高中数学-三角函数图像及性质与值域及最值
三角函数的图像与性质

抓住1个考点
突破3个考向
揭秘3年高考
求较为复杂的三角函数的单调区间时,首先化简 成y=Asin(ωx+φ)形式,再求y=Asin(ωx+φ)的单调区间,只
需把ωx+φ看作一个整体代入y=sin x的相应单调区间内即
抓住1个考点
突破3个考向
揭秘3年高考
两种方法 求三角函数值域(最值)的两种方法
(1)将所给函数化为y=Asin(ωx+φ)的形式,通过分析ωx+φ
的范围,结合图象写出函数的值域; (2)换元法:把sin x(cos x)看作一个整体,化为二次函数来解 决.
抓住1个考点
突破3个考向
揭秘3年高考
考点自测 1.函数
).
抓住1个考点
突破3个考向
揭秘3年高考
1 1-cos 2x 1 1 解析 f(x)=sin x-2= -2=-2cos 2x, 故函数 2 的最小正周期为 T=π,且为偶函数.
2
答案 D
抓住1个考点
突破3个考向
揭秘3年高考
3.(2013· 安顺模拟)已知函数
π f(x)=sinωx+3(ω>0)的最小正
抓住1个考点
突破3个考向
揭秘3年高考
π 5π 在[0,2π]内,满足 sin x=cos x 的 x 为4, 4 ,再结合正弦、余 弦函数的周期是 2π,所以原函数的定义域为
π 5π x2kπ+ ≤x≤2kπ+ 4 4 ,k∈Z.
法二
利用三角函数线,如图,MN 为正弦线,OM 为余弦
解.
(2)求解三角函数的值域(最值)常见到以下几种类型的题目: ①形如y=asin x+bcos x+c的三角函数化为y=Asin(ωx+φ)+ k的形式,再求最值(值域); ②形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化
正弦函数和余弦函数的图像与性质

例2.求下列函数的最大值与最小值,及取到最值 时的自变量 x 的值. (2) y 3sin x cos x (1) y sin(2 x )
4 解:(1)视为 y sin u , u 2 x 4
8 3 当 u 2k ,即 x k , k Z 时, 2 8 ymin 1 2
二、正弦函数与余弦函数的周期
对于任意 x R 都有
sin( x 2k ) sin x, k Z cos( x 2k ) cos x, k Z
正弦函数是周期函数, k , k Z , k 0 都是它的 2
周期,最小正周期是 2 余弦函数是周期函数, k , k Z , k 0 都是它的 2 周期,最小正周期是 2
注:一般三角函数的周期都是指最小正周期
1 (1) f ( x) cos 2 x (2) f ( x) sin( x ) 2 6 解: (1)设 f ( x)的周期为 T f ( x T ) f ( x)
即 cos[2( x T )] cos 2 x 即 cos(2 x 2T ) cos 2 x 即 对任意 u 都成立:cos(u 2T ) cos u 因此 2T 2 ,从而 T 解毕
第六章 三角函数
5.6.4 正弦定理、余弦定理和解斜三角形
6.1.1 正弦函数和余弦函数的图像与性质
一、正弦函数和余弦函数的概念 实数集与角的集合可以建立一一对应的关系, 每一个确定的角都对应唯一的正弦(余弦)值. 因此,任意给定一个实数 x ,有唯一确定的值
sin x(cos x) 与之对应.
函数 y sin x 叫做正弦函数 函数 y cos x 叫做余弦函数 正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
三角函数及反三角函数图像性质、知识点总结

千里之行,始于足下。
三角函数及反三角函数图像性质、知识点总结三角函数及反三角函数是高中数学中重要的内容之一,它们的图像性质是我们学习和理解这些函数的基础。
下面是关于三角函数及反三角函数图像性质的知识点总结。
一、正弦函数的图像性质:1. 定义域:正弦函数的定义域为全体实数。
2. 值域:正弦函数的值域为闭区间[-1,1]。
3. 周期性:正弦函数的周期是2π,即在一个周期内,正弦函数的图像重复出现。
4. 奇偶性:正弦函数是奇函数,即sin(-x)=-sin(x)。
5. 对称轴:正弦函数的对称轴是y轴。
6. 最值点:正弦函数的最值点包括最大值1和最小值-1,最值点的横坐标为周期的整数倍。
二、余弦函数的图像性质:1. 定义域:余弦函数的定义域为全体实数。
2. 值域:余弦函数的值域为闭区间[-1,1]。
3. 周期性:余弦函数的周期是2π,即在一个周期内,余弦函数的图像重复出现。
4. 奇偶性:余弦函数是偶函数,即cos(-x)=cos(x)。
5. 对称轴:余弦函数的对称轴是x轴。
6. 最值点:余弦函数的最值点包括最大值1和最小值-1,最值点的横坐标为周期的半整数倍。
三、正切函数的图像性质:1. 定义域:正切函数的定义域为全体实数,除了临界点kπ(k为整数)。
第1页/共3页锲而不舍,金石可镂。
2. 值域:正切函数的值域为全体实数。
3. 周期性:正切函数的周期是π,即在一个周期内,正切函数的图像重复出现。
4. 奇偶性:正切函数是奇函数,即tan(-x)=-tan(x)。
5. 渐近线:正切函数有两条渐近线,分别是x=kπ+π/2(k为整数)和x=kπ(k为整数)。
6. 最值点:正切函数没有最值点。
四、反正弦函数的图像性质:1. 定义域:反正弦函数的定义域为闭区间[-1,1]。
2. 值域:反正弦函数的值域为闭区间[-π/2,π/2]。
3. 奇偶性:反正弦函数是奇函数,即arcsin(-x)=-arcsin(x)。
4. 递增性:反正弦函数在定义域内是递增的。
高中数学 第三章 三角函数 3.3 三角函数的图像与性质 3.3.1 正弦函数、余弦函数的图象与性质

