福伊特液力变矩器的结构及工作原理的使用0
福伊特液力变矩器的结构及工作原理的使用0

第一章福伊特液力传动箱简介T211re.4液力传动箱是德国福伊特公司是专门为铁路车辆设计的涡轮传动装置。
它是350kW性能级别的轨道车专用传动箱。
第一节 T211re.4液力传动箱的技术指标一、T211re.4液力传动箱的主要技术参数:二、T211re.4液力传动箱的特性参数第二节 T 211re.4液力传动箱的特点一、命名规则:T211re.4液力传动箱是铁路工程车辆专用设备,其命名规则如下:二、T211re.4液力传动箱的特点T211re.4液力传动箱其输入功率科大350kW,采用全新的福伊特驱动控制器(VTDC)可以直接安装在传动箱上并录入运行数据。
另外还具有监控诊断功能,液力制动可以通过联合制动的方式整合进入车辆制动系统以及性能的高可靠性。
第二章 T211re.4液力传动箱的结构第一节 T211re.4液力传动箱的组成一、液力传动箱组成T211re.4液力传动箱由液力制动、液力液力变扭器、液力耦合器、换向机构、电气控制模块VTIC及部分组成,其外形如图2-1所示。
其输入、输出侧分别如图2-2、2-3所示。
图2-1 T211re.4液力传动箱外形图其液力传动箱包括机械部分和液力部分组件,其结构如图2-4所示。
二、机械组件机械组件包括增速齿轮、扭转减振器、换向装置、齿轮变速器。
图2-2 T211re.4液力传动箱输入侧1-输入装置图2-3 T211re.4液力传动箱输出侧2-输出装置图2-4 转动装置组件1-输出装置;2-增速齿轮;3-输入装置;4-液力偶合器;5-液力变扭器6-机械部件;7-换向装置的幵关轴传动箱输入轴(3)直接与柴油机相连,通过一对增速齿轮(2)将转速提升至液力元件的工作转速,变扭器(5)和偶合器(4)的泵轮都装在泵轮轴上,两者的涡轮都装在与传动箱输出相连的涡轮轴上,涡轮轴再通过一系列的机械齿轮最终驱动传动箱输出(1),通过换向离合器(7)的作用,使传动链里机械齿轮(6)的数量增减,实现换向。
液力变矩器的组成及各部分的作用

液力变矩器的组成及各部分的作用液力变矩器的组成及各部分的作用:
液力变矩器是一种常见的自动变速器,它由三个主要部分组成:泵轮、涡轮和液体。
这些部分共同工作,使得变矩器能够将发动机产生的动力传递到车辆的传动系统中。
泵轮是液力变矩器的主要驱动部分,它连接着引擎的曲轴,当发动机运转时,泵轮开始旋转。
液体从泵轮中流出,被引导到涡轮中,从而使涡轮开始旋转。
液体的流动速度决定了液力变矩器的传动比。
涡轮是液力变矩器的输出部分,它连接着车辆的传动系统。
当液体从泵轮流入涡轮时,涡轮开始旋转,将液体的动能转化为机械能,从而将动力传递到传动系统中。
涡轮的形状和大小可以影响液力变矩器的传动比,通常可以通过更换涡轮来调整传动比。
液体是液力变矩器中起关键作用的部分。
液体被压入泵轮,然后流向涡轮,从而传递动力。
液体还起到润滑和冷却液力变矩器的作用,这有助于延长液力变矩器的使用寿命。
液体的粘度和流速可以影响液力变矩器的传动比,因此,在液力变矩器的设计中,需要仔细选择液体的性质。
此外,液力变矩器还包括一些其他部分,如液压阀和扭矩转换器等。
这些部件可以帮助液力变矩器在不同的工作条件下实现最佳的传动效果。
液力变矩器的结构与工作原理

液力变矩器是一种机械传动装置,主要用于汽车、船舶和工程机械等领域。 它能使发动机的转速稳定在一个合适的范围内,具有防止过载、减少磨损和 提高起步加速度等作用。
定义和作用
作用
液力变矩器是一个重要的启 动装置。通过变换扭矩比, 它可以在驱动轮与负载之间 提供平滑的动力传递。
2 建筑机械
3 农业机械
液力变矩器在建筑机械中 也非常常见。例如,装载 机、挖掘机等设备,使用 液力变矩器可以有效地提 高操作效率和工作稳定性。
农业机械中,液力变矩器 主要用于拖拉机和收割机 等设备中。容易掌握和使 用,而且使用寿命较长。
液力变矩器的常见故障与维修方法
故障
常见故障包括液压系统漏油、齿轮和轴承损坏、控制阀故障等。这些故障要及时维修,否则 会影响装置的性能。
维修方法
维修液力变矩器需要注意细节,例如:更换密封件、修复齿轮或轴承等。维修过程必须按照 液力变矩器的设计图纸和维护手册来进行,以确保维修质量。
保养方法
液力变矩器的日常保养方法包括更换液压油、润滑油、清洗液压系统、定期检查设备等。这 些措施可以帮助提高液力变矩器的寿命和性能。
液力变矩器的发展趋势
环保节能
优点
• 起步平稳,减少功率亏损; • 自动变速,适合各种工况; • 液力变矩器寿命比机械变速箱更长。
缺点
• 效率较低,消耗油量多; • 液压控制成本高,维护成本较高; • 效果会受外界因素影响。
液力变矩器的应用领域
1 混合动力汽车
混合动力汽车中,液力变 矩器的作用非常突出。它 可以与发动机和电动机配 合,在高效转换和节省能 源方面发挥重要作用。
当发动机启动时,液力泵便开始工作。液压系统从油箱中吸取液体,并将其压送 到液力泵。
液力变矩器结构与原理

