2019届高考数学大一轮复习第一章集合与常用逻辑用语第3讲全称量词与存在量词逻辑联结词“且”“或”“非”
近年届高考数学大一轮复习第一章集合与常用逻辑用语第3讲全称量词与存在量词、逻辑联结词配套练习文北师

2019届高考数学大一轮复习第一章集合与常用逻辑用语第3讲全称量词与存在量词、逻辑联结词配套练习文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学大一轮复习第一章集合与常用逻辑用语第3讲全称量词与存在量词、逻辑联结词配套练习文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学大一轮复习第一章集合与常用逻辑用语第3讲全称量词与存在量词、逻辑联结词配套练习文北师大版的全部内容。
第3讲全称量词与存在量词、逻辑联结词“且”“或”“非”一、选择题1.已知命题p:所有指数函数都是单调函数,则綈p为( )A.所有的指数函数都不是单调函数B.所有的单调函数都不是指数函数C.存在一个指数函数,它不是单调函数D.存在一个单调函数,它不是指数函数解析命题p:所有指数函数都是单调函数,则綈p为:存在一个指数函数,它不是单调函数,故选C。
答案C2.设命题p:函数y=sin 2x的最小正周期为错误!;命题q:函数y=cos x 的图像关于直线x=错误!对称.则下列判断正确的是( )A.p为真 B.綈p为假 C.p且q为假 D.p且q为真解析p为假命题,q为假命题,∴p且q为假.答案C3.2016年巴西里约奥运会,在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳",则命题“至少有一位队员落地没有站稳"可表示为( )A.(綈p)或(綈q) B.p或(綈q)C.(綈p)且(綈q) D.p或q解析命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p)或(綈q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳"的否定,即“p且q"的否定.选A.答案A4.(2017·西安调研)已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是() A.p且(綈q)B.(綈p)且qC.(綈p)且(綈q)D.p且q解析由题意知命题p是真命题,命题q是假命题,故綈p是假命题,綈q是真命题,由含有逻辑联结词的命题的真值表可知p且(綈q)是真命题.答案A5.下列命题中,真命题是( ) A.存在x0∈R,e x0≤0B.任意x∈R,2x〉x2C.a+b=0的充要条件是错误!=-1D.“a〉1,b〉1"是“ab〉1”的充分条件解析因为y=e x>0,x∈R恒成立,所以A不正确.因为当x=-5时,2-5〈(-5)2,所以B不正确.“错误!=-1”是“a+b=0"的充分不必要条件,C不正确.当a>1,b〉1时,显然ab>1,D正确.答案D6.命题p:任意x∈R,ax2+ax+1≥0,若綈p是真命题,则实数a的取值范围是( )A.(0,4] B.[0,4]C.(-∞,0]∪[4,+∞) D.(-∞,0)∪(4,+∞)解析因为命题p:任意x∈R,ax2+ax+1≥0,所以命题綈p:存在x0∈R,ax错误!+ax0+1〈0,则a<0或{a>0,Δ=a2-4a>0解得a<0或a〉4.答案D7.(2016·咸阳模拟)已知命题p:存在α∈R,cos(π-α)=cos α;命题q:任意x∈R,x2+1>0.则下面结论正确的是() A.p且q是真命题B.p且q是假命题C.綈p是真命题D.綈q是真命题解析对于p:取α=错误!,则cos(π-α)=cos α,所以命题p为真命题;对于命题q:∵x2≥0,∴x2+1〉0,所以q为真命题.由此可得p且q是真命题.答案A8.(2017·江西赣中南五校联考)已知命题p:存在x∈R,(m+1)(x2+1)≤0,命题q:任意x∈R,x2+mx+1>0恒成立.若p且q为假命题,则实数m的取值范围为() A.[2,+∞) B.(-∞,-2]∪(-1,+∞)C.(-∞,-2]∪[2,+∞) D.(-1,2]解析由命题p:存在x∈R,(m+1)(x2+1)≤0可得m≤-1;由命题q:任意x∈R,x2+mx+1〉0恒成立,可得-2<m<2,若命题p,q均为真命题,则此时-2〈m≤-1。
2019届高考数学大一轮复习讲义:第一章 集合与常用逻辑用语 第3讲 全称量词与存在量词、逻辑联结词.3

§1.3 简单的逻辑联结词、全称量词与存在量词最新考纲考情考向分析1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词和存在量词的意义.3.能正确地对含有一个量词的命题进行否定.逻辑联结词和含有一个量词的命题的否定是高考的重点;命题的真假判断常以函数、不等式为载体,考查学生的推理判断能力,题型为选择、填空题,低档难度.1.全称量词与存在量词(1)常见的全称量词有“所有”“每一个”“任何”“任意一条”“一切”等.(2)常见的存在量词有“有些”“至少有一个”“有一个”“存在”等.2.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.3.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p 或q 的否定:非p 且非q ;p 且q 的否定:非p 或非q .4.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:p q 綈p 綈q p 或q p 且q 真真假假真真真假假真真假假真真假真假假假真真假假知识拓展1.含有逻辑联结词的命题真假的判断规律(1)p或q:p,q中有一个为真,则p或q为真,即有真为真.(2)p且q:p,q中有一个为假,则p且q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.( √ )(2)命题p和綈p不可能都是真命题.( √ )(3)若命题p,q中至少有一个是真命题,则p或q是真命题.( √ )(4)“全等三角形的面积相等”是特称命题.( × )(5)命题綈(p且q)是假命题,则命题p,q中至少有一个是真命题.( × )题组二 教材改编2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p或q,p且q中真命题的个数为( ) A.1 B.2 C.3 D.4答案 B解析 p和q显然都是真命题,所以綈p,綈q都是假命题,p或q,p且q都是真命题.3.命题“正方形都是矩形”的否定是______________________________.答案 存在一个正方形,这个正方形不是矩形题组三 易错自纠4.已知命题p ,q ,“綈p 为真”是“p 且q 为假”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 由綈p 为真知,p 为假,可得p 且q 为假;反之,若p 且q 为假,则可能是p 真q 假,从而綈p 为假,故“綈p 为真”是“p 且q 为假”的充分不必要条件,故选A.5.下列命题中,为真命题的是( )A .任意x ∈R ,-x 2-1<0B .存在x ∈R ,x 2+x =-1C .任意x ∈R ,x 2-x +>014D .存在x ∈R ,x 2+2x +2<0答案 A6.若“任意x ∈,tan x ≤m ”是真命题,则实数m 的最小值为________.[0,π4]答案 1解析 ∵函数y =tan x 在上是增函数,[0,π4]∴y max =tan =1.π4依题意知,m ≥y max ,即m ≥1.∴m 的最小值为1.题型一 含有逻辑联结词的命题的真假判断1.设命题p :函数y =log 2(x 2-2x )的单调增区间是[1,+∞),命题q :函数y =的值13x +1域为(0,1),则下列命题是真命题的为( )A .p 且q B .p 或q C .p 且(綈q )D .綈q答案 B解析 函数y =log 2(x 2-2x )的递增区间是(2,+∞),所以命题p 为假命题.由3x >0,得0<<1,13x +1所以函数y =的值域为(0,1),13x +1故命题q 为真命题.所以p 且q 为假命题,p 或q 为真命题,p 且(綈q )为假命题,綈q 为假命题.故选B.2.(2017·山东)已知命题p :任意x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p 且q B .p 且(綈q )C .(綈p )且q D .(綈p )且(綈q )答案 B解析 ∵x >0,∴x +1>1,∴ln(x +1)>ln 1=0.∴命题p 为真命题,∴綈p 为假命题.∵a >b ,取a =1,b =-2,而12=1,(-2)2=4,此时a 2<b 2,∴命题q 为假命题,∴綈q 为真命题.∴p 且q 为假命题,p 且(綈q )为真命题,(綈p )且q 为假命题,(綈p )且(綈q )为假命题.故选B.3.已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a ∥c .对以上两个命题,有以下命题:①p 且q 为真;②p 或q 为假;③p 或q 为真;④(綈p )或(綈q )为假.其中,正确的是________.(填序号)答案 ②解析 命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.思维升华“p 或q ”“p 且q ”“綈p ”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p ,q 的真假;(3)确定“p 且q ”“p 或q ”“綈p ”等形式命题的真假.题型二 含有一个量词的命题命题点1 全称命题、特称命题的真假典例 (2017·韶关南雄二模)下列命题中的假命题是( )A .任意x ∈R,2x -1>0 B .任意x ∈N +,(x -1)2>0C .存在x ∈R ,lg x <1 D .存在x ∈R ,tan x =2答案 B解析 当x ∈N +时,x -1∈N ,可得(x -1)2≥0,当且仅当x =1时取等号,故B 不正确;易知A ,C ,D 正确,故选B.命题点2 含一个量词的命题的否定典例 (1)命题“任意x ∈R ,x >0”的否定是( )(13)A .存在x ∈R ,x <0B .任意x ∈R ,x ≤0(13)(13)C .任意x ∈R ,x<0D .存在x ∈R ,x≤0(13)(13)答案 D解析 全称命题的否定是特称命题,“>”的否定是“≤”.(2)(2017·河北五个一名校联考)命题“存在x ∈R,1<f (x )≤2”的否定形式是( )A .任意x ∈R,1<f (x )≤2B .存在x ∈R,1<f (x )≤2C .存在x ∈R ,f (x )≤1或f (x )>2D .任意x ∈R ,f (x )≤1或f (x )>2答案 D解析 特称命题的否定是全称命题,原命题的否定形式为“任意x ∈R ,f (x )≤1或f (x )>2”.