3.3.1 正弦函数、余弦函数的图象与性质(二)[学习目标] 1.掌握y =sin x 与y =cos x 的定义域,值域,最值、单调性、奇偶性等性质,并能解决相关问题.2.掌握y =sin x ,y =cos x 的单调性,并能利用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.[知识链接]1.观察正弦曲线和余弦曲线的对称性,你有什么发现?答 正弦函数y =sin x 的图象关于原点对称,余弦函数y =cos x 的图象关于y 轴对称. 2.上述对称性反映出正弦、余弦函数分别具有什么性质?如何从理论上加以验证? 答 正弦函数是R 上的奇函数,余弦函数是R 上的偶函数.根据诱导公式得,sin(-x )=-sin x ,cos(-x )=cos x 均对一切x ∈R 恒成立.3.观察正弦曲线和余弦曲线,正弦、余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?答 正弦、余弦函数存在最大值和最小值,分别是1和-1. [预习导引]正弦函数、余弦函数的性质(下表中k ∈Z ): 函数 y =sin x y =cos x图象定义域 R R 值域 [-1,1][-1,1]对称轴x =k π+π2x =k π对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 奇偶性 奇函数偶函数单调递增⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π[]-π+2k π,2k π 单调递减⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π []2k π,π+2k π最值在x =π2+2k π时,y max =1;在x =-π2在x =2k π时,y max =1;在x =π+2k π要点一 求正弦、余弦函数的单调区间例1 求函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调递增区间. 解 y =2sin ⎝ ⎛⎭⎪⎫π4-x =-2sin ⎝⎛⎭⎪⎫x -π4,令z =x -π4,则y =-2sin z .因为z 是x 的一次函数,所以要求y =-2sin z 的递增区间, 即求sin z 的递减区间,即2k π+π2≤z ≤2k π+3π2(k ∈Z ).∴2k π+π2≤x -π4≤2k π+3π2(k ∈Z ),2k π+3π4≤x ≤2k π+7π4(k ∈Z ),∴函数y =2sin ⎝⎛⎭⎪⎫π4-x 的递增区间为⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+7π4(k ∈Z ).规律方法 用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.再将最终结果写成区间形式.跟踪演练1 求下列函数的单调递增区间:(1)y =1+2sin ⎝ ⎛⎭⎪⎫π6-x ;(2)y =log 12cos x .解 (1)y =1+2sin ⎝ ⎛⎭⎪⎫π6-x =1-2sin ⎝⎛⎭⎪⎫x -π6.令u =x -π6,则根据复合函数的单调性知,所给函数的单调递增区间就是y =sin u 的单调递减区间,即2k π+π2≤u ≤2k π+32π(k ∈Z ),亦即2k π+π2≤x -π6≤2k π+3π2(k ∈Z ).亦即2k π+23π≤x ≤2k π+53π(k ∈Z ),故函数y =1+2sin ⎝ ⎛⎭⎪⎫π6-x 的单调递增区间是⎣⎢⎡⎦⎥⎤2k π+23π,2k π+53π(k ∈Z ).(2)由cos x >0,得2k π-π2<x <2k π+π2,k ∈Z .∵0<12<1,∴函数y =log 12cos x 的单调递增区间即为u =cos x ,x ∈⎝⎛⎭⎪⎫2k π-π2,2k π+π2(k ∈Z )的递减区间,∴2k π≤x <2k π+π2,k ∈Z .故函数y =log 12cos x 的单调递增区间为⎣⎢⎡⎭⎪⎫2k π,2k π+π2(k ∈Z ). 要点二 正弦、余弦函数的单调性的应用例2 利用三角函数的单调性,比较下列各组数的大小.(1)sin ⎝ ⎛⎭⎪⎫-π18与sin ⎝ ⎛⎭⎪⎫-π10;(2)sin196°与cos156°;(3)cos ⎝ ⎛⎭⎪⎫-235π与cos ⎝ ⎛⎭⎪⎫-174π. 解 (1)∵-π2<-π10<-π18<π2,∴sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.(2)sin196°=sin(180°+16°)=-sin16°, cos156°=cos(180°-24°)=-cos24°=-sin66°, ∵0°<16°<66°<90°,∴sin16°<sin66°; 从而-sin16°>-sin66°,即sin196°>cos156°.(3)cos ⎝ ⎛⎭⎪⎫-235π=cos 235π=cos(4π+35π)=cos 35π, cos ⎝ ⎛⎭⎪⎫-174π=cos 174π=cos ⎝ ⎛⎭⎪⎫4π+π4=cos π4.∵0<π4<35π<π,且y =cos x 在[0,π]上是减函数,∴cos 35π<co s π4,即cos ⎝ ⎛⎭⎪⎫-235π<cos ⎝ ⎛⎭⎪⎫-174π. 规律方法 用正弦函数或余弦函数的单调性比较大小时,应先将异名化同名,把不在同一单调区间内的角用诱导公式转化到同一单调区间,再利用单调性来比较大小. 跟踪演练2 比较下列各组数的大小.(1)sin ⎝ ⎛⎭⎪⎫-376π与sin ⎝ ⎛⎭⎪⎫493π; (2)cos870°与sin980°.解 (1)sin ⎝ ⎛⎭⎪⎫-376π=sin ⎝ ⎛⎭⎪⎫-6π-π6=sin ⎝ ⎛⎭⎪⎫-π6,sin ⎝ ⎛⎭⎪⎫493π=sin ⎝⎛⎭⎪⎫16π+π3=sin π3,∵y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,∴sin ⎝ ⎛⎭⎪⎫-π6<sin π3,即sin ⎝ ⎛⎭⎪⎫-376π<sin 493π. (2)cos870°=cos(720°+150°)=cos150°,sin980°=sin(720°+260°)=sin260°=sin(90°+170°)=cos170°, ∵0°<150°<170°<180°,∴cos150°>cos170°,即cos870°>sin980°. 