣h(x)所以p(x)=x2﹣x+1﹣(kx﹣k)=x2﹣(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤﹣1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥﹣1,所以k=﹣1,当k+1>0时,即k>﹣1时,△≤0,即(k+1)2﹣4(k+1)≤0,解得﹣1<k≤3,综上,k∈[0,3].(3)①当1≤t≤√2时,由g(x)≤h(x),得4x2﹣8≤4(t3﹣t)x﹣3t4+2t2,整理得x2﹣(t3﹣t)x+3t4−2t2−84≤0,(*)令△=(t3﹣t)2﹣(3t4﹣2t2﹣8),则△=t6﹣5t4+3t2+8,记φ(t)=t6﹣5t4+3t2+8(1≤t≤√2),则φ′(t)=6t5﹣20t3+6t=2t(3t2﹣1)(t2﹣3)<0,恒成立,所以φ(t)在[1,√2]上是减函数,则φ(√2)≤φ(t)≤φ(1),即2≤φ(t)≤7,所以不等式(*)有解,设解为x1≤x≤x2,因此n﹣m≤x2﹣x1=√△≤√7.②当0<t<1时,f(﹣1)﹣h(﹣1)=3t4+4t3﹣2t2﹣4t﹣1,设v (t )=3t 4+4t 3﹣2t 2﹣4t ﹣1,则v ′(t )=12t 3+12t 2﹣4t ﹣4=4(t +1)(3t 2﹣1), 令v ′(t )=0,得t =√33, 当t ∈(0,√33)时,v ′(t )<0,v (t )是减函数, 当t ∈(√33,1)时,v ′(t )>0,v (t )是增函数, v (0)=﹣1,v (1)=0, 则当0<t <1时,v (t )<0,则f (﹣1)﹣h (﹣1)<0,因此﹣1∉(m ,n ), 因为[m ,n ]⊆[−√2,√2],所以n ﹣m ≤√2+1<√7,③当−√2≤t <0时,因为f (x ),g (x )为偶函数,因此n ﹣m ≤√7也成立, 综上所述,n ﹣m ≤√7.16.(2020•新课标Ⅲ)设函数f (x )=x 3+bx +c ,曲线y =f (x )在点(12,f (12))处的切线与y 轴垂直. (1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.【解答】(1)解:由f (x )=x 3+bx +c ,得f ′(x )=3x 2+b , ∴f ′(12)=3×(12)2+b =0,即b =−34;(2)证明:法一、设x 0为f (x )的一个零点,根据题意,f(x 0)=x 03−34x 0+c =0,且|x 0|≤1,则c =−x 03+34x 0,且|x 0|≤1, 令c (x )=−x 3+34x (﹣1≤x ≤1), ∴c ′(x )=−3x 2+34=−3(x +12)(x −12), 当x ∈(﹣1,−12)∪(12,1)时,c ′(x )<0,当x ∈(−12,12)时,c ′(x )>0 可知c (x )在(﹣1,−12),(12,1)上单调递减,在(−12,12)上单调递增.又c (﹣1)=14,c (1)=−14,c (−12)=−14,c (12)=14,∴−14≤c ≤14.设x 1 为f (x )的零点,则必有f(x 1)=x 13−34x 1+c =0, 即−14≤c =−x 13+34x 1≤14,∴{4x 13−3x 1−1=(x 1−1)(2x 1+1)2≤04x 13−3x 1+1=(x 1+1)(2x 1−1)2≥0,得﹣1≤x 1≤1, 即|x 1|≤1.∴f (x )所有零点的绝对值都不大于1. 法二、由(1)可得,f (x )=x 3−34x +c . f ′(x )=3x 2−34=3(x +12)(x −12), 可得当x ∈(﹣∞,−12)∪(12,+∞)时,f ′(x )>0,当x ∈(−12,12)时,f ′(x )<0,则f (x )在(﹣∞,−12),(12,+∞)上单调递增,在(−12,12)上单调递减.且f (﹣1)=c −14,f (−12)=c +14,f (12)=c −14,f (1)=x +14,若f (x )的所有零点中存在一个绝对值大于1的零点x 0,则f (﹣1)>0或f (1)<0. 即c >14或c <−14.当c >14时,f (﹣1)=c −14>0,f (−12)=c +14>0,f (12)=c −14>0,f (1)=c +14>0,又f (﹣4c )=﹣64c 3+3c +c =4c (1﹣16c 2)<0,由零点存在性定理可知,f (x )在(﹣4c ,﹣1)上存在唯一一个零点. 即f (x )在(﹣∞,﹣1)上存在唯一零点,在(1,+∞)上不存在零点. 此时f (x )不存在绝对值不大于1的零点,与题设矛盾;当c <−14时,f (﹣1)=c −14<0,f (−12)=c +14<0,f (12)=c −14<0,f (1)=c +14<0,又f (﹣4c )=64c 3+3c +c =4c (1﹣16c 2)>0,由零点存在性定理可知,f (x )在(1,﹣4c )上存在唯一一个零点. 即f (x )在(1,+∞)上存在唯一零点,在(﹣∞,1)上不存在零点.。
2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。
2017年高考新课标Ⅲ卷文数试题解析(正式版)(解析版)

皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目
要求的。
1.已知集合 A={1,2,3,4},B={2,4,6,8},则 A B 中元素的个数为
根据该折线图,下列结论错误的是
1
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在 7,8 月
D.各年 1 月至 6 月的月接待游客量相对于 7 月至 12 月,波动性更小,变化比较平稳
【答案】A
【解析】由折线图,可知每年 7 月到 8 月折线图呈下降趋势,月接待游客量减少,A 错误.
本题选择 A 选项.
4.已知 sin cos 4 ,则 sin 2 = 3
A. 7 9
B. 2 9
2
C.
9
7
D.
9
【答案】A
【解析】 sin 2 2sin cos sin cos 2 1 7 .
【答案】75°
【解析】由正弦定理
b sin B
c sin C
,得 sin B
bsin C
6 3 2
2 ,结合 b c 可得 B 45 ,
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
绝密★启用前
2017 年普通高等学校招生全国统一考试
文科数学
注意事项:
(word完整版)2017年全国高考文科数学试题及答案-全国卷2(2),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3},{2,3,4}A B ==,则A B =UA.{}123,4,,B.{}123,,C.{}234,,D.{}134,,2.(1)(2)i i ++=A.1i -B.13i +C.3i +D.33i + 3.函数()sin(2)3f x x π=+的最小正周期为 A.4π B.2π C.π D.2π 4.设非零向量a ,b 满足+=-b b a a 则A.a ⊥bB.=b aC.a ∥bD.>b a5.若1a >,则双曲线2221x y a-=的离心率的取值范围是 A.2+∞(,)B.22(,) C.2(1,) D.12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π7.设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+的最小值是A.-15B.-9C.1 D9 8.函数2()ln(28)f x x x =--的单调递增区间是A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A.乙可以知道两人的成绩 B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A.110B.15C.310D.25 12.过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13.函数()2cos sin f x x x =+的最大值为.14.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:共70分。
2012年高考真题汇编——文科数学(解析版)3:导数

2 012高考试题分类汇编:3:导数一、选择题1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是 【答案】C【解析】由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '>,选C.2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数A. 若e a +2a=e b +3b ,则a >bB. 若e a +2a=e b +3b ,则a <bC. 若e a -2a=e b -3b ,则a >bD. 若e a -2a=e b -3b ,则a <b 【答案】A【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.3.【2012高考陕西文9】设函数f (x )=2x+lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=12为f(x)的极小值点C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点 9.【答案】D. 【解析】xx x f x x x f 12)(',ln 2)(2+-=∴+=,令0)('=x f ,则2=x ,当20<<x 时0)('<x f ,当2>x 时0)('>x f ,所以2=x 为)(x f 极小值点,故选D.4.【2012高考辽宁文8】函数y=12x 2-㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 【答案】B 【解析】211ln ,,00,02y x x y x y x x x x''=-∴=->∴<由≤,解得-1≤≤1,又≤1,故选B【点评】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题。
2017年高考真题——文科数学(全国II卷)+Word版含答案

绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}123234A B ==,,, ,,, 则=A B U A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. 2)C. (1D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π7.设x、y满足约束条件2+330233030x yx yy-≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y=+的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x=--的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a=-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110 B.15 C.310D.2512.过抛物线C:y 2=4x 的焦点F ,C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A. B. C. D.二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。
2017年高考文数真题试题(新课标全国Ⅰ卷)(Word版+答案+解析)

2017年高考文数真题试卷(新课标Ⅰ卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x|x <2},B={x|3﹣2x >0},则( )A. A∩B={x|x < 32 }B. A∩B=∅C. A ∪B={x|x < 32 } D. AUB=R2.为评估一种农作物的种植效果,选了n 块地作试验田,这n 块地的亩产量(单位:kg )分别是x 1 , x 2 , …,x n , 下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A. x 1 , x 2 , …,x n 的平均数B. x 1 , x 2 , …,x n 的标准差C. x 1 , x 2 , …,x n 的最大值D. x 1 , x 2 , …,x n 的中位数3.下列各式的运算结果为纯虚数的是( )A. i (1+i )2B. i 2(1﹣i )C. (1+i )2D. i (1+i )4.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. 14B. π8C. 12D. π45.已知F 是双曲线C :x 2﹣y 23 =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为( )A. 13B. 12C. 23D. 326.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A. B.C. D.7.