思维升华 (1)判定全称命题“任意x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x ,使p (x )成立.(2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词;②对原命题的结论进行否定.跟踪训练 (1)下列命题中的真命题是( )A .存在x ∈R ,使得sin x +cos x =32B .任意x ∈(0,+∞),e x >x +1C .存在x ∈(-∞,0),2x <3x D .任意x ∈(0,π),sin x >cos x 答案 B解析 ∵sin x +cosx =sin≤<,故A 错误;设f (x )=e x-x -1,则f ′(x )2(x +π4)232=e x -1,∴f (x )在(0,+∞)上为增函数,又f (0)=0,∴任意x ∈(0,+∞),f (x )>0,即e x >x +1,故B 正确;当x <0时,y =2x 的图像在y =3x 的图像上方,故C 错误;∵当x ∈时,sin x <cos x ,(0,π4)故D 错误.故选B.(2)(2017·福州质检)已知命题p :“存在x ∈R ,e x -x -1≤0”,则綈p 为( )A .存在x ∈R ,e x -x -1≥0B .存在x ∈R ,e x -x -1>0C .任意x ∈R ,e x -x -1>0D .任意x ∈R ,e x -x -1≥0答案 C解析 根据全称命题与特称命题的否定关系,可得綈p 为“任意x ∈R ,e x -x -1>0”,故选C.题型三 含参命题中参数的取值范围典例(1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p 且q 是真命题,则实数a 的取值范围是________________.答案 [-12,-4]∪[4,+∞)解析 若命题p 是真命题,则Δ=a 2-16≥0,即a ≤-4或a ≥4;若命题q 是真命题,则-≤3,即a ≥-12.a4∵p 且q 是真命题,∴p ,q 均为真,∴a 的取值范围是[-12,-4]∪[4,+∞).(2)已知f (x )=ln(x 2+1),g (x )=x -m ,若对任意x 1∈[0,3],存在x 2∈[1,2],使得f (x 1)(12)≥g (x 2),则实数m 的取值范围是________________.答案 [14,+∞)解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=-m ,由f (x )min ≥g (x )min ,14得0≥-m ,所以m ≥.1414引申探究本例(2)中,若将“存在x 2∈[1,2]”改为“任意x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________.答案 [12,+∞)解析 当x ∈[1,2]时,g (x )max =g (1)=-m ,12由f (x )min ≥g (x )max ,得0≥-m ,12∴m ≥.12思维升华(1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练(1)已知命题“存在x ∈R ,使2x 2+(a -1)x +≤0”是假命题,则实数a 的取值12范围是( )A .(-∞,-1) B .(-1,3)C .(-3,+∞) D .(-3,1)答案 B解析 原命题的否定为任意x ∈R,2x 2+(a -1)x +>0,由题意知,其为真命题,即12Δ=(a -1)2-4×2×<0,则-2<a -1<2,即-1<a <3.12(2)已知p :存在x ∈R ,mx 2+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围是( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]答案 A解析 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题,得Error!即m ≥2.常用逻辑用语考点分析有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系.一、命题的真假判断典例 (1)(2017·佛山模拟)已知a ,b 都是实数,那么“>”是“ln a >ln b ”的( )a b A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件(2)(2018届全国名校大联考)已知命题p :任意x ∈R ,3x <5x ;命题q :存在x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p 且q B .(綈p )且q C .p 且(綈q ) D .(綈p )且(綈q )解析 (1)由lna >lnb ⇒a >b >0⇒>,故必要性成立.当a =1,b =0时,满足a b >,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.a b (2)若x =0,则30=50=1,∴p 是假命题,∵方程x 3=1-x 2有解,∴q 是真命题,∴(綈p )且q 是真命题.答案 (1)B (2)B 二、充要条件的判断典例(1)(2017·广东广雅中学、江西南昌二中联考)已知命题甲是“Error!”,命题乙是“{x |log 3(2x +1)≤0}”,则下列说法正确的是( )A .甲是乙的充分条件,但不是乙的必要条件B .甲是乙的必要条件,但不是乙的充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,又不是乙的必要条件(2)(2017·湖北七市联考)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -y +3=0的距离为1,则p 是q 的( )3A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析 (1)≥0等价于x (x +1)(x -1)≥0且x ≠1,x 2+xx -1解得-1≤x ≤0或x >1.由log 3(2x +1)≤0,得0<2x +1≤1,得-<x ≤0.12∴甲是乙的必要条件,但不是乙的充分条件.故选B.(2)圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -y +3=0的距离d ==2.3|1-3×0+3|2当r ∈(0,1)时,直线与圆相离,圆C 上没有到直线的距离为1的点;当r =1时,直线与圆相离,圆C 上只有1个点到直线的距离为1;当r ∈(1,2)时,直线与圆相离,圆C 上有2个点到直线的距离为1;当r =2时,直线与圆相切,圆C 上有2个点到直线的距离为1;当r ∈(2,3)时,直线与圆相交,圆C 上有2个点到直线的距离为1.综上,当r ∈(0,3)时,圆C 上至多有2个点到直线的距离为1,又由圆C 上至多有2个点到直线的距离为1,可得0<r <3,故p 是q 的充要条件,故选C.答案 (1)B (2)C 三、求参数的取值范围典例(1)已知命题p :任意x ∈[0,1],a ≥e x ,命题q :存在x ∈R ,x 2+4x +a =0,若命题“p 且q ”是真命题,则实数a 的取值范围是__________.(2)已知函数f (x )=x +,g (x )=2x +a ,若任意x 1∈,存在x 2∈[2,3]使得f (x 1)≥g (x 2),4x [12,3]则实数a 的取值范围是________.解析 (1)命题“p 且q ”是真命题,p 和q 均是真命题.当p 是真命题时,a ≥(e x )max =e ;当q 为真命题时,Δ=16-4a ≥0,a ≤4,所以a ∈[e,4].(2)∵x ∈,∴f (x )≥2=4,当且仅当x =2时,f (x )min =4,当x ∈[2,3]时,g (x )[12,3]x ·4x min =22+a =4+a ,依题意知f (x )min ≥g (x )min ,即4≥a +4,∴a ≤0.答案 (1)[e,4] (2)(-∞,0]1.已知命题p :“x >3”是“x 2>9”的充要条件,命题q :“a 2>b 2”是“a >b ”的充要条件,则下列判断正确的是( )A .p 或q 为真B .p 且q 为真C .p 真q 假D .p 或q 为假答案 D解析 ∵p 假,q 假,∴p 或q 为假.2.设命题p :函数y =sin 2x 的最小正周期为;命题q :函数y =cos x 的图像关于直线x =π2对称,则下列判断正确的是( )π2A .p 为真B .綈q 为假C .p 且q 为假D .p 或q 为真答案 C解析 函数y =sin 2x 的最小正周期为=π,故命题p 为假命题;x =不是y =cos x 的对2π2π2称轴,故命题q 为假命题,故p 且q 为假.故选C.3.(2017·唐山一模)已知命题p :存在x ∈N ,x 3<x 2;命题q :任意a ∈(0,1)∪(1,+∞),函数f (x )=log a (x -1)的图像过点(2,0),则下列判断正确的是( )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真答案 A解析 对任意x ∈N ,x 3≥x 2,∴p 假,又当x =2时,f (2)=log a 1=0,∴f (x )的图像过点(2,0),∴q 真.4.(2017·豫西五校联考)若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( )A .任意x ∈R ,f (-x )≠f (x )B .任意x ∈R ,f (-x )=-f (x )C .存在x ∈R ,f (-x )≠f (x )D .存在x ∈R ,f (-x )=-f (x )答案 C解析 由题意知任意x ∈R ,f (-x )=f (x )是假命题,则其否定为真命题,存在x ∈R ,f (-x )≠f (x )是真命题,故选C.5.(2017·安庆二模)设命题p :存在x ∈(0,+∞),x +>3;命题q :任意x ∈(2,+∞),1x x 2>2x ,则下列命题为真的是( )A .p 且(綈q )B .(綈p )且qC .p 且qD .(綈p )或q 答案 A解析 对于命题p ,当x 0=4时,x 0+=>3,故命题p 为真命题;对于命题q ,当1x 0174x =4时,24=42=16,即存在x ∈(2,+∞),使得2x =x 2成立,故命题q 为假命题,所以p 且(綈q )为真命题,故选A.6.已知命题p :存在α∈R ,cos(π-α)=cos α;命题q :任意x ∈R ,x 2+1>0,则下列结论正确的是( )A .p 且q 是真命题B .p 且q 是假命题C .綈p 是真命题D .綈q 是真命题答案 A解析 对于p :取α=,则cos(π-α)=cos α,π2所以命题p 是真命题;对于命题q :因为x 2≥0,所以x 2+1>0,所以q 是真命题.由此可得p 且q 是真命题.7.下列命题中,真命题是( )A .