要点三 求正弦、余弦函数的最值(值域)例3 (1)求函数y =3-2sin x 取得最大值、最小值时的自变量x 的集合,并分别写出最大值、最小值;(2)求函数f (x )=2sin 2x +2sin x -12,x ∈⎣⎢⎡⎦⎥⎤π6,5π6的值域.解 (1)∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π+3π2,k ∈Z 时,y 取得最大值5,相应的自变量x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+3π2,k ∈Z .当sin x =1,即x =2k π+π2,k ∈Z 时,y 取得最小值1,相应的自变量x 的集合为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2k π+π2,k ∈Z .(2)令t =sin x ,y =f (t ),∵x ∈⎣⎢⎡⎦⎥⎤π6,5π6,∴12≤sin x ≤1,即12≤t ≤1. ∴y =2t 2+2t -12=2⎝ ⎛⎭⎪⎫t +122-1,∴1≤y ≤72,∴函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,72.规律方法 (1)形如y =a sin x +b (或y =a cos x +b )的函数的最值或值域问题,利用正弦、余弦函数的有界性(-1≤sin x ,cos x ≤1)求解.求三角函数取最值时相应自变量x 的集合时,要注意考虑三角函数的周期性.(2)求解形如y =a sin 2x +b sin x +c (或y =a cos 2x +b cos x +c ),x ∈D 的函数的值域或最值时,通过换元,令t =sin x (或cos x ),将原函数转化为关于t 的二次函数,利用配方法求值域或最值即可.求解过程中要注意t =sin x (或cos x )的有界性.跟踪演练3 已知0≤x ≤π2,求函数y =cos 2x -2a cos x 的最大值M (a )与最小值m (a ).解 设cos x =t , ∵0≤x ≤π2,∴0≤t ≤1.∵y =t 2-2at =(t -a )2-a 2,∴当a <0时,M (a )=1-2a ,m (a )=0; 当0≤a ≤12时,M (a )=1-2a ,m (a )=-a 2;当12<a <1时,M (a )=0,m (a )=-a 2; 当a ≥1时,M (a )=0,m (a )=1-2a . 综上,M (a )=⎩⎪⎨⎪⎧1-2a , a ≤12,0,a >12,m (a )=⎩⎪⎨⎪⎧0, a <0,-a 2,0≤a <1,1-2a ,a ≥1.要点四 三角函数的奇偶性 例4 判断下列函数的奇偶性:(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x1+sin x .解 (1)显然x ∈R ,f (x )=cos 12x ,f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ),∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .∴f (x )的定义域关于原点对称. 又∵f (x )=lg(1-sin x )-lg(1+sin x ) ∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )] =lg(1+sin x )-lg(1-sin x )=-f (x ). ∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1, ∴x ∈R 且x ≠2k π-π2,k ∈Z .∵定义域不关于原点对称,∴该函数是非奇非偶函数.规律方法 判断函数奇偶性,要先判断函数的定义域是否关于原点对称,定义域关于原点对称是函数为奇函数或偶函数的前提条件,然后再判断f (-x )与f (x )之间的关系. 跟踪演练4 判断下列函数的奇偶性:(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2·sin x ;(2)f (x )=1-2cos x +2cos x -1. 解 (1)f (x )=sin2x +x 2sin x ,又∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )= -sin2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧1-2cos x ≥0,2cos x -1≥0,得cos x =12.∴f (x )=0,x =2k π±π3,k ∈Z .∴f (x )既是奇函数又是偶函数.1.函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的一个递减区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2B .[-π,0]C.⎣⎢⎡⎦⎥⎤-23π,23πD.⎣⎢⎡⎦⎥⎤π2,23π答案 D解析 由π2≤x +π6≤32π解得π3≤x ≤43π.故选D.2.下列不等式中成立的是( )A .sin ⎝ ⎛⎭⎪⎫-π8>sin ⎝ ⎛⎭⎪⎫-π10 B .sin3>sin2 C .sin 75π>sin ⎝ ⎛⎭⎪⎫-25π D .sin2>cos1 答案 D解析 ∵sin2=cos ⎝ ⎛⎭⎪⎫π2-2=cos ⎝ ⎛⎭⎪⎫2-π2,且0<2-π2<1<π,∴cos ⎝ ⎛⎭⎪⎫2-π2>cos1,即sin2>cos1.故选D.3.函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( )A.⎣⎢⎡⎦⎥⎤-32,12B.⎣⎢⎡⎦⎥⎤-12,32 C.⎣⎢⎡⎦⎥⎤32,1 D.