中考数学复习专题十四:几何与函数问题
中考数学函数及几何型综合题解题方法

中考数学函数及几何型综合题解题方法(一)函数型综合题是先给定直角坐标系和几何图形,求(已知)函数的解析式(即求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。
初中已知函数有①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线。
求已知函数的解析式要紧方法是待定系数法,关键是求点的坐标,而求点的坐标差不多方法是几何法(图形法)和代数法(解析法)。
(二)几何型综合题是先给定几何图形,依照已知条件进行运算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前,不明白函数解析式的形式是什么)和求函数的定义域,最后依照所求的函数关系进行探究研究。
探究研究的一样类型有:①在什么条件下三角形是等腰三角形、直角三角形;②四边形是菱形、梯形等;③探究两个三角形满足什么条件相似;④探究线段之间的位置关系等;⑤探究面积之间满足一定关系求x的值等;⑥直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
一样有直截了当法(直截了当列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),因此还有参数法,那个已超出初中数学教学要求。
找等量关系的途径在初中要紧有利用勾股定理、平行线截得比例线段、三角形相似、面积相等……求定义域要紧是查找图形的专门位置(极限位置)和依照解析式求解。
而最后的探究问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
今年的数学综合题启发我们在进行综合思维的时候要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,方程函数是工具,运算推理严谨,创新品质得提高。
九年级数学几何函数知识点

九年级数学几何函数知识点在九年级数学学习中,几何函数是一个重要的内容,它与几何图形的形状和性质密切相关。
以下是九年级数学几何函数的主要知识点。
一、直线和斜率1. 直线的定义:直线是由一组无限多个点组成的,其中任意两个点可以确定一条唯一的直线。
2. 斜率的概念:斜率是直线的一个重要属性,它表示直线的倾斜程度。
斜率的数值等于直线上任意两点的纵坐标差与横坐标差的比值。
3. 斜率的计算:设直线上的两个点坐标分别为(x₁,y₁)和(x₂,y₂),则斜率的计算公式为:k = (y₂ - y₁)/(x₂ -x₁)。
4. 斜率的性质:斜率等于0表示直线水平,斜率不存在表示直线垂直。
二、直线方程和函数1. 一般式直线方程:一般式直线方程为Ax + By + C = 0,其中A、B、C为常数,A和B不全为零。
2. 斜截式直线方程:斜截式直线方程为y = kx + b,其中k为斜率,b为截距。
3. 点斜式直线方程:点斜式直线方程为y - y₁ = k(x - x₁),其中(x₁,y₁)为直线上的一点,k为斜率。
4. 函数的定义:函数是一种关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
5. 直线方程和函数的关系:直线方程可以表示成函数的形式,如斜截式方程和点斜式方程。
三、直线的性质和相关定理1. 平行线的性质:平行线具有相同的斜率,但截距不同。
2. 垂直线的性质:垂直线的斜率互为相反数。
3. 直线的相交性质:若两条直线的斜率不相等,则它们一定相交于一点。
4. 线段的中点定理:线段的中点将线段平分为两个相等的部分。
5. 角的性质和定理:角的概念是几何函数中一个重要的要素,包括顶点、边、内角和外角等。
充分理解和掌握以上几何函数的知识点,对于九年级数学学习将起到积极的促进作用。
通过学习几何函数,我们能更好地理解直线和图形之间的关系,并能运用所学知识解决实际问题,提高我们的数学素养和解决问题的能力。
希望同学们在学习中能够认真对待,勤加练习,取得优异的成绩!。
初三函数几何知识点归纳总结

初三函数几何知识点归纳总结函数几何是初中数学中的一大重点,也是较为复杂的部分之一。
在这篇文章中,我将对初三函数几何的知识点进行归纳总结,以帮助同学们更好地掌握和理解这些知识。
一、函数与方程1. 函数的定义:函数是一个映射关系,每个自变量对应唯一的因变量。
2. 函数的表示方法:函数可以用解析式、图像、数据表等多种形式表示。
3. 一次函数:函数表达式为y = kx + b的函数称为一次函数。
4. 一次函数的性质:一次函数的图像是一条直线,具有唯一斜率和截距。
二、函数的图像与性质1. 平移变换:函数图像的平移可以通过改变函数表达式中的常数项实现。
2. 导数与函数的变化率:函数图像在某一点处的斜率就是该点的导数,描述了函数在该点附近的变化趋势。
三、二次函数与一次函数的比较1. 二次函数的定义:函数表达式为y = ax^2 + bx + c的函数称为二次函数。
2. 二次函数的图像:二次函数的图像是一个抛物线,开口的方向由二次项系数a的正负确定。
3. 二次函数的顶点与对称轴:二次函数的顶点是抛物线的最高点或最低点,对称轴是通过顶点的垂直线。
4. 二次函数的性质:二次函数在对称轴两侧呈现单调递增或递减的特点。
5. 二次函数与一次函数的比较:通过对比二次函数与一次函数的图像和性质,可以更好地理解它们之间的区别和联系。
四、乘法定理与因式分解1. 乘法定理:乘法定理是计算函数之间乘法的一种方法,用于将多个函数相乘的式子化简为简洁的形式。
2. 因式分解:将多项式表示为两个或多个因式相乘的形式,可以用于解方程、求函数最值等问题。
五、直线与圆1. 直线的方程:直线可以用点斜式、一般式、截距式等多种形式表示,根据题目要求选择合适的方程形式。
2. 圆的方程:圆可以用标准方程或一般方程表示,其中标准方程是圆心在原点的情况。
六、复合函数1. 复合函数的定义:复合函数是指一个函数作为另一个函数的输入,得到的结果再作为另一个函数的输入。
初三函数几何知识点归纳总结

初三函数几何知识点归纳总结初三阶段是学习数学的重要时期,其中函数和几何是数学的重要分支。
在这个阶段,初三学生将开始接触并学习函数和几何的知识点。
本文将对初三阶段的函数和几何的知识点进行归纳总结,以帮助同学们更好地理解和掌握这些知识。
一、函数1. 函数的概念函数是一个有输入和输出的关系。
其中,输入称为自变量,输出称为因变量。
函数常用f(x)或y来表示。
2. 函数的图像函数的图像是表示函数输出值与自变量之间关系的图形。
3. 函数的定义域和值域函数的定义域是自变量的取值范围,值域是函数的输出值的范围。
4. 函数的基本性质函数的线性性、单调性、奇偶性和周期性是函数的基本性质。
5. 函数的运算函数的运算包括函数的加减乘除、复合函数和反函数等。
6. 一次函数、二次函数和指数函数初三阶段重点学习一次函数、二次函数和指数函数,并理解它们的特点和图像。
二、几何1. 平面几何平面几何是几何的基础,涉及到点、线、面、角等基本概念。
2. 几何图形的性质包括图形的边数、角的个数、对称性等性质。
3. 直线和射线直线是始于一点并沿一定方向无穷延伸的线段,射线是始于一点并只延伸一边的线段。
4. 三角形初三阶段主要学习等腰三角形、直角三角形和等边三角形的性质。
5. 四边形包括矩形、正方形、菱形和平行四边形等的性质。
6. 圆的性质初三阶段学习圆的直径、半径、弦、切线等性质。
7. 直角坐标系和平面直角坐标系学习如何利用直角坐标系解决几何问题。
三、函数与几何的应用1. 函数在图形变化中的应用函数的图像可以描述图形的变化规律,如函数的增减性和极值的应用。
2. 几何中的函数应用几何问题可以通过函数的方法进行求解,如使用函数解决长度、面积和体积等问题。
3. 函数与几何的联系函数和几何有着密切的关系,如函数的图像可以用来表示几何图形,几何图形的性质可以用函数的方法进行描述和证明。
综上所述,初三的函数和几何是数学学习的重要内容。
同学们在学习函数和几何的过程中,要理清知识点的关系,掌握其基本概念和性质。
函数与几何综合问题(共25题)(学生版)--2023年中考数学真题分项汇编(全国通用)