液力变矩器(Fluid Coupling)是一种能将输入和输出轴传递到旋转机械的扭 矩传递装置。通过利用液体的流体动力转换能力,实现了转矩的自动变功, 保护了机械的传动系统。
液力变矩器的定义和作用
1 定义
液力变矩器是一种基于流体动力学原理,利用液体作为工质传递扭矩的能量转换装置。
3
应用广泛
汽车、工程机械、船舶、起重机械等领域中的动力传输装置。
液力变矩器的主要部件
壳体
液力变矩器的外壳,内部容纳几乎全部的组 件。
均压器
均压器位于油量调节阀和输油腔之间,用于 平衡液力传递的压力。
液力曲轴
连接变矩器和发动机的一根轴,通过其中的 凸轮套与转子相连接。
转子叶片
挪动液体,实现液体动能转换为机械能。
传动轴想要转动液力变矩器, 需要驱动内部液体旋转,形成 池流。
涡流的产生
涡流是液体在旋转容器中形成 的一个环流,是液压变矩器传 递功率的关键。
液力变矩器的输出
通过液流转动传动轴输出扭矩。
液力变矩器的优势和应用
1
自动变矩
通过流ห้องสมุดไป่ตู้动力学原理,变矩自动调整,保证传动系统的平稳工作。
2
能耗高效
自带液力储存元件,当液力传递完成后立即储存,能量损失少。
液力变矩器的维护和故障排查
1
定期检查
液力变矩器使用一段时间后,应该进行常规检修,包括检查油封和散热器等。
2
故障排查
液力变矩器常见故障包括漏油和工作温度过高,需要根据具体情况进行维修。
3
维修保养
需要在使用中定期更换液压油、油封和防尘套等关键零部件。
总结和展望
液力变矩器减少了传动系统中的冲击和振动,保护了机械设备的运行。它 的高效和广泛应用成为了动力传输领域的重要组成部分,也对未来机械制 造产业发展提供了重要的启示。
液力变矩器的组成和功用