存在x ∈R ,e x ≤0B .任意x ∈R,2x >x 2C .a +b =0的充要条件是=-1a b D .“a >1,b >1”是“ab >1”的充分条件答案 D解析 因为y =e x >0,x ∈R 恒成立,所以A 不正确;因为当x =-5时,2-5<(-5)2,所以B 不正确;“=-1”是“a +b =0”的充分不必要条件,C 不正确;a b 当a >1,b >1时,显然ab >1,D 正确.8.命题p :任意x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是()A .(0,4] B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)答案 D解析 因为命题p :任意x ∈R ,ax 2+ax +1≥0,所以綈p :存在x ∈R ,ax 2+ax +1<0,则a <0或Error!解得a <0或a >4.9.命题“存在n ∈N ,n 2>2n ”的否定是________________.答案 任意n ∈N ,n 2≤2n10.已知函数f (x )的定义域为(a ,b ),若“存在x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________.答案 0解析 若“存在x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则“任意x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=f (0)=0.11.以下四个命题:①任意x ∈R ,x 2-3x +2>0恒成立;②存在x ∈Q ,x 2=2;③存在x ∈R ,x 2+1=0;④任意x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.答案 0解析 ∵x 2-3x +2=0的判别式Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题;当且仅当x =±时,x 2=2,2∴不存在x ∈Q ,使得x 2=2,∴②为假命题;对任意x ∈R ,x 2+1≠0,∴③为假命题;4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0,即当x =1时,4x 2=2x -1+3x 2成立,∴④为假命题.∴①②③④均为假命题.故真命题的个数为0.12.已知命题“任意x ∈R ,x 2-5x +a >0”的否定为假命题,则实数a 的取值范围是152____________.答案 (56,+∞)解析 由“任意x ∈R ,x 2-5x +a >0”的否定为假命题,可知原命题必为真命题,即不152等式x 2-5x +a >0对任意实数x 恒成立.设f (x )=x 2-5x +a ,则其图像恒在x 轴的上方,152152故Δ=25-4×a <0,152解得a >,即实数a 的取值范围为.56(56,+∞)13.已知命题p :-4<x -a <4,命题q :(x -2)(3-x )>0,若綈p 是綈q 的充分不必要条件,则实数a 的取值范围是______.答案 [-1,6]解析 p :-4<x -a <4等价于a -4<x <a +4;q :(x -2)(3-x )>0等价于2<x <3.又綈p 是綈q 的充分不必要条件,即q 是p 的充分不必要条件,所以Error!或Error!解得-1≤a ≤6.14.下列结论:①若命题p :存在x ∈R ,tan x =1;命题q :任意x ∈R ,x 2-x +1>0,则命题“p 且(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是=-3;a b ③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p 且(綈q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确,所以正确结论的序号为①③.15.已知命题p :存在x ∈R ,e x -mx =0,命题q :任意x ∈R ,x 2+mx +1≥0,若p 或(綈q )为假命题,则实数m 的取值范围是________.答案 [0,2]解析 若p 或(綈q )为假命题,则p 假q 真.由e x -mx =0,可得m =,x ≠0,e x x 设f (x )=,x ≠0,则e x xf ′(x )==,x e x -e xx 2(x -1)e x x 2当x >1时,f ′(x )>0,函数f (x )=在(1,+∞)上是递增函数;当0<x <1或x <0时,f ′(x )e x x <0,函数f (x )=在(0,1)和(-∞,0)上是递减函数,所以当x =1时,函数取得极小值f (1)e x x =e ,所以函数f (x )=的值域是(-∞,0)∪[e ,+∞),由p 是假命题,可得0≤m <e.e x x 当命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p 或(綈q )为假命题时,m 的取值范围是0≤m ≤2.16.已知函数f (x )=(x ≥2),g (x )=a x (a >1,x ≥2).x 2-x +1x -1(1)若存在x ∈[2,+∞),使f (x )=m 成立,则实数m 的取值范围为________________;(2)若任意x 1∈[2,+∞),存在x 2∈[2,+∞),使得f (x 1)=g (x 2),则实数a 的取值范围为_______________.答案 (1)[3,+∞) (2)(1,]3解析 (1)因为f (x )==x +=x -1++1≥2+1=3,当且仅当x =2时等号x 2-x +1x -11x -11x -1成立,所以若存在x ∈[2,+∞),使f (x )=m 成立,则实数m 的取值范围为[3,+∞).(2)因为当x ≥2时,f (x )≥3,g (x )≥a 2,若任意x 1∈[2,+∞),存在x 2∈[2,+∞),使得f (x 1)=g (x 2),则Error! 解得a ∈(1,].3。
全国通用近年高考数学大一轮复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词、全称量词与存在量词优

(全国通用版)2019版高考数学大一轮复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词、全称量词与存在量词优选学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学大一轮复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词、全称量词与存在量词优选学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学大一轮复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词、全称量词与存在量词优选学案的全部内容。
第3讲简单的逻辑联结词、全称量词与存在量词考纲要求考情分析命题趋势1.了解逻辑联结词“或”“且”“非"的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定。
2017·山东卷,52015·湖北卷,32014·安徽卷,22014·辽宁卷,51。
含有逻辑联结词的命题的真假判断,常结合函数、不等式、三角形问题等知识考查.2.全称命题或特称命题的否定.3.常以不等式、函数为载体判断命题真假,或已知命题真假求参数的取值范围。
分值:5分1.简单的逻辑联结词(1)逻辑联结词有“或"“且”“非”.(2)命题p∧q,p∨q,¬p的真假判断p q p∧q p∨q¬p真真__真____真____假__真假__假____真____假__假真__假____真____真__假假__假____假____真__简记为:p∧q中一假则假,全真才真;p∨q中一真则真,全假才假;p与¬p真假性相反.2.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等__∀__存在量词存在一个、至少一个、有些、某些等__∃__3.全称命题和特称命题名称形式全称命题特称命题结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记__∀x∈M,p(x)____∃x0∈M,p(x0)__否定__∃x0∈M__,¬p(x0)__∀x∈M__,¬p(x)1.思维辨析(在括号内打“√”或“×”).(1)命题“5〉6或5>2”是假命题.( ×)(2)若命题p∧q为真,则p为真或q为真.( ×)(3)“长方形的对角线相等”是特称命题.(×)(4)命题“菱形的对角线相等"的否定是“菱形的对角线不相等”.( ×)解析(1)错误.命题p∨q中有一真则p∨q为真.(2)错误.p∧q为真,则p,q同时为真.(3)错误.命题“长方形的对角线相等"可叙述为“任意长方形的对角线相等",是全称命题.(4)错误.“菱形的对角线相等”是全称命题,其否定为“有的菱形的对角线不相等”.2.下列命题中的假命题是( C)A.∃x∈R,lg x=0 B.∃x∈R,tan x=1C.∀x∈R,x3>0 D.∀x∈R,2x〉0解析当x=1时,lg x=0;当x=错误!时,tan x=1,所以A,B项中的命题均为真命题.显然D项中的命题为真命题.当x=0时,x3=0,所以C项中的命题为假命题.故选C.3.已知命题p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若a>b,则错误!<错误!.给出下列四个命题:①p且q;②p或q;③¬p;④¬q。
2019年高考数学一轮复习:集合与常用逻辑用语 简单的逻辑联结词、全称量词与存在量词(含解析)