专题32函数与几何综合问题(25题)一、填空题1(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为2(2023·四川自贡·统考中考真题)如图,直线y=-13x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=-43x+2上的一动点,动点E m,0,F m+3,0,连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是.3(2023·江苏无锡·统考中考真题)二次函数y=a(x-1)(x-5)a>1 2的图像与x轴交于点A、B,与y轴交于点C,过点M3,1的直线将△ABC分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为.二、解答题4(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2-6x+8=0的两个根(OB>OC).请解答下列问题:(1)求点B 的坐标;(2)若OD :OC =2:1,直线y =-x +b 分别交x 轴、y 轴、AD 于点E ,F ,M ,且M 是AD 的中点,直线EF 交DC 延长线于点N ,求tan ∠MND 的值;(3)在(2)的条件下,点P 在y 轴上,在直线EF 上是否存在点Q ,使△NPQ 是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q 的坐标;若不存在,请说明理由.5(2023·湖南·统考中考真题)如图,点A ,B ,C 在⊙O 上运动,满足AB 2=BC 2+AC 2,延长AC 至点D ,使得∠DBC =∠CAB ,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记△BDC ,△ABC ,△ADB 的面积分别为S 1,S 2,S ,若S 1⋅S =S 2 2,求tan D 2的值;(3)若⊙O 的半径为1,设FM =x ,FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.6(2023·湖南·统考中考真题)我们约定:若关于x 的二次函数y 1=a 1x 2+b 1x +c 1与y 2=a 2x 2+b 2x +c 2同时满足a 2-c 1+(b 2+b 1)2+c 2-a 1 =0,b 1-b 22023≠0,则称函数y 1与函数y 2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数y 1=2x 2+kx +3与y 2=mx 2+x +n 互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,函数y 1与y 2互为“美美与共”函数.①求函数y 2的图像的对称轴;②函数y 2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数y 1=ax 2+bx +c 与它的“美美与共”函数y 2的图像顶点分别为点A ,点B ,函数y 1的图像与x 轴交于不同两点C ,D ,函数y 2的图像与x 轴交于不同两点E ,F .当CD =EF 时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.7(2023·江苏无锡·统考中考真题)如图,四边形ABCD 是边长为4的菱形,∠A =60°,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q .(1)当∠QPB =45°时,求四边形BB C C 的面积;(2)当点P 在线段AB 上移动时,设BP =x ,四边形BB C C 的面积为S ,求S 关于x 的函数表达式.8(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数y =-3x 2+23x 的图象与x 轴分别交于点O ,A ,顶点为B .连接OB ,AB ,将线段AB 绕点A 按顺时针方向旋转60°得到线段AC ,连接BC .点D ,E 分别在线段OB ,BC 上,连接AD ,DE ,EA ,DE 与AB 交于点F ,∠DEA =60°.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①∠EDA 的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,△BDE 的面积为.9(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.10(2023·吉林·统考中考真题)如图,在正方形ABCD 中,AB =4cm ,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC -CD 向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA -AB 于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(0<x <4),四边形PQMN 的面积为y (cm 2)(1)BP 的长为cm ,CM 的长为cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.11(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上,如图2,将正方形OABC 绕点O 逆时针旋转,旋转角为α0°<α<45° ,AB 交直线y =x 于点E ,BC 交y 轴于点F .(1)当旋转角∠COF 为多少度时,OE =OF ;(直接写出结果,不要求写解答过程)(2)若点A (4,3),求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y =x 于点N ,连接FN ,将△OFN 与△OCF 的面积分别记为S 1与S 2,设S =S 1-S 2,AN =n ,求S 关于n 的函数表达式.12(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.13(2023·湖北宜昌·统考中考真题)如图,已知A (0,2),B (2,0).点E 位于第二象限且在直线y =-2x 上,∠EOD =90°,OD =OE ,连接AB ,DE ,AE ,DB .(1)直接判断△AOB 的形状:△AOB 是三角形;(2)求证:△AOE ≌△BOD ;(3)直线EA 交x 轴于点C (t ,0),t >2.将经过B ,C 两点的抛物线y 1=ax 2+bx -4向左平移2个单位,得到抛物线y 2.①若直线EA 与抛物线y 1有唯一交点,求t 的值;②若抛物线y 2的顶点P 在直线EA 上,求t 的值;③将抛物线y 2再向下平移,2(t -1)2个单位,得到抛物线y 3.若点D 在抛物线y 3上,求点D 的坐标.14(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为2,23 ,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF ∥OB 交边BC 于点F ,连接EF .设OD =x ,△DEF 的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.15(2023·天津·统考中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点A (3,0),B (0,1),D (23,1),矩形EFGH 的顶点E 0,12 ,F -3,12 ,H 0,32.(1)填空:如图①,点C 的坐标为,点G 的坐标为;(2)将矩形EFGH 沿水平方向向右平移,得到矩形E F G H ,点E ,F ,G ,H 的对应点分别为E ,F ,G ,H .设EE =t ,矩形E F G H 与菱形ABCD 重叠部分的面积为S .①如图②,当边E F 与AB 相交于点M 、边G H 与BC 相交于点N ,且矩形E F G H 与菱形ABCD 重叠部分为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当233≤t ≤1134时,求S 的取值范围(直接写出结果即可).16(2023·浙江温州·统考中考真题)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE ⊥CD ,交CD 延长线于点E ,交半圆于点F ,已知OA =32,AC =1.如图2,连接AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH ⊥AB 于点H .设PH =x ,MN =y .(1)求CE 的长和y 关于x 的函数表达式.(2)当PH <PN ,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与△BCE 相似时,求a 的值.