设x ,y 满足约束条件 {x +3y ≤3x −y ≥1y ≥0,则z=x+y 的最大值为( )A. 0B. 1C. 2D. 38.函数y=sin2x 1−cosx 的部分图象大致为( )A. B.C. D.9.已知函数f (x )=lnx+ln (2﹣x ),则( )A. f (x )在(0,2)单调递增B. f (x )在(0,2)单调递减C. y=f (x )的图象关于直线x=1对称D. y=f (x )的图象关于点(1,0)对称10.如图程序框图是为了求出满足3n ﹣2n >1000的最小偶数n ,那么在和 两个空白框中,可以分别填入( )A. A >1000和n=n+1B. A >1000和n=n+2C. A≤1000和n=n+1D. A≤1000和n=n+211.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinB+sinA (sinC ﹣cosC )=0,a=2,c= √2 ,则C=( )A. π12B. π6C. π4D. π312.设A ,B 是椭圆C :x 23 + y 2m =1长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是( )A. (0,1]∪[9,+∞)B. (0, √3 ]∪[9,+∞)C. (0,1]∪[4,+∞)D. (0, √3 ]∪[4,+∞) 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量 a ⃗ =(﹣1,2), b ⃗⃗ =(m ,1),若向量 a ⃗ + b ⃗⃗ 与 a ⃗ 垂直,则m=________.14.曲线y=x 2+ 1x 在点(1,2)处的切线方程为________.15.已知α∈(0, π2 ),tanα=2,则cos (α﹣ π4 )=________.16.已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S ﹣ABC 的体积为9,则球O 的表面积为________.三、解答题:共60分.解答应写出文字说明、证明过程或演算过程.17.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(12分)(1)求{a n }的通项公式;(2)求S n , 并判断S n+1 , S n , S n+2是否能成等差数列.18.如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,且四棱锥P ﹣ABCD 的体积为 83 ,求该四棱锥的侧面积.19.为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:(12分)经计算得 x̅ = 116∑16i=1x i =9.97,s= √116∑16i=1(x i −x̅)2 = √116(∑16i=1x i 2−16x̅2) =0.212,√∑(i −8.52)16i=1 ≈18.439, ∑16i=1 (x i ﹣ x̅ )(i ﹣8.5)=﹣2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i , i )(i=1,2,…,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在( x̅ ﹣3s , x̅ +3s )之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在( x̅ ﹣3s , x̅ +3s )之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i , y i )(i=1,2,…,n )的相关系数r=∑(x −x̅)n i=1(y −y ̅)√∑i=1(x i −x̅)2√∑i=1(y i −y ̅)2 , √0.008 ≈0.09. 20.设A ,B 为曲线C :y=x 24 上两点,A 与B 的横坐标之和为4.(12分)(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.21.已知函数 f (x )=e x (e x ﹣a )﹣a 2x .(12分)(1)讨论 f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.四、选考题:共10分。
2017年高考真题——数学文(全国Ⅰ卷) Word版含答解析

2017年普通高等学校招生全国统一考试文科数学【试卷点评】【命题特点】2017年全国1高考数学与2016全国1高考数学难度方面相对持平,在选择题和填空题及解答题方面难度有所降低.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如第5、12、13、16题对数形结合思想的考查;第9题对函数与方程思想的考查.4.体现了创新性,如第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.【命题趋势】1.函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如第9题;对函数图像的考查,如第8题;对含参单调性以及零点问题的考查,如21题,比较常规.2.三角函数与解三角形知识:对三角恒等变换的考查,如第15题;对解三角形问题的考查,如第11题.重视对基础知识与运算能力的考查.3.数列知识:对数列通项公式的考查,如17题.整体考查比较平稳,没有出现偏、怪的数列相关考点.4.立体几何知识:对立体几何图形的认识与考查,如文科第6题,理科第7题,试题难度不大,比较常规;第16题,简单几何体的外接球问题,难度一般.立体几何解答题的考查较常规.5.解析几何知识:对圆锥曲线简单性质的考查,如文科第5题,文科第10题;对圆锥曲线综合知识的考查,如第12题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.6.选做题知识:极坐标与参数方程仍然考查直角坐标方程与极坐标方程的互化,参数方程与普通方程的互化,直线与曲线的位置关系,考查较为稳定;不等式选讲仍然考查关于绝对值不等式的应用,解不等式,求参数范围问题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【解析】试题分析:刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B 【考点】样本特征数【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平; 中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平; 平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4【答案】B【解析】试题分析:不妨设正方形边长为a,由图形的对称性可知,太极图中黑白部分面积相等,即所各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221()228aaππ⨯⨯=,选B.