⎣⎢⎡⎦⎥⎤12,1答案 B解析 ∵0≤x ≤π2,∴π6≤x +π6≤23π.∴cos 23π≤cos ⎝ ⎛⎭⎪⎫x +π6≤cos π6,∴-12≤y ≤32.故选B. 4.设a =sin33°,b =cos55°,c =tan35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,又0<cos35°<1,∴c >b >a .1.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2 (k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断. 3.求三角函数值域或最值的常用求法:将y 表示成以sin x (或cos x )为元的复合函数再利用换元或配方或利用函数的单调性等来确定y 的范围.一、基础达标1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限B .第二象限C .第三象限D .第四象限答案 C2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin β B .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定答案 D3.函数y =2sin 2x +2cos x -3的最大值是( ) A .-1B .1 C .-12D .-5答案 C解析 由题意,得y =2sin 2x +2cos x -3=2(1-cos 2x )+2cos x -3=-2⎝ ⎛⎭⎪⎫cos x -122-12.∵-1≤cos x ≤1,∴当cos x =12时,函数有最大值-12.4.对于下列四个命题:①sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10; ②cos ⎝ ⎛⎭⎪⎫-25π4>cos ⎝ ⎛⎭⎪⎫-17π4; ③sin138°<sin143°;④tan40°>sin40°. 其中正确命题的序号是( ) A .①③B.①④ C .②③D .②④答案 B5.关于x 的函数f (x )=sin(x +φ)有以下命题:①对任意的φ,f (x )都是非奇非偶函数;②不存在φ,使f (x )既是奇函数,又是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中正确命题的序号是________. 答案 ②③解析 易知②③成立,令φ=π2,f (x )=cos x 是偶函数,①④都不成立.6.若|x |≤π4,则函数f (x )=cos 2x +sin x 的最小值是________.答案 12-22解析 由cos 2x =1-sin 2x ,故f (x )=1-sin 2x +sin x ,令sin x =t ,由|x |≤π4,由图象知t ∈[-22,22],故函数化为y =-t 2+t +1=-(t -12)2+54,当t =-22时,y min =12-22. 7.求下列函数的单调增区间. (1)y =1-sin x2;(2)y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ). (2)y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2=log 12cos ⎝ ⎛⎭⎪⎫x 2-π3.要求原函数的增区间,即求函数y =cos ⎝ ⎛⎭⎪⎫x 2-π3的减区间,且cos ⎝ ⎛⎭⎪⎫x 2-π3>0.∴2k π≤x 2-π3<2k π+π2(k ∈Z ).整理得4k π+23π≤x <4k π+53π(k ∈Z ).所以函数y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间是⎣⎢⎡⎭⎪⎫4k π+23π,4k π+53π(k ∈Z ).二、能力提升 8.函数y =2sin x的单调增区间是( )A .[2k π-π2,2k π+π2](k ∈Z )B .[2k π+π2,2k π+3π2](k ∈Z ) C .[2k π-π,2k π](k ∈Z )D .[2k π,2k π+π](k ∈Z )答案 A解析 函数y =2x 为增函数,因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间9.M ,N 是曲线y =πsin x 与曲线y =πcos x 的两个不同的交点,则|MN |的最小值为( )A .πB.2πC.3πD .2π 答案 C解析 在同一坐标系中画出函数y =πsin x 与y =πcos x 的图象,如图所示,则|MN |的最小值为|PQ |.又P (π4,2π2),Q (5π4,-2π2), 故|PQ |=π4-5π42+2π2+2π22=3π.10.sin1,sin2,sin3按从小到大排列的顺序为__________________.答案 sin3<sin1<sin2解析 ∵1<π2<2<3<π, sin(π-2)=sin2,sin(π-3)=sin3.y =sin x 在⎝⎛⎭⎪⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin1<sin(π-2),即sin3<sin1<sin2.11.已知ω是正数,函数f (x )=2sin ωx 在区间[-π3,π4]上是增函数,求ω的取值范围.解 由-π2+2k π≤ωx ≤π2+2k π(k ∈Z ), 得-π2ω+2k πω≤x ≤π2ω+2k πω. ∴f (x )的单调递增区间是[-π2ω+2k πω,π2ω+2k πω],k ∈Z . 根据题意,得[-π3,π4]⊆[-π2ω+2k πω,π2ω+2k πω]. 从而有⎩⎪⎨⎪⎧ -2π2ω≤-π3,π2ω≥π4,ω>0,解得0<ω≤32. 故ω的取值范围是(0,32]. 12.判断下列函数的奇偶性:(1)f (x )=2sin ⎝⎛⎭⎪⎫2x +52π;(2)f (x )=2sin x -1;(3)f (x )=lg(sin x +1+sin 2x ). 