(3)延长PN 交半圆O 于点Q ,当NQ =154x -3时,求MN 的长.17(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.18(2023·江苏连云港·统考中考真题)【问题情境 建构函数】(1)如图1,在矩形ABCD 中,AB =4,M 是CD 的中点,AE ⊥BM ,垂足为E .设BC =x ,AE =y ,试用含x 的代数式表示y .【由数想形 新知初探】(2)在上述表达式中,y 与x 成函数关系,其图像如图2所示.若x 取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.【数形结合 深度探究】(3)在“x 取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x 的增大而增大;②函数值y 的取值范围是-42<y <42;③存在一条直线与该函数图像有四个交点;④在图像上存在四点A 、B 、C 、D ,使得四边形ABCD 是平行四边形.其中正确的是.(写出所有正确结论的序号)【抽象回归 拓展总结】(4)若将(1)中的“AB=4”改成“AB=2k”,此时y关于x的函数表达式是;一般地,当k≠0,x取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).19(2023·四川凉山·统考中考真题)阅读理解题:阅读材料:如图1,四边形ABCD是矩形,△AEF是等腰直角三角形,记∠BAE为α、∠FAD为β,若tanα=1 2,则tanβ=13.证明:设BE=k,∵tanα=12,∴AB=2k,易证△AEB≌△EFC AAS∴EC=2k,CF=k,∴FD=k,AD=3k∴tanβ=DFAD =k3k=13,若α+β=45°时,当tanα=12,则tanβ=13.同理:若α+β=45°时,当tanα=13,则tanβ=12.根据上述材料,完成下列问题:如图2,直线y=3x-9与反比例函数y=mx(x>0)的图象交于点A,与x轴交于点B.将直线AB绕点A顺时针旋转45°后的直线与y轴交于点E,过点A作AM⊥x轴于点M,过点A作AN⊥y轴于点N,已知OA=5.(1)求反比例函数的解析式;(2)直接写出tan ∠BAM 、tan ∠NAE 的值;(3)求直线AE 的解析式.20(2023·山东泰安·统考中考真题)如图1,二次函数y =ax 2+bx +4的图象经过点A (-4,0),B (-1,0).(1)求二次函数的表达式;(2)若点P 在二次函数对称轴上,当△BCP 面积为5时,求P 坐标;(3)小明认为,在第三象限抛物线上有一点D ,使∠DAB +∠ACB =90°;请判断小明的说法是否正确,如果正确,请求出D 的坐标;如果不正确,请说明理由.21(2023·湖北恩施·统考中考真题)在平面直角坐标系xoy 中,O 为坐标原点,已知抛物线y =-12x 2+bx +c 与y 轴交于点A ,抛物线的对称轴与x 轴交于点B .(1)如图,若A 0,3 ,抛物线的对称轴为x =3.求抛物线的解析式,并直接写出y ≥3时x 的取值范围;(2)在(1)的条件下,若P 为y 轴上的点,C 为x 轴上方抛物线上的点,当△PBC 为等边三角形时,求点P ,C 的坐标;(3)若抛物线y =-12x 2+bx +c 经过点D m ,2 ,E n ,2 ,F 1,-1 ,且m <n ,求正整数m ,n 的值.22(2023·辽宁营口·统考中考真题)如图,抛物线y =ax 2+bx -1a ≠0 与x 轴交于点A 1,0 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点D 3,0 ,过点B 作直线l ⊥x 轴,过点D 作DE ⊥CD ,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.23(2023·山东日照·统考中考真题)在平面直角坐标系xOy内,抛物线y=-ax2+5ax+2a>0交y 轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当a=13时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E1a ,a+1,F5,a+1,以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52时,求a的值.24(2023·江苏无锡·统考中考真题)已知二次函数y=22x2+bx+c的图像与y轴交于点A,且经过点B(4,2)和点C(-1,2).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=22x2+bx+c图像上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.25(2023·辽宁·统考中考真题)如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.11。
中考数学重要知识总结函数与平面几何的应用与计算

中考数学重要知识总结函数与平面几何的应用与计算中考数学重要知识总结:函数与平面几何的应用与计算数学作为一门学科,涉及的内容极其广泛。
在中考数学的考试中,函数和平面几何是两个非常重要的知识点。
本文将对函数和平面几何的应用与计算进行总结,以帮助同学们更好地掌握和应用这些知识。
一、函数的基本概念及性质函数是数学中常见的概念,它描述了两个数集之间的一种对应关系。
函数的基本概念包括定义域、值域、图像等。
而函数的性质则包括奇偶性、单调性、最值等。
定义域是函数中最基本的概念之一,它表示函数的自变量的取值范围。
在计算函数的值时,必须保证自变量的取值在定义域内。
值域则是函数中因变量的所有可能的取值。
图像则是函数的图形表示,可以用来观察函数的性质及其变化趋势。
二、函数的应用函数在实际问题中的应用非常广泛。
它可以描述各种变化的规律,帮助我们解决各种实际问题。
以下是函数在常见问题中的应用举例:1. 函数在生活中的应用:例如,用函数来描述物体的运动轨迹、温度的变化规律等。
2. 函数在经济学中的应用:例如,用函数来描述价格与需求的关系、利润与产量的关系等。
3. 函数在几何中的应用:例如,用函数来描述图形的形状、面积与周长的关系等。
三、平面几何的基本概念及性质平面几何是数学中研究平面内点、直线、面及其相互关系的一门学科。
在中考数学中,平面几何涉及到的基本概念包括点、直线、线段等。
而平面几何的性质则包括平行性、垂直性、相等性等。
点是平面几何中最基本的概念之一,它没有长度、面积等特征,只有位置。
直线是由无数个点组成的,它是最直的路径。
线段则是由两个点及其之间的所有点组成的,它是有限的路径。
四、平面几何的计算在解决平面几何的问题中,计算也是不可或缺的一部分。
平面几何的计算主要包括线段的长度计算、角度的计算及面积的计算。
线段的长度计算可以通过直尺、量角器等工具进行测量。
角度的计算可以通过量角器进行测量,也可以通过一些基本的几何关系进行计算。
中考数学专题:动态几何与函数问题
中考数学专题:动态几何与函数问题中考数学专题:动态几何与函数问题以下是查字典数学网为您推荐的中考数学专题:动态几何与函数问题,希望本篇文章对您学习有所帮助。
中考数学专题:动态几何与函数问题【前言】在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。
其中通过图中已给几何图形构建函数是重点考察对象。
不过从近年中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中减少复杂性增大灵活性的主体思想。
但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。
【例1】如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线 .将直线平移,平移后的直线与轴交于点D,与轴交于点E.(2)当时,阴影部分的面积=直角梯形的面积的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)【例2】已知:在矩形中,, .分别以所在直线为轴和轴,建立如图所示的平面直角坐标系. 是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点 .(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE和△FOB 这两个直角三角形的底边和高恰好就是E,F点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K。
2023年九年级中考数学复习++几何图形动点与函数图像综合讲义