简单的逻辑联结词、全称量词与存在量词【考点梳理】1.简单的逻辑联结词(1)命题中的“或”“且”“非”叫做逻辑联结词. (2)命题p ∧q ,p ∨q ,⌝p 的真假判断2.全称量词与存在量词(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示.(2)全称命题:含有全称量词的命题,叫做全称命题.全称命题“对M 中任意一个x ,有p (x )成立”简记为∀x ∈M ,p (x ).(3)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用符号“∃”表示.(4)特称命题:含有存在量词的命题,叫做特称命题.特称命题“存在M 中的一个元素x 0,使p (x 0)成立”,简记为∃x 0∈M ,p (x 0).3.含有一个量词的命题的否定【考点突破】考点一、含有逻辑联结词的命题的真假判断【例1】(1)已知命题p :若x >y ,则-x <-y ;命题q :若1x >1y,则x <y .在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④(2)设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x,则下列命题为真的是( )A .p ∧(⌝q )B .(⌝p )∧qC .p ∧qD .(⌝p )∨q[答案] (1)C (2)A[解析] (1) 由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p ∧q 为假命题;②p ∨q 为真命题;③⌝q 为真命题,则p ∧(⌝q )为真命题;④⌝p 为假命题,则(⌝p )∨q 为假命题.(2) 对于命题p ,当x 0=4时,x 0+1x 0=174>3,故命题p 为真命题;对于命题q ,当x =4时,24=42=16,即∃x 0∈(2,+∞),使得2x 0=x 20成立,故命题q 为假命题,所以p ∧(⌝q )为真命题,故选A.【类题通法】1.判断含有逻辑联结词命题真假的步骤2.p 且q 形式是“一假必假,全真才真”,p 或q 形式是“一真必真,全假才假”,非p 则是“与p 的真假相反”.【对点训练】1.已知命题p :a 2≥0(a ∈R),命题q :函数f (x )=x 2-x 在区间[0,+∞)上单调递增,则下列命题:①p ∨q ;②p ∧q ;③(⌝p )∧(⌝q );④(⌝p )∨q . 其中为假命题的序号为________. [答案] ②③④[解析] 显然命题p 为真命题,⌝p 为假命题.∵f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,∴函数f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上单调递增. ∴命题q 为假命题,⌝q 为真命题.∴p ∨q 为真命题,p ∧q 为假命题,(⌝p )∧(⌝q )为假命题,(⌝p )∨q 为假命题. 2.若命题p :∀x ∈R ,log 2x >0,命题q :∃x 0∈R ,2x 0<0,则下列命题为真命题的是( ) A .p ∨(⌝q ) B .p ∧q C .(⌝p )∧q D .p ∨q[答案] A[解析] 命题p 和命题q 都是假命题,则命题⌝p 和命题⌝q 都是真命题,故选A.考点二、全称命题、特称命题【例2】(1)设命题p :∃n ∈N ,n 2>2n,则⌝p 为( )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n(2)下列命题中,为真命题的是( ) A .∀x ∈(0,+∞),x 2>1 B .∃x 0∈(1,+∞),lg x 0=-x 0 C .∀a ∈(0,+∞),a 2>aD .∃a 0∈(0,+∞),x 2+a 0>1对x ∈R 恒成立 [答案] (1) C (2) D[解析] (1)命题p 的量词“∃”改为“∀”,“n 2>2n ”改为“n 2≤2n”,∴⌝p :∀n ∈N ,n 2≤2n .(2)对于A ,当x =1时不成立;对于B ,当x ∈(1,+∞)时,lg x >0,而-x <0,不成立; 对于C ,当a =1时不成立;对于D ,∃a 0=2∈(0,+∞),x 2+a 0=x 2+2>1对x ∈R 恒成立,正确.故选D. 【类题通法】 1. 命题否定2步操作(1)改写量词:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再改变量词.(2)否定结论:对原命题的结论进行否定.2.真假判断注意特例全称命题与特称命题的真假判断要注意“特例”的作用,说明全称命题为假命题,只需给出一个反例;说明特称命题为真命题,只需找出一个正例.【对点训练】1.命题p :∀x <0,x 2≥2x,则命题⌝p 为( )A .∃x 0<0,x 20≥2x 0 B .∃x 0≥0,x 20<2x 0 C .∃x 0<0,x 20<2x 0 D .∃x 0≥0,x 20≥2x 0[答案] C[解析] 全称命题的否定,应先改写量词,再否定结论,∴⌝p :∃x 0<0,x 20<02x.2.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∀x ∈R ,4x 2>2x -1+3x 2,其中真命题的个数为( )A .0B .1C .2D .4[答案] A[解析] ∵∆=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题;当且仅当x =±2时,x 2=2,∴不存在x ∈Q ,使得x 2=2,∴②为假命题;对∀x ∈R ,x 2+1≠0,∴③为假命题;④中,当x =1时,4x 2=2x -1+3x 2;则④为假命题.考点三、由命题的真假求参数的取值范围【例3】(1)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( )A .(-∞,-1)B .(-1,3)C .(-3,+∞)D .(-3,1)(2)命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立;命题q :函数f (x )=(3-2a )x是增函数,若p 或q 为真,p 且q 为假,则实数a 的取值范围为________.[答案] (1)B (2) (-∞,-2]∪[1,2)[解析] (1)原命题的否定为∀x ∈R,2x 2+(a -1)x +12>0,由题意知,为真命题,则Δ=(a -1)2-4×2×12<0,则-2<a -1<2,则-1<a <3, ∴实数a 的取值范围为(-1,3).(2) p 为真:Δ=4a 2-16<0,解得-2<a <2;q 为真:3-2a >1,解得a <1.∵p 或q 为真,p 且q 为假,∴p ,q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧-2<a <2,a ≥1⇒1≤a <2;当p 假q 真时,⎩⎪⎨⎪⎧a ≥2或a ≤-2,a <1⇒a ≤-2.∴实数a 的取值范围为(-∞,-2]∪[1,2). 【类题通法】 1.由真假求参要转化含量词的命题的真假求参数取值问题,关键是根据量词等价转化相应的命题,一般要将其转化为恒成立或有解问题,进而根据相关知识确定对应条件.2.根据命题的真假求参数的取值范围的步骤(1)求出当命题p ,q 为真命题时所含参数的取值范围; (2)根据复合命题的真假判断命题p ,q 的真假性;(3)根据命题p ,q 的真假情况,利用集合的交集和补集的运算,求解参数的取值范围. 【对点训练】1.若命题“对∀x ∈R ,kx 2-kx -1<0”是真命题,则k 的取值范围是________. [答案] (-4,0][解析] “对∀x ∈R ,kx 2-kx -1<0”是真命题,当k =0时,则有-1<0;当k ≠0时,则有k <0且∆=(-k )2-4×k ×(-1)=k 2+4k <0,解得-4<k <0,综上所述,实数k 的取值范围是(-4,0].2.已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2][答案] A[解析] 依题意知,p ,q 均为假命题. 当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有∆=m 2-4≥0,解得m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.∴实数m 的取值范围是[2,+∞).。
高考一轮复习第1章集合与常用逻辑用语第3讲逻辑联结词全称量词与存在量词

第三讲逻辑联结词、全称量词与存在量词知识梳理·双基自测知识点一简单的逻辑联结词(1)用联结词“且”联结命题p和命题q,记作p∧q,(2)用联结词“或”联结命题p和命题q,记作p∨q,(3)对一个命题p的否定记作¬ p,(4)命题p∧q,p∨q,¬ p的真假判断真值表知识点二全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x).2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0).3.含有一个量词的命题的否定(1)(2)p∨q的否定是(¬p)∧(¬ q);p∧q的否定是(¬p)∨(¬ q).重要结论1.逻辑联结词与集合的关系.(1)“或”与集合的“并”密切相关,集合的并集是用“或”来定义的,命题“p∨q”为真有三个含义:只有p成立,只有q成立,p、q同时成立;(2)“且”与集合的“交”密切相关,集合的交集是用“且”来定义的,命题p∧q为真表示p、q同时成立;(3)“非”与集合中的补集相类似.2.常用短语的否定词题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“2023≥2022”是真命题.( √)(2)命题p和¬ p不可能都是真命题.( √)(3)“全等三角形的面积相等”是特称命题.( ×)(4)命题¬(p∧q)是假命题,则命题p,q都是真命题.( √)题组二走进教材2.(选修2-1P23T2改编)下列命题中的假命题是( C )A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>0[解析]对于C,任意x∈R,x3∈R,故选C.3.(选修2-1P18A1(3),改编)已知p:2是偶数,q:2是质数,则命题¬p,¬q,p∨q,p∧q中真命题的个数为( B )A.1 B.2C.3 D.4[解析]命题p是真命题,q是真命题,因此命题¬p,¬q都是假命题,p∨q,p∧q都是真命题,故选B.题组三走向高考4.(2020·课标Ⅱ,5分)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l⊂平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是①③④.①p1∧p4②p1∧p2③(¬ p 2)∨p 3 ④(¬ p 3)∨(¬ p 4)[解析] 对于命题p 1,两两相交且不过同一点的三条直线的交点记为A 、B 、C ,易知A 、B 、C 三点不共线,所以可确定一个平面,记为α,由A ∈α,B∈α,可得直线AB ⊂α,同理,另外两条直线也在平面α内,所以p 1是真命题;对于命题p 2,当三点共线时,过这三点有无数个平面,所以p 2是假命题,从而¬ p 2是真命题; 对于命题p 3,空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,从而¬ p 3是真命题;对于命题p 4,由直线与平面垂直的性质定理可知,是真命题,从而¬ p 4是假命题.综上所述,p 1∧p 4是真命题,p 1∧p 2是假命题,(¬ p 2)∨p 3是真命题,(¬ p 3)∨(¬ p 4)是真命题,所以答案为①③④.5.(2016·浙江,5分)命题“∀x ∈R ,∃n ∈N *,使得n≥x 2”的否定形式是( D ) A .∀x ∈R ,∃n ∈N *,使得n<x 2B .∀x ∈R ,∀x ∈N *,使得n<x 2C .∃x ∈R ,∃n ∈N *,使得n<x 2D .