解 (1)函数定义域为R ,且f (x )=2sin ⎝ ⎛⎭⎪⎫2x +52π=2sin ⎝⎛⎭⎪⎫2x +π2=2cos2x ,显然有f (-x )=f (x )恒成立.∴函数f (x )=2sin ⎝⎛⎭⎪⎫2x +52π为偶函数. (2)由2sin x -1>0,即sin x >12,得函数定义域为⎝⎛⎭⎪⎫2k π+π6,2k π+56π(k ∈Z ),此定义域在x 轴上表示的区间不关于原点对称.∴该函数不具有奇偶性,为非奇非偶函数.(3)函数定义域为R . f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg ()sin x +1+sin 2x =-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数.三、探究与创新 13.设函数y =-2cos ⎝ ⎛⎭⎪⎫12x +π3,x ∈⎣⎢⎡⎦⎥⎤28π5,a ,若该函数是单调函数,求实数a 的最大值. 解 由2k π≤12x +π3≤2k π+π(k ∈Z )得4k π-23π≤x ≤4k π+43π(k ∈Z ). ∴函数的单调递增区间是⎣⎢⎡⎦⎥⎤4k π-23π,4k π+43π(k ∈Z ), 同理函数的单调递减区间是⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π(k ∈Z ). 令285π∈⎣⎢⎡⎦⎥⎤4k π-23π,4k π+43π, 即1615≤k ≤4730,又k ∈Z ,∴k 不存在. 令285π∈⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π,得k =1. ∴285π∈⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π, 这表明y =-2cos ⎝ ⎛⎭⎪⎫12x +π3在⎣⎢⎡⎦⎥⎤28π5,22π3上是减函数,∴a 的最大值是22π3.。
专题五+5.3三角函数的图像与性质课件——2023届高三数学一轮复习

标):ωx+φ=π+2kπ.(以上k∈Z)
例1
(2022重庆十一中月考,5)函数f(x)=Asin(ωx+φ)
A
0,
ω
0,
0
φ
2
的部分图象如图所示,将其向右平移 3 个单位长度后得到图象对应的函
数解析式为 ( )
A.y= 2 sin 2x
B.y=
2
sin
2x
3
C.y=
2
sin
2x
3
D.y=
5 3
, 13 6
⫋
3 2
, 5 2
,易知函数y=sin
x在
3 2
,
5 2
上单调递增,则函数f(x)=sin
2
x
3
在区间
,
5 4
上单调递增,故
D正确.故选BD.
答案 BD
考法三 三角函数的最值 求三角函数最值常见的函数形式
1.y=asin x+bcos x= a2 b2 sin(x+φ),其中cos φ= a ,sin φ= b .
2
,
0
,(π,-1),
3 2
,
0
,(2π,1).
2.用“五点法”画y=Asin(ωx+φ)(A,ω≠0)在一个周期内的简图 用五点法画y=Asin(ωx+φ)(A,ω≠0)在一个周期内的简图时,一般先列表,后 描点,连线,其中所列表如下:
ωx+φ
x
y=A· sin(ωx+φ)
0
π
2
-
π - + 2
左平移 个单位长度,得到曲线C2
12
高中数学三角函数及反三角函数图像性质、知识点总结

高中数学三角函数及反三角函数图像性质、知识点总结高中数学中,三角函数及反三角函数是重要的内容之一。
在学习这一部分知识时,需要掌握其图像性质以及相关的知识点。
下面将对这些内容进行总结。
一、三角函数的图像性质1. 正弦函数(sin)的图像性质:- 周期性:sin函数的周期为2π,即在每个周期内,函数的图像重复出现;- 奇函数性质:sin函数关于原点对称;- 取值范围:sin函数的取值范围为[-1,1],即函数的值始终在该区间内波动。
2. 余弦函数(cos)的图像性质:- 周期性:cos函数的周期为2π;- 偶函数性质:cos函数关于y轴对称;- 取值范围:cos函数的取值范围也为[-1,1]。
3. 正切函数(tan)的图像性质:- 周期性:tan函数的周期为π;- 奇函数性质:tan函数关于原点对称;- 无界性:tan函数的值域为实数集,即函数在某些点无界。
二、三角函数的知识点1. 基本正弦函数的性质:- 特殊角的正弦值:0°、90°、180°、270°和360°对应的正弦值分别为0、1、0、-1和0;- 正弦函数的增减性:在0°到180°的区间上,sin函数是单调递增的;- 正弦函数的奇偶性:sin(-x)=-sin(x),即sin函数关于原点对称。
2. 基本余弦函数的性质:- 特殊角的余弦值:0°、90°、180°、270°和360°对应的余弦值分别为1、0、-1、0和1;- 余弦函数的增减性:在0°到180°的区间上,cos函数是单调递减的;- 余弦函数的奇偶性:cos(-x)=cos(x),即cos函数关于y轴对称。
3. 基本正切函数的性质:- 特殊角的正切值:0°、90°、180°和270°对应的正切值分别为0、无穷大、0和无穷大;- 正切函数的周期性:tan(x+π)=tan(x),即tan函数的周期是π。
(完整版)最全三角函数的图像与性质知识点总结