几何图形动点与函数图像综合考向一判断函数图像(1)面积问题:①函数类型:与面积相关的量如果有一个变化的量为一次函数,如果有两个变化的量为二次函数;②节点、自变量取值范围及函数值;③函数的增减性等(2)线段长度问题:①根据相似性质对应边成比例或面积公式等确定函数关系式;②节点、自变量取值范围及函数值;③函数的增减性等1.如图,在Rt △ABC中,△C=900,AC=1cm,BC=2cm,点P从A出发,以1cm/s的速沿折线AC→ CB→ BA运动,最终回到A点。
设点P的运动时间为x(s),线段AP的长度为y(cm),则能反映y与x之间函数关系的图像大致是()2.如图,点E、F、G、H是正方形ABCD四条边(不含端点)上的点,DE=AF=BG=CH。
设线段DE的长为x cm,四边形EFGH的面积为y(cm2),则能够反映y与x之间函数关系的图象大致是()3.如图,菱形ABCD的边长为5cm,sinA=,点P从点A出发,以1cm/s的速度沿折线AB→BC→CD运动,到达点D停止;点Q同时从点A出发,以1cm/s的速度沿AD运动,到达点D停止.设点P运动x(s)时,△APQ的面积为y(cm2),则能够反映y与x之间函数关系的图象是()A B C D4.如图,在菱形ABCD中,△B=60°,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x 秒.则下列图象能大致反映y与x之间函数关系的是()A B C D5.如图,在等边三角形ABC中,BC=4,在Rt△DEF中,△EDF=90°,△F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E 重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是()6.如图,在四边形ABCD中,AD△BC,△A=45°,△C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以cm/s的速度沿AB向终点B运动,点N以2cm/s的速度沿折线AD﹣DC向终点C运动.设点N的运动时间为ts,△AMN的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.7.如图,四边形ABCD是边长为1的正方形,点E是射线AB上的动点(点E不与点A,点B重合),点F在线段DA的延长线上,且AF=AE,连接ED,将ED绕点E顺时针旋转90°得到EG,连接EF,FB,BG.设AE=x,四边形EFBG的面积为y,下列图象能正确反映出y与x的函数关系的是()A.B.C.D.8.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()9.如图,O是边长为4 cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1 cm/s,设P点的运动时间为t(s),点P的运动路径与OA,OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()10.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致为()11.如图,AD、BC是△O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设△APB=y(单位:度),那么y与P运动的时间x(单位:秒)的关系图是()12.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。
中考数学真题- 函数与几何综合问题
函数与几何综合问题一、解答题1.(2021·浙江中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C . (1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA BO =,求证:CD CO =.①若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.2.(2021·浙江中考真题)如图,在平面直角坐标系中,M 经过原点O ,分别交x 轴、y 轴于()2,0A ,()0,8B ,连结AB .直线CM 分别交M 于点D ,E (点D 在左侧),交x 轴于点()17,0C ,连结AE .(1)求M 的半径和直线CM 的函数表达式.(2)求点D ,E 的坐标.(3)点P 在线段AC 上,连结PE .当AEP ∠与OBD 的一个内角相等时,求所有满足条件的OP 的长.3.(2021·黑龙江中考真题)如图,一次函数y kx b =+的图象与y 轴的正半轴交于点A ,与反比例函数4y x=的图像交于,P D 两点.以AD 为边作正方形ABCD ,点B 落在x 轴的负半轴上,已知BOD 的面积与AOB 的面积之比为1:4.(1)求一次函数y kx b =+的表达式: (2)求点P 的坐标及CPD △外接圆半径的长.4.(2021·江苏中考真题)已知四边形ABCD 是边长为1的正方形,点E 是射线BC 上的动点,以AE 为直角边在直线BC 的上方作等腰直角三角形AEF ,90AEF ∠=︒,设BE m =.(1)如图1,若点E 在线段BC 上运动,EF 交CD 于点P ,AF 交CD 于点Q ,连结CF , ①当13m =时,求线段CF 的长;①在PQE ¢V 中,设边QE 上的高为h ,请用含m 的代数式表示h ,并求h 的最大值;(2)设过BC 的中点且垂直于BC 的直线被等腰直角三角形AEF 截得的线段长为y ,请直接写出y 与m 的关系式.5.(2021·江苏中考真题)在平面直角坐标系xOy 中,对于A 、A '两点,若在y 轴上存在点T ,使得90ATA '∠=︒,且TA TA '=,则称A 、A '两点互相关联,把其中一个点叫做另一个点的关联点.已知点()2,0M -、()1,0N -,点(),Q m n 在一次函数21y x =-+的图像上.(1)①如图,在点()2,0B 、()0,1C -、()22D ,--中,点M 的关联点是_______(填“B ”、“C ”或“D ”); ①若在线段MN 上存在点()1,1P 的关联点P ',则点P '的坐标是_______; (2)若在线段MN 上存在点Q 的关联点Q ',求实数m 的取值范围; (3)分别以点()4,2E 、Q 为圆心,1为半径作E 、Q .若对E 上的任意一点G ,在Q 上总存在点G ',使得G 、G '两点互相关联,请直接写出点Q 的坐标.6.(2021·广东中考真题)如图,在平面直角坐标系xOy 中,直线1:42l y x =+分别与x 轴,y 轴相交于A 、B 两点,点(),P x y 为直线l 在第二象限的点(1)求A、B两点的坐标;(2)设PAO的面积为S,求S关于x的函数解析式:并写出x的取值范围;(3)作PAO的外接圆C,延长PC交C于点Q,当POQ△的面积最小时,求C的半径.7.(2021·广西梧州市·中考真题)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣1,0),B (0,3),顶点为C.平移此抛物线,得到一条新的抛物线,且新抛物线上的点D(3,﹣1)为原抛物线上点A的对应点,新抛物线顶点为E,它与y轴交于点G,连接CG,EG,CE.(1)求原抛物线对应的函数表达式;(2)在原抛物线或新抛物线上找一点F,使以点C,E,F,G为顶点的四边形是平行四边形,并求出点F 的坐标;(3)若点K是y轴上的一个动点,且在点B的上方,过点K作CE的平行线,分别交两条抛物线于点M,N,且点M,N分别在y轴的两侧,当MN=CE时,请直接写出点K的坐标.8.(2021·四川中考真题)如图,在平面直角坐标系xOy中,一次函数33y x42=+的图象与反比例函数()0ky x x=>的图象相交于点(),3A a ,与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当ABD △是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.9.(2021·湖南中考真题)如图所示,在平面直角坐标系Oxy 中,一次函数2y x =的图像l 与函数()0,0ky k x x=>>的图像(记为Γ)交于点A ,过点A 作AB y ⊥轴于点B ,且1AB =,点C 在线段OB 上(不含端点),且OC t =,过点C 作直线1//l x 轴,交l 于点D ,交图像Γ于点E .(1)求k 的值,并且用含t 的式子表示点D 的横坐标;(2)连接OE 、BE 、AE ,记OBE △、ADE 的面积分别为1S 、2S ,设12U S S =-,求U 的最大值. 10.(2021·江苏中考真题)如图,在平面直角坐标系中.