∃x ∈R ,∀n ∈N *,使得n<x 2[解析] 根据含有量词的命题的否定的概念可知,选D .6.(2015·山东,5分)若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为1.[解析] 由已知可得m≥tan x (x∈⎣⎢⎡⎦⎥⎤0,π4)恒成立.设f(x)=tan x (x∈⎣⎢⎡⎦⎥⎤0,π4),显然该函数为增函数,故f(x)的最大值为f ⎝ ⎛⎭⎪⎫π4=tan π4=1,由不等式恒成立可得m≥1,即实数m 的最小值为1.考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点一 含逻辑联结词的命题及其真假判断——自主练透例1 (1)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( A )A .(¬ p)∨(¬ q)B .p ∧(¬ q)C .(¬ p)∧(¬ q)D .p ∨q(2)(多选)命题p :若sin x>sin y ,则x>y ;命题q :x 2+y 2≥2xy.下列命题为真命题的是( ACD ) A .p 或q B .p 且q C .qD .¬ p(3)已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p ∧q 为真;②p∨q 为假;③p∨q 为真;④(¬ p)∨(¬ q)为假. 其中,正确的是②.(填序号)[解析] (1)命题p 是“甲降落在指定范围”,则¬ p 是“甲没降落在指定范围”,q 是“乙降落在指定范围”,则¬ q 是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为(¬ p)∨(¬ q).(2)取x =π3,y =5π6,可知命题p 是假命题;由(x -y)2≥0恒成立,可知命题q 是真命题,故¬ p 为真命题,p 或q 是真命题,p 且q 是假命题. (3)命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.考点二 含有一个量词的命题——多维探究 角度1 全称命题、特称命题的真假例2 (多选题)( 2021·山东济宁期末)下列命题中真命题是( ACD ) A .∀x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃x ∈R ,lg x<1D .∃x ∈R ,tan x =2[解析] 根据指数函数的值域知A 是真命题;取x =1,计算知(x -1)2=0,故B 是假命题;取x =1,计算知lg x =0<1,故C 是真命题;由y =tan x 的值域为R.知D 是真命题.故选ACD .角度2 含一个量词的命题的否定例3 (1)已知命题p :“∃x 0∈R ,ex 0-x 0-1≤0”,则¬ p 为( C ) A .∃x 0∈R ,ex 0-x 0-1≥0 B .∃x 0∈R ,ex 0-x 0-1>0 C .∀x ∈R ,e x-x -1>0 D .∀x ∈R ,e x -x -1≥0(2)(2021·陕西部分学校摸底)命题“∀x ∈R ,xx -1≥0”的否定是( D )A .∃x ∈R ,x 0x 0-1<0B .∃x ∈R ,0<x 0<1C .∀x ∈R ,xx -1≤0D .∃x ∈R ,0<x 0≤1[解析] (1)根据全称命题与特称命题的否定关系,可得¬ p 为“∀x ∈R ,e x-x -1>0”,故选C . (2)∀x ∈R ,x x -1≥0的否定是∃x 0∈R ,使xx -1不大于等于0,包括小于零和无意义,即∃x 0∈R ,0<x 0<1或x 0=1,故选D .名师点拨 MING SHI DIAN BO 全(特)称命题真假的判断方法全称命题特称命题真假 真假真假法一 证明所有对象使命题为真存在一个对象使命题为假存在一个对象使命题为真证明所有对象使命题为假法二否定为假否定为真否定为假否定为真注:当判断原命题的真假有困难时,可通过判断它的逆否命题的真假来实现. 角度3 含参命题中参数的取值范围例 4 已知f(x)=ln(x 2+1),g(x)=⎝ ⎛⎭⎪⎫12x-m ,若对于∀x 1∈[0,3],∃x 2∈[1,2],使得f(x 1)≥g(x 2),则实数m 的取值范围是( A )A .⎣⎢⎡⎭⎪⎫14,+ ∞B .⎝ ⎛⎦⎥⎤-∞,14C .⎣⎢⎡⎭⎪⎫13,+∞ D .⎝⎛⎦⎥⎤-∞,13 [解析] 当x∈[0,3]时,f(x)min =f(0)=0,当x∈[1,2]时,g(x)min =g(2)=14-m ,由f(x)min ≥g(x)min 得0≥14-m ,所以m≥14.[引申1]把本例中“∃x 2∈[1,2]”改为:“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是m≥12. [解析] 当x∈[0,3]时,f(x)min =f(0)=0, 当x∈[1,2]时,g(x)max =g(1)=12-m ,由f(x)min ≥g(x)max 得0≥12-m ,所以m≥12.[引申2]把本例中,∀x 1∈[0,3]改为∃x 1∈[0,3]其他条件不变,则实数m 的取值范围是m≥14-ln_10.[解析] 当x∈[0,3]时,f(x)max =f(3)=ln 10, 当x∈[1,2]时,g(x)min =g(2)=14-m ,由f(x)max ≥g(x)min 得ln 10≥14-m ,所以m≥14-ln 10.答案:m≥14-ln 10[引申3]把本例中,∀x 1∈[0,3],∃x 2∈[1,2]改为∃x 1∈[0,3],∀x 2∈[1,2],其他条件不变,则实数m 的取值范围是m ≥12-ln 10. [解析] 当x∈[0,3]时,f(x)max =f(3)=ln 10, 当x∈[1,2]时,g(x)max =g(1)=12-m ,由f(x)max ≥g(x)max ,得ln 10≥12-m ,所以m≥12-ln 10.答案:m≥12-ln 10名师点拨 MING SHI DIAN BO根据复合命题的真假求参数范围的步骤(1)先求出每个简单命题为真命题时参数的取值范围.(2)再根据复合命题的真假确定各个简单命题的真假情况(有时不一定只有一种情况). (3)最后由(2)的结论求出满足条件的参数取值范围. 〔变式训练1〕(1)(角度1)(多选题)(2020·吉林长春外国语学校高三上期中改编)下列命题中,假命题是( ABD ) A .∃x 0∈R ,sin 2 x 02+cos 2 x 02=12B .∀x ∈(0,π),sin x>cos xC .∀x ∈(0,+∞),x 2+1>x D .∃x 0∈R ,x 20+x 0=-1(2)(角度2)已知命题p :∃x 0∈R ,log 2(3x 0+1)≤0,则( B ) A .p 是假命题;¬ p :∀x ∈R ,log 2(3x+1)≤0 B .p 是假命题;¬ p :∀x ∈R ,log 2(3x +1)>0 C .p 是真命题;¬ p:∀x ∈R ,log 2(3x +1)≤0 D .p 是真命题;¬ p:∀x ∈R ,log 2(3x +1)>0(3)(角度3)已知命题p :“∀x ∈[1,2],x 2-a≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”.若命题“(¬ p)∧q”是真命题,则实数a 的取值范围是( C )A .(-∞,-2)∪{1}B .(-∞,-2]∪[1,2]C .(1,+∞)D .[-2,1](4)(角度3)已知函数f(x)=x 2+2x +a 和g(x)=2x +x +1,对∀x 1∈[-1,+∞),∃x 2∈R 使g(x 1)=f(x 2)成立,则实数a 的取值范围是[-1,+∞).[解析] (1)对于A ,由同角三角函数的平方关系,我们知道∀x ∈R ,sin 2 x 2+cos 2 x2=1,所以A 为假命题;对于B ,取特殊值,当x =π4时,sin x =cos x =22,所以B 为假命题;对于C ,一元二次方程根的判别式Δ=1-4=-3<0,所以原方程没有实数根,所以C 为真命题;对于D ,判别式Δ=1-4=-3<0,所以D 错误.故选A 、B 、D .(2)∵3x>0,∴3x+1>1,则log 2(3x+1)>0,∴p 是假命题,¬ p:∀x ∈R ,log 2(3x+1)>0.故选B . (3)命题p 为真命题时a≤1;命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真命题,即方程x 2+2ax +2-a =0有实根,故Δ=4a 2-4(2-a)≥0,解得a≥1或a≤-2.又(¬ p)∧q 为真命题,即¬ p 真且q 真,所以a>1,即a 的取值范围为(1,+∞).故选C .(4)因为f(x)=x 2+2x +a =(x +1)2+a -1, 所以f(x)∈[a-1,+∞).因为g(x)=2x +x +1在[-1,+∞)上单调递增, 所以g(x)∈[-2,+∞).由题意得a -1≤-2, 所以a≤-1,故实数a 的取值范围是(-∞,-1].名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG简易逻辑的综合应用例5 (2019·全国卷Ⅱ,5分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( A ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲D .甲、丙、乙[解析] 依题意,若甲预测正确,则乙、丙均预测错误,此时三人成绩由高到低的次序为甲、乙、丙;若乙预测正确,此时丙预测也正确,这与题意相矛盾;若丙预测正确,则甲预测错误,此时乙预测正确,这与题意相矛盾.综上所述,三人成绩由高到低的次序为甲、乙、丙,选A .名师点拨 MING SHI DIAN BO在一些逻辑问题中,当字面上并未出现“或”“且”“非”字样时,应从语句的陈述中搞清含义,并根据题目进行逻辑分析,找出各个命题之间的内在联系,从而解决问题.〔变式训练2〕(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( D )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩[解析]由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.。
高三数学一轮总复习第一章集合与常用逻辑用语第三节简单的逻辑联结词全称量词与存在量词课件理

2.已知命题 p:若 x>y,则-x<-y,命题 q:若 x>y, 则 x2>y2.在命题①p∧q;②p∨q;③p∧(綈 q);④(綈
p)∨q,真命题是________.(填序号)
考点四 利用复合命题的真假求参数范围 题点多变型考点——纵引横联 [典型母题]
已知命题 p:关于 x 的不等式 ax>1(a>0,a≠1)的解集是 {x|x<0},命题 q:函数 y=lg(ax2-x+a)的定义域为 R,如果 p∨q 为真命题,p∧q 为假命题,求实数 a 的取值范围.