i ng si nt he i rb ei n ga re g三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质二、正切函数的图象与性质函数y =sin x y =cos x图象定义域RR 值域[-1,1][-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z )递减区间:[2k π,2k π+π] (k ∈Z )最 值x =2k π+(k ∈Z )时,y max =1;π2x =2k π-(k ∈Z )时,y min =-1π2x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性奇函数偶函数对称性对称中心:(k π,0)(k ∈Z )(含原点)对称轴:x =k π+,k ∈Zπ2对称中心:(k π+,0)(k ∈Z )π2对称轴:x =k π,k ∈Z (含y 轴)最小正周期2π2π定义域{|,}2x x k k Z ππ≠+∈值域R单调性递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性对称中心:(含原点)(,0)()2k k Z π∈最小正周期π三、三角函数图像的平移变换和伸缩变换1. 由的图象得到()的图象x y sin =)sin(ϕω+=x A y 0,0A ω>>xy sin =方法一:先平移后伸缩方法二:先伸缩后平移操作向左平移φ个单位横坐标变为原来的倍1ω结果)sin(ϕ+=x y xy ωsin =操作横坐标变为原来的倍1ω向左平移个单位ϕω结果)sin(ϕω+=x y 操作纵坐标变为原来的A 倍结果)sin(ϕω+=x A y 注意:平移变换或伸缩变换都是针对自变量x 而言的,因此在用这样的变换法作图象时一定要注意平移与伸缩的先后顺序,否则会出现错误。
原创三角函数的概念图像及性质.ppt

① asin□与bcos□之间是“+”连接
② a,b分别是sin□与cos□的系数 注3.辅助角φ的确定方法:
(a,b)
方法甚多凭爱好 坐标定义是基础
φ
数形结合两限制 注释说明一般角
O
X
(2) a sin □ bcos□ a2 b2 cos(□ )
(其中 tan a,Φ与点(b,a)同象限)
cos A b2 c2 a2 2bc
cos B a2 c2 b2 2ac
cos C a2 b2 c2 2ab
三角式运算公式总述
1.公式:
①同角关系 ②异角关系
2.作用:
一角二名三结构……
世上本无路三角走运的算人公多式了关便联有图了路
半角
作用
商数 平方 关系 关系
倒数
关系
同角
基本
1、同角基本关系式
(1)公式:
①平方关系 sin 2 cos2 1
②商数关系 sin tan cos③倒数关系 tan Fra bibliotekot 1 sinx
注:记忆图
①平方关系:阴影三角形…
tanx
②商数关系:边上左右邻居…
③倒数关系:对角线……
secx
cosx
1
cotx
cscx
1、同角基本关系式
(1).公式:……
(2).作用: 变名变结构
注:经典题型:同角两弦的和差商积可互化.即“知一有n”
桥梁: (sin x cos x)2 1 2sin x cos x 1 sin 2x
sin x n1 sin x cos x n3 sin x cos x n5 sin 2 x cos2 x n7
五点做图象 “代
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学总复习-三角函数第5课 三角函数的图像和性质(一)【考点导读】1. 能画出正弦函数,余弦函数,正切函数的图像,借助图像理解正弦函数,余弦 函数在[0,2 ],正切函数在(一,一)上的性质;2 22. 了解函数y Asin( x )的实际意义,能画出y A si n( x )的图像;3. 了解函数的周期性,体会三角函数是描述周期变化现象的重要函数模型. 【基础练习】动的最小正周期T _____L_;初相 —-2.三角方程2sin(_ - x)=1的解集为4. 要得到函数y sinx 的图象,只需将函数 y cos x______ - ____ 个单位. 【范例解析】例 1.已知函数 f (x) 2sin x(sin x cosx).(I)用五点法画出函数在区间 ——上的图象,长度为一个周期;2’ 2(H)说明f(x) 2s in x(si nx cosx)的图像可由y si nx 的图像经过怎样变换而1.已知简谐运动f(x) 2sin (3X )(2)的图象经过点(0,1),则该简谐运3.函数 y Asin( x )( 0,尹R)的部分图象如图所示,则函数表达为y4si n( x ) 8 4的图象向右平移分析:化为Asin( x )形式.得到•列表,取点,描图:x33588888y11逅1 1 V21故函数y f(x)在区间[-,2]上的图象是:(U)解法一:把y sinx图像上所有点向右平移—个单位,得到y sin(x )4 41的图像,再把y sin(x -)的图像上所有点的横坐标缩短为原来的丄(纵坐标不4 2变),得到y si n(2x —)的图像,然后把y sin(2x —)的图像上所有点纵坐标4 4伸长到原来的倍(横坐标不变),得到y 2 sin(2x -)的图像,再将4y . 2 sin(2x )的图像上所有点向上平移1个单位,即得到4y 1 - 2 sin(2x -)的图像.1解法二:把y sinx图像上所有点的横坐标缩短为原来的-(纵坐标不变),得2到y sin 2x的图像,再把y sin 2x图像上所有点向右平移—个单位,得到8解:(I)由f(x)2sin2x 2sin xcosx 1 cos2x sin 2x2(sin 2x cos —4cos2xs in )4 2sin(2x 4).分析:化为Asin( x )形式.x -)的图像上所有点纵坐标伸长到原来 的2倍(横坐标不变),得到y 、2sin(2x)的图像,再将y 二sin(2x) 44的图像上所有点向上平移1个单位,即得到y 1 ,2sin(2x -)的图像. 4例2.已知正弦函数y Asin( x ) (A 0, 0)的图像如右图所示.(1) 求此函数的解析式f 1(x);(2) 求与fdx)图像关于直线x 8对称的曲线的解析式f 2(x); (3) 作出函数y h(x) f 2(x)的图像的简图.£(x) 一 2sin(gx 4).(2)设函数f 2(x)图像上任一点为M(x,y),与它关于直线x 8对称的对称点为M (x,y),f 2(x)2sin (尹 4)y sin(2x —)的图像,然后把y sin(2 分析:识别图像,抓住关键点. 