四边形OABC 为矩形,点C 、A 分别在x 轴和y 轴的正半轴上,点D 为AB 的中点已知实数0k ≠,一次函数3y x k =-+的图像经过点C 、D ,反比例函数()0ky x x=>的图像经过点B ,求k 的值.11.(2021·山东中考真题)如图,在平面直角坐标系中,矩形OABC 的两边OC 、OA 分别在坐标轴上,且2OA =,4OC =,连接OB .反比例函数1k y x=(0x >)的图象经过线段OB 的中点D ,并与AB 、BC 分别交于点E 、F .一次函数2y k x b =+的图象经过E 、F 两点.(1)分别求出一次函数和反比例函数的表达式;(2)点P 是x 轴上一动点,当PE PF +的值最小时,点P 的坐标为______.12.(2021·广西中考真题)如图①,在ABC 中,AD BC ⊥于点D ,14BC =,8AD =,6BD =点E 是AD 上一动点(不与点A ,D 重合),在ADC 内作矩形EFGH ,点F 在DC 上,点G ,H 在AC 上,设DE x =,连接BE .(1)当矩形EFGH 是正方形时,直接写出EF 的长;(2)设ABE △的面积为1S ,矩形EFGH 的面积为2S ,令12S y S =,求y 关于x 的函数解析式(不要求写出自变量x 的取值范围);(3)如图①,点(,)P a b 是(2)中得到的函数图象上的任意一点,过点P 的直线l 分别与x 轴正半轴,y 轴正半轴交于M ,N 两点,求OMN 面积的最小值,并说明理由.13.(2021·江苏中考真题)通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用. (理解)(1)如图1,,AC BC CD AB ⊥⊥,垂足分别为C 、D ,E 是AB 的中点,连接CE .已知AD a =,()0BD b a b =<<.①分别求线段CE 、CD 的长(用含a 、b 的代数式表示);①比较大小:CE __________CD (填“<”、“=”或“>”),并用含a 、b 的代数式表示该大小关系.(应用)(2)如图2,在平面直角坐标系xOy 中,点M 、N 在反比例函数()10y x x=>的图像上,横坐标分别为m 、n .设11,p m n q m n =+=+,记14l pq =. ①当1,2m n ==时,l =__________;当3,3m n ==时,l =________;①通过归纳猜想,可得l 的最小值是__________.请利用图2构造恰当的图形,并说明你的猜想成立. 14.(2021·四川中考真题)已知反比例函数my x=的图象经过点(2,3)A .(1)求该反比例函数的表达式; (2)如图,在反比例函数my x=的图象上点A 的右侧取点C ,作CH ①x 轴于H ,过点A 作y 轴的垂线AG 交直线CH 于点D .①过点A ,点C 分别作x 轴,y 轴的垂线,交于B ,垂足分别为为F 、E ,连结OB ,BD ,求证:O ,B ,D 三点共线;①若2AC OA =,求证:2AOD DOH ∠=∠.15.(2021·内蒙古中考真题)如图,矩形ABCD 的两边,AB BC 的长分别为3,8,C ,D 在y 轴上,E 是AD 的中点,反比例函数()0ky k x=≠的图象经过点E ,与BC 交于点F ,且1CF BE -=. (1)求反比例函数的解析式; (2)在y 轴上找一点P ,使得23CEPABCD SS =矩形,求此时点P 的坐标.16.(2021·湖南中考真题)如图,抛物线22y ax bx =++经过()1,0A -,()4,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的函数表达式;(2)如图2,直线l :3y kx =+经过点A ,点P 为直线l 上的一个动点,且位于x 轴的上方,点Q 为抛物线上的一个动点,当//PQ y 轴时,作QM PQ ⊥,交抛物线于点M (点M 在点Q 的右侧),以PQ ,QM 为邻边构造矩形PQMN ,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D ,在(2)的条件下,当矩形PQMN 的周长取最小值时,抛物线上是否存在点F ,使得CBF =∠DQM ∠若存在,请求出点F 的坐标;若不存在,请说明理由.17.(2021·湖北中考真题)抛物线21y x =-交x 轴于A ,B 两点(A 在B 的左边).(1)ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上. ①如图(1),若点C 的坐标是()0,3,点E 的横坐标是32,直接写出点A ,D 的坐标; ①如图(2),若点D 在抛物线上,且ACDE 的面积是12,求点E 的坐标;(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点,若直线l 与抛物线只有一个公共点,求证FG FH +的值是定值. 18.(2021·湖南中考真题)已知二次函数()20y ax bx c a =++>.(1)若12a =,2b c ==-,求方程20ax bx c ++=的根的判别式的值; (2)如图所示,该二次函数的图像与x 轴交于点()1,0A x 、()2,0B x ,且120x x <<,与y 轴的负半轴交于点C ,点D 在线段OC 上,连接AC 、BD ,满足 ACO ABD ∠=∠,1bc x a-+=. ①求证:AOC DOB ≅;①连接BC ,过点D 作DE BC ⊥于点E ,点()120,F x x -在y 轴的负半轴上,连接AF ,且ACO CAF CBD ∠=∠+∠,求1cx 的值.19.(2021·内蒙古中考真题)如图,在平面直角坐标系中,抛物线24y x x =-+经过坐标原点,与x 轴正半轴交于点A ,点(,)M m n 是抛物线上一动点. (1)如图1,当0m >,0n >,且3n m =时, ①求点M 的坐标: ①若点15,4B y ⎛⎫⎪⎝⎭在该抛物线上,连接OM ,BM ,C 是线段BM 上一动点(点C 与点M ,B 不重合),过点C 作//CD MO ,交x 轴于点D ,线段OD 与MC 是否相等?请说明理由; (2)如图2,该抛物线的对称轴交x 轴于点K ,点7,3E x ⎛⎫⎪⎝⎭在对称轴上,当2m >,0n >,且直线EM 交x 轴的负半轴于点F 时,过点A 作x 轴的垂线,交直线EM 于点N ,G 为y 轴上一点,点G 的坐标为180,5⎛⎫⎪⎝⎭,连接GF .若2EF NF MF +=,求证:射线FE 平分AFG ∠.20.(湖南省永州市2021年中考真题数学试卷)已知关于x 的二次函数21y x bx c =++(实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为1x =,求此二次函数的表达式; (2)若20b c -=,当3b x b -≤≤时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数222y x x m =++,若在(1)的条件下,当01x ≤≤时,总有21y y ≥,求实数m 的最小值.21.(2021·四川中考真题)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于C 点,AC =,3OB OC OA ==.(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P ,使四边形PBAC 的面积最大.求出点P 的坐标(3)在(2)的结论下,点M 为x 轴上一动点,抛物线上是否存在一点Q .使点P 、B 、M 、Q 为顶点的四边形是平行四边形,若存在.请直接写出Q 点的坐标;若不存在,请说明理由.22.(四川省资阳市2021年中考数学试卷)抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,且()()1,0,0,3B C -.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,当:1:2PE BE =时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,使点D 落在点D ¢处,且2DD CD '=,点M 是平移后所得抛物线上位于D ¢左侧的一点,//MN y 轴交直线OD '于点N ,连结CN .当5D N CN '+的值最小时,求MN 的长.23.(2021·黑龙江中考真题)如图,抛物线2y ax bx c =++与x 轴交于除原点O 和点A ,且其顶点B 关于x 轴的对称点坐标为()2,1.(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F ,使得抛物线2y ax bx c =++上的任意一点G 到定点F 的距离与点G 到直线2y =-的距离总相等. ①证明上述结论并求出点F 的坐标;①过点F 的直线l 与抛物线2y ax bx c =++交于,M N 两点.