[解] 由关于 x 的不等式 ax>1(a>0,a≠1)的解集是{x|x <0},知 0<a<1;
[谨记通法] 对全称(存在性)命题进行否定的方法 (1)找到命题所含的量词,没有量词的要结合命题的含义先 加上量词,再改变量词. (2)对原命题的结论进行否定.如“题组练透”第 1 题易错.
考点三 含有逻辑联结词命题真假的判断
重点保分型考点——师生共研 [典例引领]
1.下列各命题中,满足 p∨q 是真命题,p∧q 是假命题,“綈
[谨记通法] 全称命题与存在性命题真假的判断方法 不管是全称命题,还是存在性命题,若其真假不容易正 面判断时,可先判断其否定的真假.
考点二 含有一个量词的命题的否定 基础送分型考点——自主练透
[题组练透]
1 . (易错 题 )命题“对任 意 x∈ R,都有 x2≥0”的否定 为 ______________________. 解析:全称命题的否定是存在性命题.“对任意 x∈R, 都有 x2≥0”的否定为“存在 x∈R,使得 x2<0”. 答案:存在 x∈R,使得 x2<0
2019版高考数学一轮复习 第一单元 集合与常用逻辑用语 第3课 简单的逻辑联结词、全称量词与存在量词
③p∧(綈 q)为真命题;④(綈 p)∨q 为假命题. 答案:C
2.若命题 p:对任意 x∈R ,总有 2x>0;q:“x>1”是“x>2”的充分
不必要条件,则在下列命题中真命题的是
()
A.p∧(綈 q)
B.(綈 p)∧(綈 q)
C.(綈 p)∧q
D.p∧q
解析:由指数函数的性质可知,命题 p 是真命题,则命题綈 p 是
考点
考查频度
考查角度
简单的逻辑联结词 未考查
线性规划与量词命题的 全称量词、存在量词 5年2考
判断,特称命题的否定
含逻辑联结词的命题的真假判断
[典例] 已知命题 p:∃x0∈R ,使 x20+2x0+5≤4;命题
q:当 x∈0,π2时,f(x)=sin x+sin4 x的最小值为 4,下列命
2.若命题“对∀x∈R ,kx2-kx-1<0”是真命题,则 k 的取 值范围是________. 解析:“对∀x∈R ,kx2-kx-1<0”是真命题,当 k=0 时,
则有-1<0;当 k≠0 时,则有 k<0 且 Δ=(-k)2-4×k× (-1)=k2+4k<0,解得-4<k<0,综上所述,实数 k 的取值 范围是(-4,0]. 答案:(-4,0]
角度二:全称命题、特称命题的真假判断 2.下列命题为假命题的是
A.∀x∈R ,3x>0
B.∃x0∈R ,lg x0=0 C.∀x∈0,π2,x>sin x D.∃x0∈R ,sin x0+cos x0= 3
()
解析:由指数函数的性质可知,∀x∈R ,3x>0 成立,故 A 是真
命题;令 x0=1,则 lg x0=0,故 B 是真命题;令 f(x)=x- sin x,f′(x)=1-cos x>0,即函数 f(x)=x-sin x 在0,π2上是 增函数,所以 f(x)>f(0)=0,所以 x>sin x,故 C 是真命题;因 为 sin x0+cos x0= 2sin x0+π4≤ 2,故 D 是假命题. 答案:D
2019版高考数学一轮复习第1章集合与常用逻辑用语第3讲
触类旁通 全(特)称命题真假的判断方法
(1)全称命题真假的判断方法 ①要判断一个全称命题是真命题,必须对限定的集合 M 中的每一个元素 x,证明 p(x)成立. ②要判断一个全称命题是假命题,只要能举出集合 M 中的一个特殊值 x=x0,使 p(x0)不成立即可. (2)特称命题真假的判断方法 要判断一个特称命题是真命题,只要在限定的集合 M 中,找到一个 x=x0,使 p(x0)成立即可,否则这一特称命题 就是假命题.
[考点自测]
1.判断下列结论的正误.(正确的打“√”,错误的打 “×”)
(1)命题 p∧q 为假命题,则命题 p,q 都是假命题.( × ) (2)命题 p 和綈 p 不可能都是真命题.( √ )
(3)若命题 p,q 至少有一个是真命题,则 p∨q 是真命 题.( √ )
(4)命题綈(p∧q)是假命题,则命题 p,q 中至少有一个
∴p 为真命题,綈 p 为假命题. ∵当 a=-1,b=-2 时,(-1)2<(-2)2,但-1>-2, ∴q 为假命题,綈 q 为真命题.
根据真值表可知 p∧(綈 q)为真命题,p∧q,(綈 p)∧q,
(綈 p)∧(綈 q)为假命题.故选 B.
触类旁通 “p∨q”“p∧q”“綈 p”形式命题真假的判断步骤
题,则綈 q 是真命题,p∧(綈 q)是真命题,故选 D.