解:(1)由图知,A 伍,Q 2 将x 2, y 2代入,,即 y 2 sin( x ).88 、、2sin (— ).2,解得一,即(6 2) 16,8得 28,解得y y. 16 x,y.代入 f 1(x) 、2sin( x84-)中,得(3) y f i(x)示.点评:由图像求解析式,A比较容易求解,困难的是待定系数求和,通常利用周期确定,代入最高点或最低点求【反馈演练】1. 为了得到函数y 2sin(°),x R的图像,只需把函数y 2sin x,x R的图3 6像上所有的点①向左平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变);②向右平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐6 3标不变);③向左平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐6标不变);④向右平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐6标不变).其中,正确的序号有__③_ .62. 为了得到函数y sin(2x )的图象,可以将函数y cos2x的图象向右平移___ 个单位长度.—3 —65. 下列函数:其中函数图象的一部分如右图所示的序号有y Asin( x ) b(1)求这段时间的最大温差; (2)写出这段时间的函数解析式.n __7.如图,函数y 2cos( x )(x R , >0,0< <-)的图象与y 轴相交于点(0, 3),且该函数的最小正周期为(1)求和的值;(2)已知点A n ,0,点P 是该函数图象上一点,点23.若函数 f(x) 2sin( x ),x R (其中 0, 2)的最小正周期是, 且 f(0)、3,则3_2 ______ 4.在0,2 内,使sin x5 4盲cosx 成立的x 取值范围为 ________① y sin x —6② y sin 2x③ y cos 4x — 3④ y cos 2x6. 如图,某地一天从6时至14时的温度变化曲线近似满足函数解:(1)由图示,这段时间的最大温差是 30 10 20 °C(2)图中从6时到14时的图象是函数yAsin( x )b 的半个周期• •• 1 — 14 6,解得21由图示,A —(30 10)2101 b 2(1030) 2020这时,y 10sin(8x )将x 6,y10代入上式,可取3 4综上,所求的解析式为y 10si n( —x —) 8 420 ( x [6,14])第6题第7题当y 。
n时,求X 。
的值. 解:(1)将 x 0 , y ,3代入函数y 2cos( x )得 cos因为0 < W —,所以 -. 2 6 又因为该函数的最小正周期为,所以 2 , 因此 y 2cos 2x — 6(2)因为点A —,0 , 2 Q(x °,y °)是 PA 的中点,y ° 所以点P 的坐标为2x 0 又因为点P 在y 2cos 2x 的图象上,所以cos 6 4x 0 56因为一w x 0 <2 5 从而得4x 0 — 6 即x 0 — 或x3xo ,所以—<6 11 ——或4x 。
64 .4x o 5 19 5 = W ,13 6 .第6课三角函数的图像和性质(二)【考点导读】1. 理解三角函数y sinx , y cosx , y tan x的性质,进一步学会研究形如函数y Asin( x )的性质;2. 在解题中体现化归的数学思想方法,利用三角恒等变形转化为一个角的三角函数来研究.【基础练习】1.写出下列函数的定义域:(1)y Qsin £的定义域是{ x 6 k x 6k 3 , k Z } ;(2)y s^的定义域是x x k 孑,k Z} _cosx 22 .函数f (x) = | sinx+cosx|的最小正周期是_________________ .3. 函数f(x) sin(x ) sin2(x )的最小正周期是4 4f 一,0)4. 函数y=sin(2x+§)的图象关于点3 对称.5. 已知函数y tan x在(一一,一)内是减函数,贝U 的取值范围是2 2【范例解析】例1.求下列函数的定义域:(1) y . 2si nx 1 ; (2) y 2 log1x ta nx .tan x V 7x k一x k2,2解:f 1) ta n x0,即x k J2sin x10.2k2k7一x66故函数的疋义域为{x2k x2k7且x k , x k-,k Z}662224 222 log 1 x(2)2 tan x 0. 0, 0 即 kx 4,故函数的定义域为 (0,—) 2 点评:由几个函数的和构成的函数, 其定义域是每一个函数定义域的交集;第(2)问可用数轴取交集. 例2•求下列函数的单调减区间: (1)y sin(i 2x);(2)2cos x ; sin( x )4 2因为2k 2 3 2x 2k -,故原函数的单调减区间为[k —](k Z). 12(2) 由 sin(7 /,得{x2k-,k Z},2cosx2)4sin(;-),所以该函数递减区间为2k -3 2kQ ,即(4 k 5y )(k Z ).点评:2,4k 利用复合函数求单调区间应注意定义域的限制. 例3. 求下列函数的最小正周期: (1)5tan(2x 1) ; (2) y sin x — sin x —3 2解: (1)由函数y 5tan(2x 1)的最小正周期为-, 2 得y 5tan(2x 1)的周期(2) y sin(x評n(x)(sin xcoscosxs in )cosx 23 31 . sinxcosx .3 21 . c 3 1 cos2x cos xsin2x子 1sin(2x 3) T点评:求三角函数的周期一般有两种:(1)化为Asin( 公式求解;(2)利用函数图像特征求解.【反馈演练】1 ■.2 cos 2 从而f () --------------------------nsin1 .函数 y sin 4 x cos2 x 的最小正周期为22 .设函数f(x) sin x 一3(x R),则 f(x)在[0,2 丄—乙]厶乞]]上的单调递减区间为6 ' 33. 