证明:当直线l 绕点F 旋转时,11MF NF+是定值,并求出该定值;(3)点()3,C m 是该抛物线上的一点,在x 轴,y 轴上分别找点,P Q ,使四边形PQBC 周长最小,直接写出,P Q 的坐标.24.(2021·湖北中考真题)在平面直角坐标系中,抛物线()()14y x x n =-+-与x 轴交于点A 和点()(),04B n n ≥-,顶点坐标记为()11,h k .抛物线()222229y x n n n =-+-++的顶点坐标记为()22,h k .(1)写出A 点坐标;(2)求1k ,2k 的值(用含n 的代数式表示); (3)当44n -≤≤时,探究1k 与2k 的大小关系; (4)经过点()229,5M n n+-和点()22,95N n n -的直线与抛物线()()14yx x n =-+-,()222229y x n n n =-+-++的公共点恰好为3个不同点时,求n 的值.25.(2021·山西中考真题)如图,抛物线21262y x x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .(1)求A ,B ,C 三点的坐标并直接写出直线AC ,BC 的函数表达式;(2)点P 是直线AC 下方抛物线上的一个动点,过点P 作BC 的平行线l ,交线段AC 于点D . ①试探究:在直线l 上是否存在点E ,使得以点D ,C ,B ,E 为顶点的四边形为菱形,若存在,求出点E 的坐标;若不存在,请说明理由;①设抛物线的对称轴与直线l 交于点M ,与直线AC 交于点N .当DMN AOC S S =△△时,请直接写出DM 的长.26.(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”. (1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时. ①求c 的取值范围; ①求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.27.(2021·湖南中考真题)如图,在平面直角坐标系xOy 中,平行四边形ABCD 的AB 边与y 轴交于E 点,F 是AD 的中点,B 、C 、D 的坐标分别为()()()2,0,8,0,13,10-.(1)求过B 、E 、C 三点的抛物线的解析式; (2)试判断抛物线的顶点是否在直线EF 上;(3)设过F 与AB 平行的直线交y 轴于Q ,M 是线段EQ 之间的动点,射线BM 与抛物线交于另一点P ,当PBQ △的面积最大时,求P 的坐标.28.(2021·湖南中考真题)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N .(1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由.(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程. (4)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.29.(2021·甘肃中考真题)如图,在平面直角坐标系中,抛物线212y x bx c =++与坐标轴交于()()0,2,4,0A B -两点,直线:28BC y x =-+交y 轴于点C .点D 为直线AB 下方抛物线上一动点,过点D 作x 轴的垂线,垂足为,G DG 分别交直线,BC AB 于点,E F .(1)求抛物线212y x bx c =++的表达式; (2)当12GF =,连接BD ,求BDF 的面积;(3)①H 是y 轴上一点,当四边形BEHF 是矩形时,求点H 的坐标;①在①的条件下,第一象限有一动点P ,满足2PH PC =+,求PHB △周长的最小值.30.(2021·湖南中考真题)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.①设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.31.(2021·江苏中考真题)如图,二次函数()21y x m x m =-++(m 是实数,且10m -<<)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),其对称轴与x 轴交于点C ,已知点D 位于第一象限,且在对称轴上,OD BD ⊥,点E 在x 轴的正半轴上,OC EC =.连接ED 并延长交y 轴于点F ,连接AF . (1)求A 、B 、C 三点的坐标(用数字或含m 的式子表示); (2)已知点Q 在抛物线的对称轴上,当AFQ △的周长的最小值等于125,求m 的值.32.(2021·贵州中考真题)如图,抛物线()2=2+0y ax x c a -≠与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,-3),抛物线的顶点为D . (1)求抛物线的解析式;(2)点P 在抛物线的对称轴上,点Q 在x 轴上,若以点P 、Q 、B 、C 为顶点,BC 为边的四边形为平行四边形,请直接写出点P 、Q 的坐标;(3)已知点M 是x 轴上的动点,过点M 作x 的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与①BCD 相似,若存在,请求出点M 的坐标;若不存在,请说明理由.33.(山东省淄博市2021年中考数学试题)如图,在平面直角坐标系中,抛物线211(0)222m m y m x x -++⋅=->与x 轴交于()()1,0,,0A B m -两点,与y 轴交于点C ,连接BC .(1)若2OC OA =,求抛物线对应的函数表达式;(2)在(1)的条件下,点P 位于直线BC 上方的抛物线上,当PBC 面积最大时,求点P 的坐标; (3)设直线12y x b =+与抛物线交于,B G 两点,问是否存在点E (在抛物线上).点F (在抛物线的对称轴上),使得以,,,B G E F 为顶点的四边形成为矩形?若存在,求出点,E F 的坐标;若不存在,说明理由. 34.(2021·四川中考真题)如图,在平面直角坐标系xOy 中,抛物线()2y a x h k =-+与x 轴相交于O ,A 两点,顶点P 的坐标为()2,1-.点B 为抛物线上一动点,连接,AP AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,ABC OAP ∠=∠,且点C 位于x 轴上方,求点C 的坐标; (3)若点B 的横坐标为t ,90ABC ∠=︒,请用含t 的代数式表示点C 的横坐标,并求出当0t <时,点C 的横坐标的取值范围.35.(2021·湖北中考真题)如图1,已知45RPQ ∠=︒,ABC 中90ACB ∠=︒,动点P 从点A 出发,以的速度在线段AC 上向点C 运动,,PQ PR 分别与射线AB 交于E ,F 两点,且PE AB ⊥,当点P 与点C 重合时停止运动,如图2,设点P 的运动时间为s x ,RPQ ∠与ABC 的重叠部分面积为2cm y ,y 与x 的函数关系由15(0)C x <≤和2()5C x n <≤两段不同的图象组成.(1)填空:①当5s x =时,EF =______cm ; ①sin A =______;(2)求y 与x 的函数关系式,并写出x 的取值范围; (3)当236cm y ≥时,请直接写出....x 的取值范围.36.(2021·湖南中考真题)如图,已知二次函数2y ax bx c =++的图象经过点(2,3)C -且与x 轴交于原点及点(8,0)B .(1)求二次函数的表达式;(2)求顶点A 的坐标及直线AB 的表达式; (3)判断ABO 的形状,试说明理由;(4)若点P 为O 上的动点,且O 的半径为,一动点E 从点A 出发,以每秒2个单位长度的速度沿线段AP 匀速运动到点P ,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B 后停止运动,求点E 的运动时间t 的最小值.37.(2021·黑龙江中考真题)如图,在平面直角坐标系中,AOB ∆的边OA 在x 轴上,OA AB =,且线段OA 的长是方程2450x x --=的根,过点B 作BE x ⊥轴,垂足为E ,4tan 3BAE ∠=,动点M 以每秒1个单位长度的速度,从点A 出发,沿线段AB 向点B 运动,到达点B 停止.过点M 作x 轴的垂线,垂足为D ,以MD 为边作正方形MDCF ,点C 在线段OA 上,设正方形MDCF 与AOB ∆重叠部分的面积为S ,点M 的运动时间为()0t t >秒.(1)求点B 的坐标;(2)求S 关于t 的函数关系式,并写出自变量t 的取值范围;(3)当点F 落在线段OB 上时,坐标平面内是否存在一点P ,使以M A O P 、、、为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.38.(2021·江苏中考真题)在平面直角坐标系中,O 为坐标原点,直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,二次函数2y ax 2x c =++的图象过B 、C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交BC 于点F ,交二次函数2y ax 2x c =++的图象于点E .(1)求二次函数的表达式;(2)当以C 、E 、F 为顶点的三角形与ABC 相似时,求线段EF 的长度;(3)已知点N 是y 轴上的点,若点N 、F 关于直线EC 对称,求点N 的坐标.。