5.[课本改编]命题“任意 x∈[1,2],x2-a≤0”为真命
题的一个充分不必要条件是( )
A.a≥4
B.a≤4
C.a≥5
D.a≤5
解析 命题“任意 x∈[1,2],x2-a≤0”为真命题的充
要条件是 a≥4.故其充分不必要条件是集合[4,+∞)的真子
命题角度 2 全称命题、特称命题真假的判断
高考数学一轮总复习第一章集合与常用逻辑用语第3讲简单的逻辑联结词全称量词与存在量词学案文
第3讲简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”“且”“非”.(2)命题p∧q、p∨q、﹁p的真假判断p q p∧q p∨q ﹁p真真真真假真假假真假假真假真真假假假假真2.(1)全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的元素x0,使p(x0)成立∃x0∈M,p(x0)命题命题的否定∀x∈M,p(x)∃x0∈M,﹁p(x0)∃x0∈M,p(x0)∀x∈M,﹁p(x)常用结论(1)含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p与﹁p→真假相反.(2)含有一个量词的命题的否定规律是“改量词,否结论”.(3)“p ∨q ”的否定是“(﹁p )∧(﹁q )”,“p ∧q ”的否定是“(﹁p )∨(﹁q )”. (4)逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( ) (2)命题p 和﹁p 不可能都是真命题.( )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题. ( ) (4)写特称命题的否定时,存在量词变为全称量词.( ) (5)∃x 0∈M ,p (x 0)与∀x ∈M ,﹁p (x )的真假性相反. ( ) 答案:(1)× (2)√ (3)√ (4)√ (5)√ 二、易错纠偏常见误区| (1)全称命题或特称命题的否定出错; (2)不会利用真值表判断命题的真假; (3)判断命题真假时忽视对参数的讨论. 1.命题“正方形都是矩形”的否定是________. 答案:存在一个正方形,这个正方形不是矩形2.已知命题p :若x >y ,则-x <-y ;命题q :若1x >1y,则x <y .在命题①p ∧q ;②p ∨q ;③p ∧(﹁q );④(﹁p )∨q 中,真命题是________.(填序号)解析:由不等式的性质可知,命题p 是真命题,命题q 为假命题,故①p ∧q 为假命题;②p ∨q 为真命题;③﹁q 为真命题,则p ∧(﹁q )为真命题;④﹁p 为假命题,则(﹁p )∨q 为假命题.答案:②③3.若p :∀x ∈R ,ax 2+4x +1>0是假命题,则实数a 的取值范围为________. 答案:(-∞,4]含有逻辑联结词的命题的真假判断(自主练透)1.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( ) A .p ∨q B .p ∧q C .qD .﹁p解析:选B .取x =π3,y =5π6,可知命题p 是假命题;由(x -y )2≥0恒成立,可知命题q 是真命题,故﹁p 为真命题,p ∨q 是真命题,p ∧q 是假命题.2.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ②﹁p ∨q ③p ∧﹁q ④﹁p ∧﹁q 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:选A .通解:作出不等式组表示的平面区域D 如图中阴影部分所示,直线2x +y =9和直线2x +y =12均穿过了平面区域D ,不等式2x +y ≥9表示的区域为直线2x +y =9及其右上方的区域,所以命题p 正确;不等式2x +y ≤12表示的区域为直线2x +y =12及其左下方的区域,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .优解:在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p ∨q 和p ∧﹁q 正确.故选A .3.(2020·高考全国卷Ⅱ)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题是________.(填序号) ①p 1∧p 4 ②p 1∧p 2 ③﹁p 2∨p 3④﹁p 3∨﹁p 4解析:方法一:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则由l 1∩l 2=A ,知l 1,l 2共面,设此平面为α,由B ∈l 2,l 2⊂α,知B ∈α,由C ∈l 1,l 1⊂α,知C ∈α,所以l 3⊂α,所以l 1,l 2,l 3共面于α,所以p 1是真命题.对于p 2,当A ,B ,C 三点不共线时,过A ,B ,C 三点有且仅有一个平面;当A ,B ,C 三点共线时,过A ,B ,C 的平面有无数个,所以p 2是假命题,﹁p 2是真命题.对于p 3,若空间两条直线不相交,则这两条直线可能平行,也可能异面,所以p 3是假命题,﹁p 3是真命题.对于p 4,若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l ,所以p 4是真命题,﹁p 4是假命题.故p 1∧p 4为真命题,p 1∧p 2为假命题,﹁p 2∨p 3为真命题,﹁p 3∨﹁p 4为真命题.综上可知,真命题的序号是①③④.方法二:对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则A ,B ,C 三点不共线,所以此三点确定一个平面α,则A ∈α,B ∈α,C ∈α,所以AB ⊂α,BC ⊂α,CA ⊂α,即l 1⊂α,l 2⊂α,l 3⊂α,所以p 1是真命题.以下同方法一.答案:①③④判断含有逻辑联结词命题真假的步骤全称命题与特称命题(多维探究) 角度一 全称命题、特称命题的否定(1)(2021·成都市诊断性检测)已知命题p :∀x ∈R ,2x -x 2≥1,则﹁p 为( )A .∀x ∉R ,2x -x 2<1 B .∃x 0∉R ,2x 0-x 20<1 C .∀x ∈R ,2x-x 2<1 D .∃x 0∈R ,2x 0-x 20<1(2)(2021·沈阳市教学质量监测(一))命题p :∀x ∈(0,+∞),x 13≠x 15,则﹁p 为( ) A .∃x 0∈(0,+∞),x 130=x 150 B .∀x ∈(0,+∞),x 13=x 15 C .∃x 0∈(-∞,0),x 130=x 150 D .∀x ∈(-∞,0),x 13=x 15【解析】 (1)全称命题的否定是特称命题,所以﹁p :∃x 0∈R ,2x 0-x 20<1. (2)由全称命题的否定为特称命题知,﹁p 为∃x 0∈(0,+∞),x 130=x 150,故选A .【答案】 (1)D (2)A全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写;(2)否定结论:对原命题的结论进行否定. 角度二 全称命题、特称命题的真假判断(1)下列命题中的假命题是( )A .∀x ∈R ,x 2≥0 B .∀x ∈R ,2x -1>0C .∃x 0∈R ,lg x 0<1D .∃x 0∈R ,sin x 0+cos x 0=2 (2)下列命题中的假命题是( ) A .∀x ∈R ,e x>0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sin π2x 0=1【解析】 (1)A 显然正确;由指数函数的性质知2x -1>0恒成立,所以B 正确;当0<x <10时,lg x <1,所以C 正确;因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4,所以-2≤sin x+cos x ≤2,所以D 错误.(2)对于B .当x =0时,x 2=0,因此B 中命题是假命题. 【答案】 (1)D (2)B全称命题与特称命题真假的判断方法命题名称 真假 判断方法一 判断方法二 全称命题真 所有对象使命题为真 否定为假 假 存在一个对象使命题为假 否定为真 特称命题真 存在一个对象使命题为真 否定为假 假所有对象使命题为假否定为真[提醒] 因为命题p 与﹁p 的真假性相反,因此不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.下列命题正确的是( ) A .∃x 0∈R ,x 20+2x 0+3=0B .x >1是x 2>1的充分不必要条件 C .∀x ∈N ,x 3>x 2D .若a >b ,则a 2>b 2解析:选B .对于x 2+2x +3=0,Δ=-8<0,故方程无实根,即∃x 0∈R ,x 20+2x 0+3=0错误,即A 错误;x 2>1⇔x <-1或x >1,故x >1是x 2>1的充分不必要条件,故B 正确;当x ≤1时,x 3≤x 2,故∀x ∈N ,x 3>x 2错误,即C 错误; 若a =1,b =-1,则a >b ,但a 2=b 2,故D 错误.故选B .2.已知f (x )=sin x -x ,命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0,则( )A .p 是假命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0B .p 是假命题,﹁p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0C .p 是真命题,﹁p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0D .p 是真命题,﹁p :∃x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 解析:选C .易知f ′(x )=cos x -1<0,所以f (x )在⎝ ⎛⎭⎪⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )<0是真命题,﹁p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0,故选C .由命题的真假确定参数的取值范围(典例迁移)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.【解】 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).【迁移探究1】 (变问法)在本例条件下,若p ∧q 为真,求实数m 的取值范围. 解:依题意知p ,q 均为真命题,当p 是真命题时,有m <0; 当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 【迁移探究2】 (变问法)在本例条件下,若p ∧q 为假,p ∨q 为真,求实数m 的取值范围.解:若p ∧q 为假,p ∨q 为真,则p ,q 一真一假. 当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2).根据命题的真假求参数取值范围的策略(1)全称命题可转化为恒成立问题,特称命题转化为存在性问题. (2)含逻辑联结词问题:①求出每个命题是真命题时参数的取值范围; ②根据题意确定每个命题的真假;③由各个命题的真假列关于参数的不等式(组)求解.1.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值范围是______. 解析:因为命题“∃t ∈R ,t 2-2t -a <0”为假命题,所以命题“∀t ∈R ,t 2-2t -a ≥0”为真命题,所以Δ=(-2)2-4×1×(-a )=4a +4≤0,即a ≤-1.答案:(-∞,-1]2.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是________.解析:命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a4≤3,即a ≥-12.由p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).答案:(-∞,-12)∪(-4,4)。
(新课标2019届高考数学一轮复习第一章集合与常用逻辑用语1.3简单的逻辑联结词、全称量词与存在量词课件理
集合与常用逻辑用语 集合与常用逻辑用语
1.3 简单的逻辑联结词、 全称量词与存在量词
1.逻辑联结词 命题中的“或”“且”“非”称为____________________. 2.全称量词 “所有的”“任意一个”“每一个”等短语在逻辑中通常叫做____________,并 用符号“________”表示.含有全称量词的命题称为____________,全称命题“对 M 中 任意一个 x,有 p(x)成立”可用符号简记为:∀x∈M,p(x). 3.存在量词 “存在一个”“至少有一个”等短语在逻辑中通常叫做______________,并用符 号“________”表示.含有存在量词的命题称为______________,特称命题“存在 M 中 的元素 x0,使 p(x0)成立”可用符号简记为:∃x0∈M,p(x0). 注:特称命题也称存在性命题.