【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.5.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为A .13B .1 2C .2 3D .3 2【答案】D6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是A .B .C .D .【答案】A 【解析】试题分析:由B ,AB ∥MQ ,则直线AB ∥平面MNQ ;由C ,AB ∥MQ ,则直线AB ∥平面MNQ ;由D ,AB ∥NQ ,则直线AB ∥平面MNQ .故A 不满足,选A . 【考点】空间位置关系判断【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.3 【答案】D8.函数sin21cosxyx=-的部分图像大致为A .B .C .D .【答案】C9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【解析】试题分析:由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,C 正确,D 错误;又112(1)'()2(2)x f x x x x x -=-=--(02x <<),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误,故选C . 【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 10.如图是为了求出满足321000n n ->的最小偶数n 两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +2【答案】D11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12B .π6C .π4D .π3【答案】B 【解析】试题分析:由题意sin()sin (sin cos )0A C A C C ++-=得sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即sin (sin cos )2sin sin()04C A A C A π+=+=,所以34A π=. 由正弦定理sin sin a c A C =得223sin sin 4C π=,即1sin 2C =,得6C π=,故选B . 【考点】解三角形【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,学科*网如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.12.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .(0,3][9,)+∞C .(0,1][4,)+∞D .(0,3][4,)+∞【答案】A二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________. 【答案】7 【解析】试题分析:由题得(1,3)a b m +=-,因为()0a b a +⋅=,所以(1)230m --+⨯=,解得7m = 【考点】平面向量的坐标运算 ,垂直向量【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0. 14.曲线21y x x=+在点(1,2)处的切线方程为______________. 【答案】1y x =+15.已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________.【答案】31010【解析】试题分析:由tan 2α=得sin 2cos αα= 又22sin cos 1αα+= 所以21cos 5α= 因为(0,)2πα∈所以525cos ,sin 55αα== 因为cos()cos cossin sin444πππααα-=+所以52252310cos()4525210πα-=⨯+⨯= 【考点】三角函数求值【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分. 17.(12分)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)32)1(321+⋅-+=n n n S ,证明见解析.解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)证明见解析; (2)326+.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序910111213141516零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,1621(8.5)18.439i i =-≈∑,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑0.0080.09≈.【答案】(1)18.0-≈r ,可以;(2)(ⅰ)需要;(ⅱ)均值与标准差估计值分别为10.02,0.09.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 0.0080.09≈. 【考点】相关系数,方差均值计算【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点. 20.(12分)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【答案】(1)1; (2)7y x =+. 【解析】21.(12分)已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =,)(x f 在(,)-∞+∞单调递增;当0a >,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】试题分析:(1)分0a =,0a >,0a <分别讨论函数)(x f 的单调性;(2)分0a =,0a >,0a <分别解0)(≥x f ,从而确定a 的取值范围.