初三数学函数几何知识点总结
初三数学函数几何知识点总结本文将从初三数学中的函数和几何两个方面,对一些重点和难点进行总结。
函数1. 基本概念函数是一种特殊的关系,它将一个自变量的集合中的每个元素和一个因变量的集合中的唯一元素相对应。
其中,自变量的集合称为定义域,因变量的集合称为值域。
一般用y=f(x)表示函数f,其中x是自变量,y是因变量。
2. 常见函数•线性函数:y=kx+b,图像为直线•平方函数:y=ax2,图像为开口向上或向下的抛物线•根号函数:$y=\\sqrt{x}$,图像为右开口的半个平面•倒数函数:$y=\\dfrac{1}{x}$,图像为一条过第二象限和第四象限的双曲线3. 函数的性质•奇偶性:当f(−x)=f(x)时,函数f(x)是偶函数;当f(−x)=−f(x)时,函数f(x)是奇函数。
•单调性:若在函数的定义域中,对于任意的x1<x2,都有f(x1)< f(x2)或f(x1)>f(x2),那么称该函数是递增函数和递减函数。
•周期性:若存在正常数T,对于函数的定义域内任意x,都有f(x+ T)=f(x),那么称该函数为周期函数。
4. 函数的应用•函数图像的绘制:画出函数的表格,再根据函数在定义域中的变化情况和与坐标轴的交点,描出函数的图像。
•函数的最值:求函数在定义域上的极值,需要先求出导数,再通过导数的零点判断极值的位置。
对于一些特殊函数,如二次函数,可直接根据函数的开口方向判断最值。
几何1. 基本概念•直线:在平面中经过两点的线段,无限延伸。
•射线:由一个端点和跟这个端点不重合的一个点确定的线段,只向一个方向上延伸。
•线段:两个端点之间的线段,有长度。
•角:用一个端点和两个射线(起始于这个端点)表示的图形,共有四种角度:直角、锐角、钝角和平角。
•三角形:有三条边和三个角的平面图形。
•直角三角形:有一个角为直角的三角形。
•等腰三角形:有两条边相等的三角形。
•等边三角形:三边相等的三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学复习专题11 代数综合题概述:代数综合题是中考题中较难的题目,要想得高分必须做好这类题,•这类题主要以方程或函数为基础进行综合.解题时一般用分析综合法解,认真读题找准突破口,仔细分析各个已知条件,进行转化,发挥条件整体作用进行解题.解题时,•计算不能出差错,思维要宽,考虑问题要全面.典型例题精析例.已知抛物线y=ax 2+bx+c 与y 轴交于点C ,与x 轴交于点A (x 1,O ),B (x 2,0)(x 1<x 2),•顶点M 的纵坐标为-4,若x 1,x 2是方程x 2-2(m-1)x+m 2-7=0的两个根,且x 12+x 22=10.(1)求A 、B 两点的坐标;(2)求抛物线的解析式及点C 的坐标;(3)在抛物线上是否存在点P ,使△PAB 的面积等于四边形ACMB 的面积的2倍?若存在,求出所符合条件的点的坐标;若不存在,请说明理由.分析:(1)求A 、B 两点的坐标,突破口在x 1,x 2,两个未知数需两个方程: 方程122122(1)7x x m x x m +=-⎧⎨=-⎩ 多出一个m 还应再找一个x 12+x 22=10 ③,用配方法处理先算m .由③:(x 1+x 2)2-2x 1x 2=10 ④将①②代入④,得4(m 2-2m+1)-2m 2+14=10,2m 2-8m+8=0,m 2-4m+4=0,m=2.且当m=2时,△=4-4³(-3)>0合题意.将m=2代入①②,得12122,3,x x x x +=⎧⎨=-⎩ x 12-2x 1=3⇒123,1,x x =⎧⎨=-⎩ 或121,3.x x =-⎧⎨=⎩ ∵x 1<x 2(看清条件,一个不漏,全方位思考)∴x 1=-1,x 2=3,∴A (-1,0),B (3,0).(2)求y=ax 2+bx+c 三个未知数,布列三个方程:将A (-1,0),B (3,0)代入解析式,•再由顶点纵坐标为-4,可得:设y=a (x-3)(x+1)(两点式)且顶点为M (1,-4),代入上式得-4=a (1-3)(1+1)a=1.∴y=(x-3)(x+1)=x 2-2x-3.令x=0得y=-3,∴C (0,-3).(3)四边形ACMB 是非规则图形,所以面积需用分割法.S 四边形ACMB =S △AOC +S 梯形OCMN +S △NBM①②=12AO²OC+12(OC+MN)²ON+12NB²MN=12³1³3+12(3+4)³1+12³2³4=9.用分析法:假设存在P(x0,y0)使得S△PAB=2S四边形ACMB=18,即12AB│y0│=18,12³4│y0│=18,y0=±9.将y0=9代入y=x2-2x-3,得x1=1-13,x2=1+13,将y0=-9代入y=x2-2x-3得△<0无实数根,∴P1(1-13,9),P2(1+13,9),∴存在符合条件的点P1,P2.中考样题训练1.已知抛物线y=x2+(m-4)x+2m+4与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1<x2,x1+2x2=0,若点A关于y轴的对称点是D.(1)求过点C、B、D的抛物线的解析式;(2)若P是(1)所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且△HBD 和△CBD的积相等,求直线PH的解析式.2.如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A →B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.•设点Q运动的时间t秒(0≤t≤10),直线PM与QN截平行四边形ABCD•所得图形的面积为Scm2.①求S关于t的函数关系式;②(附加题)求S 的最大值.C MA BEDP3.矩形OABC在直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,3),直线y=34x与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D、A两点,试确定此抛物线的表达式;(3)P为x轴上方,(2)中抛物线上一点,求△POA面积的最大值;(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.4.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(•-1,0)、B(3,0)、C(0,3)三点,其顶点为D.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2b a-,244ac ba-).(1)求:经过A、B、C三点的抛物线的解析式;(2)求四边形ABDC的面积;(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.考前热身训练1.已知一抛物线经过O(0,0),B(1,1)两点,如图,且二次项系数为-1a(a>0).(1)求该抛物线的解析式(系数用含a的代数式表示);(2)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),• 求M,N的坐标(用含a的代数式表示);(3)在(2)的条件下,当a在什么范围内取值时,ON+BN的值为常数?当a在什么范围内取值时,ON-OM的值也为常数?ABx yO2.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨或乙种货物15吨,每节B型车厢最多可装甲种货物25吨或乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省?