x 解:(1)当 x=y=0 时, 无意义,故命题 p 为假命题;由于函 y 数 f(x)单调递增,所以对任意 x1≠x2,x1-x2 与 f(x1)-f(x2)同号, f(x1)-f(x2) 所以一定有 >0 成立,所以命题 q 为真命题.显 x1-x2 然只有命题②④为真命题.故选 D. (2)根据幂函数的性质,可知命题 p 为真命题;由 2 +2 0 2x x x x 1 0 0 0 =2 2,得 2 -2 2·2 +2=0,解得 2 = 2,即 x0= (或 2 0 2 1-x x 1-x x 1-x 1 0 0 0 0 0 +2 ≥2 2 ·2 =2 2,当且仅当 2 =2 ,即 x0= 时等 2 号成立),命题 q 为假命题.所以只有 p∧( C. q)为真命题.故选
注:“p∧q”“p∨q”“ 题,q 命题称为简单命题.
p”统称为复合命题,构成复合命题的 p 命
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 全称量词与存在量词、逻辑联结词“且”“或”“非”一、选择题1.已知命题p :所有指数函数都是单调函数,则綈p 为( )A.所有的指数函数都不是单调函数B.所有的单调函数都不是指数函数C.存在一个指数函数,它不是单调函数D.存在一个单调函数,它不是指数函数解析 命题p :所有指数函数都是单调函数,则綈p 为:存在一个指数函数,它不是单调函数.答案 C2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图像关于直线x =π2对称.则下列判断正确的是( )A.p 为真B.綈p 为假C.p 且q 为假D.p 且q 为真 解析 p 为假命题,q 为假命题,∴p 且q 为假.答案 C3.2016年巴西里约奥运会,在体操预赛中,有甲、乙两位队员参加.设命题p 是“甲落地站稳”,q 是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为( )A.(綈p ) 或(綈q )B.p 或(綈q )C.(綈p ) 且(綈q )D.p 或q解析 命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p ) 或(綈q ).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p 且q ”的否定.答案 A4.(2017·西安调研)已知命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A.p 且(綈q )B.(綈p ) 且qC.(綈p ) 且(綈q )D.p 且q 解析 由题意知命题p 是真命题,命题q 是假命题,故綈p 是假命题,綈q 是真命题,由含有逻辑联结词的命题的真值表可知p 且(綈q )是真命题.答案 A5.下列命题中,真命题是( )A.存在x 0∈R ,e x 0≤0B.任意x ∈R ,2x >x 2C.a +b =0的充要条件是a b =-1D.“a >1,b >1”是“ab >1”的充分条件解析 因为y =e x >0,x ∈R 恒成立,所以A 不正确.因为当x =-5时,2-5<(-5)2,所以B 不正确.“a b=-1”是“a +b =0”的充分不必要条件,C 不正确.当a >1,b >1时,显然ab >1,D 正确.答案 D6.命题p :任意x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( )A.(0,4]B.[0,4]C.(-∞,0]∪[4,+∞)D.(-∞,0)∪(4,+∞)解析 因为命题p :任意x ∈R ,ax 2+ax +1≥0,所以命题綈p :存在x 0∈R ,ax 20+ax 0+1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4. 答案 D7.(2017·咸阳模拟)已知命题p :存在α∈R ,cos(π-α)=cos α;命题q :任意x ∈R ,x 2+1>0.则下面结论正确的是( )A.p 且q 是真命题B.p 且q 是假命题C.綈p 是真命题D.綈q 是真命题解析 对于p :取α=π2,则cos(π-α)=cos α, 所以命题p 为真命题;对于命题q :∵x 2≥0,∴x 2+1>0,所以q 为真命题.由此可得p 且q 是真命题. 答案 A8.(2017·江西赣中南五校联考)已知命题p :存在x ∈R ,(m +1)(x 2+1)≤0,命题q :任意x ∈R ,x 2+mx +1>0恒成立.若p 且q 为假命题,则实数m 的取值范围为( )A.[2,+∞)B.(-∞,-2]∪(-1,+∞)C.(-∞,-2]∪[2,+∞)D.(-1,2]解析 由命题p :存在x ∈R ,(m +1)(x 2+1)≤0可得m ≤-1;由命题q :任意x ∈R ,x 2+mx +1>0恒成立,可得-2<m <2,若命题p ,q 均为真命题,则此时-2<m ≤-1. 因为p 且q 为假命题,所以命题p ,q 中至少有一个为假命题,所以m ≤-2或m >-1. 答案 B二、填空题 9.命题“存在x 0∈⎝⎛⎭⎪⎫0,π2,tan x 0>sin x 0”的否定是________. 答案 任意x ∈⎝⎛⎭⎪⎫0,π2,tan x ≤sin x 10.若命题“存在x 0∈R ,使得x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围是________.解析 ∵“存在x 0∈R ,使得x 20+(a -1)x 0+1<0”是真命题,∴Δ=(a -1)2-4>0,即(a -1)2>4,∴a -1>2或a -1<-2,∴a >3或a <-1.答案 (-∞,-1)∪(3,+∞)11.(2017·石家庄调研)已知下列四个命题:①“若x 2-x =0,则x =0或x =1”的逆否命题为“x ≠0且x ≠1,则x 2-x ≠0” ②“x <1”是“x 2-3x +2>0”的充分不必要条件③命题p :存在x 0∈R ,使得x 20+x 0+1<0,则綈p :任意x ∈R ,都有x 2+x +1≥0 ④若p 且q 为假命题,则p ,q 均为假命题其中真命题的是________(填序号).解析 显然①③正确.②中,x 2-3x +2>0⇔x >2或x <1.∴“x <1”是“x 2-3x +2>0”的充分不必要条件,②正确.④中,若p 且q 为假命题,则p ,q 至少有一个假命题,④错误.答案 ①②③12.已知命题p :“任意x ∈[0,1],a ≥e x ”;命题q :“存在x 0∈R ,使得x 20+4x 0+a =0”.若命题“p 且q ”是真命题,则实数a 的取值范围是________.解析 若命题“p 且q ”是真命题,那么命题p ,q 都是真命题.由任意x ∈[0,1],a ≥e x,得a ≥e ;由存在x 0∈R ,使x 20+4x 0+a =0,知Δ=16-4a ≥0,得a ≤4,因此e ≤a ≤4. 答案 [e ,4]13.(2016·浙江卷)命题“任意x ∈R ,存在n ∈N +,使得n ≥x 2”的否定形式是( )A.任意x ∈R ,存在n ∈N +,使得n <x 2B.任意x ∈R ,任意n ∈N +,使得n <x 2C.存在x ∈R ,存在n ∈N +,使得n <x 2D.存在x 0∈R ,任意n ∈N +,使得n <x 20解析 改变量词,否定结论.∴綈p 应为:存在x 0∈R ,任意n ∈N +,使得n <x 20.答案 D14.(2017·西安铁中质检)已知命题p :任意x ∈R ,x +1x≥2;命题q :存在x 0∈(0,+∞),x 20>x 30,则下列命题中为真命题的是( )A.(綈p ) 且qB.p 且(綈q )C.(綈p ) 且(綈q )D.p 且q 解析 对于p :当x =-1时,x +1x=-2,∴p 为假命题.取x 0∈(0,1),此时x 20>x 30,∴q 为真命题.从而綈p 为真命题,(綈p ) 且q 为真命题.答案 A15.(2017·郑州模拟)下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“1x <12”的充分不必要条件; ④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.解析 ①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③1x <12,则1x -12=2-x 2x <0,解得x <0或x >2,所以“x >2”是“1x <12”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命题,真假性相同,故④正确. 答案 ①②16.已知命题p :存在x ∈R ,e x -mx =0,q :任意x ∈R ,x 2-2mx +1≥0,若p 或(綈q )为假命题,则实数m 的取值范围是________.解析 若p 或(綈q )为假命题,则p 假q 真.由e x -mx =0得m =e x x ,设f (x )=e x x, 则f ′(x )=e x ·x -e x x 2=(x -1)e x x 2. 当x >1时,f ′(x )>0,此时函数单调递增;当0<x <1时,f ′(x )<0,此时函数单调递减;当x <0时,f ′(x )<0,此时函数单调递减.由f (x )的图像及单调性知当x =1时,f (x )=e x x 取得极小值f (1)=e ,所以函数f (x )=e x x的值域为(-∞,0)∪[e ,+∞),所以若p 是假命题,则0≤m <e ;命题q 为真命题时,有Δ=4m 2-4≤0,则-1≤m ≤1.所以当p 或(綈q )为假命题时,m 的取值范围是[0,1].答案 [0,1]。