试题解析:(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()xx x x f x e ae a e a e a '=--=+-,①若0a =,则2()xf x e =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2ax =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a -+∞单调递增.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若1-=a ,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a . 【答案】(1)(3,0),2124(,)2525-;(2)8a =或16a =-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为17d =.当4a ≥-时,d 171717=8a =; 当4a <-时,d 171717=16a =-. 综上,8a =或16a =-. 【考点】参数方程【名师点睛】本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表达椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数a 的值. 23.[选修4—5:不等式选讲](10分)已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g . (1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.【答案】(1)117{|1}2x x -+-<≤;(2)[1,1]-.(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012--2017全国卷高考真题导数大题1.(2012新课标全国卷1文21,本小题满分12分)设函数()2xf x e ax =--. (Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 解:(Ⅰ)()f x 定义域为(,)-∞+∞,()xf x e a '=-,若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增;若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,)0f x '>(, 所以()f x 在(,ln )a -∞,单调递减,在(ln ,)a +∞单调递增; (Ⅱ)由于1a =,所以()()1()(1)1xx k f x x x k e x '-++=--++, 故当0x >时,()()10x k f x x '-++>等价于1(0)1x x k x x e +<+>-,① 令1()1x x g x x e +=+-,则221(2)()1(1)(1)x x x xx xe e e x g x e e ----'=+=--, 由(Ⅰ)知,函数()2xh x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x 在(0,)+∞存在唯一零点,故()g x '在(0,)+∞存在唯一零点, 设此零点为α,则(1,2)α∈,当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,)0g x '>(, 所以()g x 在(0,)+∞的最小值是()g α,又()0g α'=,可得2e αα=+,所以()1(2,3)g αα=+∈, 由于①等价于()k g α<,故整数k 的最大值为2.2.(2013新课标全国卷1文21,本小题满分12分)已知函数2()()4xf x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值. 解:(Ⅰ)2()()24f x e ax a b x '=++--,由此得(0)4f =,1(0)4f =,故4b =,8a b += 从而4a =,4b =;(Ⅱ)由(Ⅰ)知,2)4(1)4x f x e x x x =+--(, 1()4(2)244(2)().2x x f x e x x x e '=+--=+-令()0f x '=得,ln 2x =或2x =-,从而当(,2)(ln 2,)x ∈-∞--+∞U 时,()0f x '>;当(2,ln 2)x ∈--时,)0f x '<(, 故()f x 在(,2)-∞-,(ln 2,)-+∞单调递增,在(2,ln 2)--单调递减, 当2x =-时,函数()f x 取得极大值,极大值是2(2)4(1)f e --=-. 3.(2013新课标Ⅱ卷文21,本小题满分12分)己知函数2()xf x x e -=. (Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 解:(Ⅰ)()f x 定义域是(,)-∞+∞,()(2)xf x e x x -'=--,①当(,0)x ∈-∞或(2,)x ∈+∞时,)0f x '<(;当(0,2)x ∈时,()0f x '>, 所以故()f x 在(,0)-∞,(2,)+∞单调递减,在(0,2)单调递增, 故当0x =时,()f x 取得极小值,极小值是(0)0f =, 当2x =时,()f x 取得极大值,极大值是2(2)2f e -=, (Ⅱ)设切点是(,())t f t ,则l 的方程是()()()y f t x t f t '=-+,所以l 在x 轴上截距是()2()23()22f t t m t t t t f t t t =-=+=-++'--, 由已知和①得,(,0)t ∈-∞U (2,)+∞,令2()h x x x=+,则当(0,)x ∈+∞时,()h x 的取值范围为)+∞, 当(,2)x ∈-∞-时,()h x 的取值范围为(,3)-∞-,所以(,0)t ∈-∞U (2,)+∞时,()m t 的取值范围为(,3)-∞-U )+∞,综上,l 在x 轴上截距的取值范围(,3)-∞-U )+∞. 4.(2014新课标全国卷1文21,本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围. 解:(Ⅰ)'()(1)af x a x b x=+--,由题设知(1)0f '=,解得1b =. (Ⅱ)()f x 的定义域为(0,)+∞,由(Ⅰ)知,21()ln 2a f x a x x x -=+-,1()(1)1()(1)1a a af x a x x x x x a-'=+--=---(Ⅰ)若12a ≤,则11aa≤-,当(1,)x ∈+∞时,()0f x '>,()f x 在(1,)+∞单调递增,所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1af a <-,即1121a a a --<-,解得11a <<. (Ⅱ)若112a <<,则11a a >-,故当(1,)1ax a ∈-时,()0f x '<;当(,)1a x a ∈+∞-时,()0f x '>,()f x 在(1,)1a a -单调递减,在(,)1a a+∞-单调递增. 