最少运费多少元?3.已知抛物线y=12x2-x+k与x轴有两个不同的交点.(1)求k的取值范围;(2)设抛物线与x轴交于A、B两点,且点A在原点的左侧,抛物线与y轴交于点C,若OB=2.OC,求抛物线的解析式和顶点D的坐标;(3)在(2)的条件下,抛物线上是否存在点P(点D除外),使得以A、B、P•三点为顶点的三角形与△ABD相似?如果存在,求出P点坐标;如果不存在,请说明理由.4.在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素.据临床观察:如果成人按规定的剂量注射这种抗生素,注射药物后每毫升血液中的含药量y(微克)与时间t(小时)之间的关系近似地满足如图所示的折线.(1)写出注射药液后每毫升血液中含药量y与时间t•之间的函数关系式及自变量取值范围;(2)据临床观察:每毫克血液中含药量不少于4微克时,控制“非典”病情是有效的/如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?(3)假若某病人一天中第一次注射药液是早上6点钟,问怎样安排此人从6:00•~20:00注射药液的时间,才能使病人的治疗效果最好?答案:中考样题看台1.(1)由12121220424x x x x m x x m +=⎧⎪+=-⎨⎪=--⎩ △=(m-4)2+4(2m+4)=m 2+32>0得m 1=2,m 2=7(舍去),x 1=-4,x 2=2得A 、B 、C 坐标为:A (-4,0),B (2,0),C (0,8),所求抛物线的解析式为:y=x 2-6x+8(2)∵y=x 2-6x+8=(x-3)2-1,∴顶点P (3,-1),设点H 的坐标为(x 0,y 0),•∵△BCD•与△HBD 的面积相等,∴│y 0│=8,∵点H 只能在x 轴上方,故y 0=8,求得H (6,8),直线PH 解析式为y=3x-10.2.(1)当点P 运动2秒时,AB=2cm ,由∠=60°,知AE=1,PE=3,∴S △APE =32(cm )2. (2)①当0≤t ≤6时,点P 与点Q 都在AB 上运动,设PM 与AD 交于点G ,ON 与AD 交于点F ,则AQ=t ,AF=2t ,QF=32t ,AP=t+2 AG=1+2t ,BG=+32t . ∴此时两平行线截平行四边形ABCD 的面积为S=32t+32. 当6≤t ≤8时,点P 在BC 上运动,点Q 仍在AB 上运动, 设PM 与DC 交于点G ,QN 与AD 交于点F ,则AQ=t ,AF=2t ,DF=4-2t . QF=32t ,BP=t-6,CP=10-t , PG=(10-t )3.而BD=43,故此时两平行线截平行四边形ABCD 的面积为S=538t 2+103-343. 当8≤t ≤10时,点P 和点Q 都在BC 上运动,设PM 与DC 交于点G .QN 与DC 交于点F ,则CQ=20-2t ,QF=(20-2t )3,CP=10-t ,PG=(10-t )3.∴此时两平行线截平行四边形ABCD 的面积为S=332t--303t +1503,故S 关于t 的函数关系式为 S=2233(06),2253103343(68),8333031503(810).2t t t t t t t t ⎧+≤≤⎪⎪⎪⎪+-≤≤⎨⎪⎪-+≤≤⎪⎪⎩②(附加题)当0≤t ≤6,S 的最大值为732; 当6≤t ≤8时,S 的最大值为63;当8≤t•≤10时,S 的最大值为63; 所以当t=8时,S 有最大值为63.3.(1)由题知,直线y=34x 与BC 交于点D (x ,3), 把y=3代入y=34x 中得,x=4,∴D (4,3). (2)∵抛物线y=ax 2+bx 经过D (4,3),A (6,0)两点.把x=4,y=3;x=6,y=0,分别代入y=ax 2+bx 中得,1643,3660.a b a b +=⎧⎨+=⎩ 解之得3,89,4a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的解析式为:y=-38x 2+94x .(3)因△POA 底边OA=6,∴S △POA 有最大值时,点P 须位于抛物线的最高点.∵a=-38<0,∴抛物线顶点恰为最高点. ∵244ac b a -=2394()0()8434()8⨯--⨯- =278. ∴S 的最大值=12³6³278=818. (4)抛物线的对称轴与x 轴的交点Q 1,符合条件,∵CB ∥OA ,∠Q 1OM=∠CDO∴Rt △Q 1OM ∽Rt △CDO ,x=-2b a=3,该点坐标为Q 1(3,0).过点O作OD的垂线交抛物线的对称轴于点Q2,∵对称轴平行于y轴∴∠Q2MO=∠DOC,∴Rt△Q2OM∽Rt△CDO.在Rt△Q2Q1O与Rt△DCO中,Q1O=CO=3,∠Q2=∠ODC,∴RtQ2Q1O≌Rt△DCO,∴CD=Q1Q2=4.∵点Q2位于第四象限,∴Q2(3,-4).因此,符合条件的点有两个,分别是Q1(3,0),Q2(3,-4)4.(1)由题意,得9303a b ca b cc-+=⎧⎪++=⎨⎪=⎩解之,得123abc=-⎧⎪=⎨⎪=⎩∴y=-x2+2x+3(2)由(1)可知y=-(x)2+4 ∴顶点坐标为D(1,4)设其对称轴与x轴的交点为E∵S△AOC=12│AO│²│OC│=12³1³3=32S梯形OEDC=12(│DC│+│DE│)³│OE│=12(3+4)³1=72S△DEB=12│EB│²│DE│=12³2³4=4S四边形ABDC=S△AOC+S梯形OEDC+S△DEB=32+72+4=9(3)△DCB与△AOC相似.证明:过点D作y轴的垂线,垂足为F∵D(1,4),∴Rt△DFC中,DC=2,且∠DCF=450167 在Rt△BOC中,∠OCB=45°,BC=32∴∠AOC=∠DCB=90°,DC BCAO CO==21∴△DCB∽△AOC 考前热身训练1.(1)y=-1ax2+(1+1a)x (2)M(a,1),N(a+1,0)(3)∵ON=a+1,BM=│a-1│∴ON+BM=a+1+│a-1│=2(01) 2(1)aa a<≤⎧⎨>⎩∴当0<a≤1时,ON+BM为常数又∵ON-BM=a+1-│1-a│=2(01) 2(1)a aa<<⎧⎨≥⎩∴当a≥1时,ON-BM为常数2.(1)设用A型车厢x节,则B型车厢(40-x)节,总运费为y万元,则y=0.6x+0.8(40-x)=-0.2x+32.(2)由题知3525(40)1240, 1535(40)880, x xx x+-≥⎧⎨+-≥⎩解之得24≤x≤26.∵x取整数,∴x=24,25,26应有三种装车方案:①A型24节,B型16节;②A型25节,B型15节;③A型26节,B型14节.(3)由y=-0.2x+32知,x越大,y越小,故当x=26时,运费最省,这时,y=-0.2•³26+32=26.8(万元).3.解:(1)△=(-1)2-4²12k>01-2k>0,k<1 2(2)令y=0有0=12x2-x+k,x2-2x+2k=0,x=2482k±-=1±12k-∵点A在原点的左侧,∴B(1+12k-,0)又令x=0有y=k,∴C(0,k).由OB=2OC得1+12k-=│2k│,由x1x2<0得k<0 ∴1-2k=(1+2k)2,∴k=-32,y=12x2-x-32.∴D(1,-2).(3)令y=0有12x2-x-32=0,x2-2x-3=0,(x-3)(x+1)=0,∴x1=3,x2=-1.∴A(-1,0),B(3,0).由抛物线对称性知△ABD为等腰三角形.∵P点在抛物线上(D点除外),由抛物线的特殊性不可能存在这样的P点.4.(1)当0≤t≤1时,设y=k1t,则k1=6,∴y=6t.当0<t≤10时,设y=k2t+b,∴226,010,k b k b =+⎧⎨=+⎩ 解得22,320,3k b ⎧=-⎪⎪⎨⎪=⎪⎩∴y=-23t+203. ∴y=6,(01)220.(110)33t t t t ≤≤⎧⎪⎨-+<≤⎪⎩ (2)当0≤t ≤1时,令y=4,即6t=4.∴t=23(或6t ≥4,t ≥23). 当0<t ≤10时,令y=4,即-23t+203=4, ∴t=4(或-23t+203≥4,∴t ≤4). ∴注射药液23小时后开始有效,有效时间为4-23=103(小时). (3)设第二次注射药液的时间是在第一次注射药液t 1小时后,则-23t 1+203=4, t 1=4(小时). ∴第二次注射药液为10:00.设第三次注射药液的时间在第一次注射药液t 2小时后,则-23t+203-23(t 2-4)+203=4. 解得t 2=9(小时).∴第三次注射药液的时间为15:00.设第四次注射药液在第一次注射药液t 3小时后,则-23(t 3-4)+203-23(t 3-9)+203=4 解得t 3=1312(小时) ∴第四次注射药液时间是19:30.。