4. 函数f(x) sinx 亦cosx(x [ ,0])的单调递增区间是 __ 2 设函数f(x) sin 3x |si n3x|,贝U f (x)的最小正周期为__3 5. 函数f (x) cos 2 x 2cos 2 x在[0 ,]上的单调递增区间是[3,] 6. 1 、2 cos 2x —已知函数f (x) 4nx —2 sinI)求f(x)的定义域;(U)若角在第一象限且 cos3,求 f().5解:(I)由 sin x2 k n,即 xnk n2(k Z ).故f (x)的定义域为x R | x k n(U)由已知条件得 sin■■■ 1cos 2x )的形式特征,禾I 」用n ncos — sin 2 sin —4 4 cos21 cos2 sin 2 2cos 2sin coscoscos7.设函数 f(x) sin(2x )(0), y f (x)图像的一条对称轴是直线x8(I)求;(川)画出函数y f (x)在区间[0,]上的图像. 3(川)由y sin(2x——)知故函数y f(x)在区间[0,]上图像是2(cos sin )145(U)求函数yf(x)的单调增区间;sin(2- ) 1_k,k Z.0, 3 .424(U)由 (I )知3J,因此y 3 sin (2x).44由题意得 2k_ 2x 32k,k Z.24 2所以函数 y sin (2x3 4•)的单调增区 间为[k -,k8 Z.解:⑴x 8是函数y f(x)的图像的对称轴,第7课三角函数的值域与最值【考点导读】1•掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;2. 求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法.【基础练习】1. _______________________________________________ 函数y sinx 3cosx在区间[0,—]上的最小值为 _________________________________ 1 _____ .2 31 -2. ______________________________________________ 函数f (x) cosx cos2x (x R)的最大值等于_4 ______________________________ .23. 函数y tan(— x)(— x 一且x 0)的值域是(,1 ] [ 1 > ).2 4 4. 24. 当0 x —时,函数f(x)1 cOs2x 8sin x的最小值为 4 .2 sin 2x【范例解析】1例1. (1)已知sin x siny -,求sin y cos2 x的最大值与最小值.3(2)求函数y si nx cosx si nx cosx的最大值.分析:可化为二次函数求最值问题.1 2解:(1)由已知得:si ny si nx,Q si ny [ 1,1],则sin x [ ,1].3 3si ny cos2 x (s in x 丄)2 11,当si nx 丄时,si ny cos2 x 有最小值11;当2 12 2 12sin x2时, sin y cos2 x有最小值439(2) 设sinx cosx t ( ,2 t2)t2 1 1 1,贝U sin x cosx ,贝U y t t2 2 2当t、迈时, 1y有最大值为-22.点评: 第(1)小题利用消元法,第(2)小题利用换元法最终都转化为二次函数求最值问题;但要注意变量的取值范围.2 cosx例2•求函数y 2 COSX(0 x )的最小值.sin x分析:利用函数的有界性求解.解法一:原式可化为ysinx cosx 2(0 x ),得..1 y2sin(x ) 2,即2sin(x ) ^=2,J i y2故21,解得y 、、3或y .3 (舍),所以y的最小值为3 .1.1 y2解法二:y 2 COsx(0 x )表示的是点A(0, 2)与B( sinx,cosx)连线的斜率,si nx其中点B在左半圆a2 b2 1(a 0)上,由图像知,当AB与半圆相切时,y最小,此时k AB 3,所以y的最小值为,3 .点评:解法一利用三角函数的有界性求解;解法二从结构出发利用斜率公式,结合图像求解.例3.已知函数f (x) 2sin 2 n x V3COS2X,x n n4,.4(I)求f (x)的最大值和最小值;(II)若不等式f(x) m2在x4,-上恒成立求实数m的取值范围.分析:观察角,单角二次型,降次整理为asinx bcosx形式.解: (I)•- f(x) 1 cos2x23 cos2x 1 sin2x.3 cos2x12sinn2x —3又•xn n—,—,•冗< 2xn 2 n-< 一,即 2 < 1 2sin 2x冗<3,4 26 3 33f (x)max3, f (x)min 2.(n) v f (x) m 2 f (x) 2 m f (x) 2, x n ,n ,4 2• m f (x)max2 且 m f (x)min2,••• 1 m 4,即m 的取值范围是(1,4).点评:第(U)问属于恒成立问题,可以先去绝对值,利用参数分离转化为求最 值问题.本小题主要考查三角函数和不等式的基本知识, 以及运用三角公式、 角函数的图象和性质解题的能力. 【反馈演练】3n、2 sin 5、2 cos — 1,42 4 4解:(I) f(x) 2cos x(si nx cos x) 1sin2x cos2x 2 sin 2x n4因此,函数f(x)的最小正周期为冗・(n)因为 f(x)云in2x n在区间n 3 * * * * 8n 上为增函数,在区间丁, 3n 上 1 .函数cos(―6x)(x R)的最小值等于 ______ 二1 2.当0 3.函数 2cos上-的最小值是 cosxsin xsin x _的最大值为3 ,最小值为3—时,函数 4 sin x f(x)cosx 24.函数cosx tan x 的值域为(1,1).为减函数,又fn 0「3n• 2 ,f故函数f(X)在区间n3n上的最大值为J,最小值为1•。