所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <--,而2()ln 112(1)11a a a a af a a a a a a =++>-----,所以不合题意. (ⅡⅠ)若1a >,则11(1)1221a a af a ---=-=<-.综上,a 的取值范围是(1)(1,)+∞U . 5.(2014新课标Ⅱ卷文21,本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点. 解:(Ⅰ)26()3f x x x a =-'+,(0)f a '=,曲线()y f x =在点(0,2)处的切线方程为2y ax =+ 由题设22a-=-,所以1a =. (Ⅱ)由(Ⅰ)知,1a =,故32()32f x x x x =-++ 设32()()23(1)4g x f x kx x x k x =-+=-+-+, 由题设知10k ->,当0x ≤时,2()26(1)0g x x x k '=-+->,()g x 单调递增,(1)10g k -=-<,(0)40g =>,所以()0g x =在(,0]-∞有唯一实根,当0x >时,因为(1)0k x ->,所以32()34g x x x >-+, 令32()34h x x x =-+,()3(2)h x x x '=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=, 所以()0g x =在(0,)+∞没有实根,综上()0g x =在R 有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点.6. (2015新课标全国卷1文21,本小题满分12分)设函数()2ln xf x ea x =-.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当0a >时()22lnf x a a a≥+. 解:(I )()f x 的定义域为()0+¥,,()2()=20xaf x ex x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2x e 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点.(II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<;当()0+x x 违,时,()0f x ¢>. 故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x=时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a ex -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2lnf x a a a?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.7. (2016新课标全国卷1文21,本小题满分12分)已知函数.2)1()2()(-+-=x a e x x f x(I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求a 的取值范围. 【答案】(Ⅰ)见解析(Ⅱ)()0,+∞解:(Ⅰ)()()()()()'12112.x x f x x e a x x e a =-+-=-+(i )设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以在(),1-∞单调递减,在()1,+∞单调递增. (ii )设0a <,由()'0f x =得x=1或x=ln (-2a ). ①若2ea =-,则()()()'1x f x x e e =--,所以()f x 在(),-∞+∞单调递增.②若2ea >-,则ln (-2a )<1,故当()()(),ln 21,x a ∈-∞-+∞U 时,()'0f x >; 当()()ln 2,1x a ∈-时,()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在()()ln 2,1a -单调递减.③若2ea <-,则()21ln a ->,故当()()(),1ln 2,x a ∈-∞-+∞U 时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(Ⅱ)(i )设0a >,则由(I )知,()f x 在(),1-∞单调递减,在()1,+∞单调递增. 又()()12f e f a =-=,,取b 满足b <0且ln 22b a<, 则()()()23321022a f b b a b a b b ⎛⎫>-+-=->⎪⎝⎭,所以()f x 有两个零点. (ii )设a=0,则()()2xf x x e =-所以()f x 有一个零点.(iii )设a <0,若2ea ≥-,则由(I )知,()f x 在()1,+∞单调递增. 又当1x ≤时,()f x <0,故()f x 不存在两个零点;若2ea <-,则由(I )知,()f x 在()()1,ln 2a -单调递减,在()()ln 2,a -+∞单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.8. (2017新课标全国卷1文21,本小题满分12分)已知函数()f x =e x (e x ﹣a )﹣a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围. 解:(12分)(1)函数()f x 的定义域为(,)-∞+∞,22()2(2)()x x x x f x e ae a e a e a '=--=+-,①若0a =,则2()xf x e =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. ③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()xf x e =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2ax =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥. 综上,a 的取值范围为34[2e ,1]-.。