液力变矩器的导轮有什么作用简单的说就是变矩液力变矩器和液力耦合器都有泵轮和涡轮,他们的差异就在有无导轮. 如果没有导轮,液力变矩器就是一个耦合器.耦合器泵轮和涡轮的转速不同而转矩相等.由于导论的存在,变矩器能在泵轮转矩不变的情况下,随着涡轮转速不同而改变涡轮转矩的输出值.在汽车变矩器中当变矩系数到达1之后由于单向离合器的作用,泵轮停止转动,变矩作用消失,变矩器实际上就成为耦合器导轮在低速时起到增扭的作用,一般安装在单向离合器上不能反转.泵轮由发动机带动旋转带动油液流动形成涡流冲击涡轮旋转将力传给涡轮.在泵轮和涡轮上有导流板, 油液形成了环流在泵轮涡轮导轮之间循环流动.泵轮油液冲击涡轮的力FB经涡轮冲击导轮导轮不能反转或固定不动形成反作用力FD作用在涡轮上.蜗轮得到的力FT=FB+FD就是导轮的增扭作用1.功用液力变矩器位于发动机和机械变速器之间,以自动变速器油〔ATF〕为工作介质,主要完成以下功用:〔1〕传递转矩.发动机的转矩通过液力变矩器的主动元件,再通过ATF传给液力变矩器的从动元件,最后传给变速器.〔2〕无级变速.根据工况的不同,液力变矩器可以在一定范围内实现转速和转矩的无级变化.〔3〕自动离合.液力变矩器由于采用ATF传递动力,当踩下制动踏板时,发动机也不会熄火,此时相当于离合器别离;当抬起制动踏板时,汽车可以起步,此时相当于离合器接合.〔4〕驱动油泵.ATF在工作的时候需要油泵提供一定的压力,而油泵一般是由液力变矩器壳体驱动的.同时由于采用ATF传递动力,液力变矩器的动力传递柔和,且能预防传动系过载.2.组成如图4-6所示,液力变矩器通常由泵轮、涡轮和导轮三个元件组成,称为三元件液力变矩器.也有的采用两个导轮,那么称为四元件液力变矩器. 液力变矩器总成封在一个钢制壳体〔变矩器壳体〕中,内部充满ATF.液力变矩器壳体通过螺栓与发动机曲轴后端的飞轮连接,与发动机曲轴一起旋转. 泵轮位于液力变矩器的后部,与变矩器壳体连在一起. 涡轮位于泵轮前,通过带花键的从动轴向后面的机械变速器输出动力.导轮位于泵轮与涡轮之间,通过单向离合器支承在固定套管上,使得导轮只能单向旋转〔顺时针旋转〕.泵轮、涡轮和导轮上都带有叶片,液力变矩器装配好后形成环形内腔,其间充满ATF 液力变矩器的工作原理1 .动力的传递液力变矩器工作时,壳体内充满ATF,发动机带动壳体旋转,壳体带动泵轮旋转,泵轮的叶片将ATF带动起来,并冲击到涡轮的叶片;如果作用在涡轮叶片上冲击力大于作用在涡轮上阻力,涡轮将开始转动,并使机械变速器的输入轴一起转动.由涡轮叶片流出的ATF经过导轮后再流回到泵轮,形成如图4-7所示的循环流动.具体来说,上述ATF的循环流动是两种运动的合运动.当液力变矩器工作,泵轮旋转时,泵轮叶片带动ATF旋转起来,ATF绕着泵轮轴线作圆周运动;同样随着涡轮的旋转,ATF也绕着涡轮轴线作圆周运动. 旋转起来的ATF在离心力的作用下,沿着泵轮和涡轮的叶片从内缘流向外缘.当泵轮转速大于涡轮转速时,泵轮叶片外缘的液压大于涡轮外缘的液压.因此,ATF油在作圆周运动的同时,在上述压差的作用下由泵轮流向涡轮,再流向导轮,最后返回泵轮,形成在液力变矩器环形腔内的循环运动.2.转矩的放大在泵轮与涡轮的转速差较大的情况下,由涡轮甩出的ATF以逆时针方向冲击导轮叶片,如图4-8所示,此时导轮是固定不动的,由于导轮上装有单向离合器,它可以预防导轮逆时针转动.导轮的叶片形状使得ATF的流向改变为顺时针方向流回泵轮,即与泵轮的旋转方向相同.泵轮将来自发动机和从涡轮回流的能量一起传递给涡轮,使涡轮输出转矩增大.液力变矩器的转矩放大倍数一般为2.2左右.液力变矩器的变矩特性只有在泵轮与涡轮转速相差较大的情况下才成立,随着涡轮转速的不断提升,从涡轮回流的ATF油会按顺时针方向冲击导轮.假设导轮仍然固定不动,ATF油将会产生涡流,阻碍其自身的运动.为此绝大多数液力变矩器在导轮机构中增设了单向离合器,也称自由轮机构.当涡轮与泵轮转速相差较大时,单向离合器处于锁止状态,导轮不能转动.当涡轮转速到达泵轮转速的85%〜90%时,单向离合器导通,导轮空转,不起导流的作用,液力变矩器的输出转矩不能增加,只能等于泵轮的转矩,此时称为偶合状态液力变矩器的工作原理可以通过一对风扇的工作来描述.如图4-9所示,将风扇A通电,将气流吹动起来,并使未通电的电扇B也转动起来,此时动力由电扇A传递到电扇Bo为了实现转矩的放大,在两台电扇的反面加上一条空气通道,使穿过风扇B的气流通过空气通道的导向,从电扇A的反面流回,这会增强电扇A吹动的气流,使吹向电扇B的转矩增加. 即电扇A相当于泵轮,电扇B相当于涡轮,空气通道相当于导轮,空气相当于ATE液力变矩器的液流如图4-10所示,由图可以看出,涡轮回流的ATF油经过导轮叶片后改变流动方向,与泵轮旋转方向相同,从而使液力变矩器具有转矩放大的功用.3.无级变速从上面的分析我们可以得出这样的结论:随着涡轮转速的逐渐提升, 涡轮输出的转矩要逐渐下降,而且这种变化是连续的.同样,如果涡轮上的负荷增加了,涡轮的转速要下降,而涡轮输出的转矩增加正好适应负荷的增加 2.锁止离合器锁止离合器简称TCC是英文Torque Converter Clutch的缩写.锁止离合器可以将泵轮和涡轮直接连接起来,即将发动机与机械变速器直接连接起来,这样减少液力变矩器在高速比时的能量损耗,提升了传动效率,提升汽车在正常行驶时的燃油经济性,并预防ATF油过热.锁止离合器接合时,进入液力变矩器中的ATF按图4—15a〕所示的方向流动,使锁止活塞向前移动,压紧在液力变矩器壳体上,通过摩擦力矩使二者一起转动.此时发动机的动力经液力变矩器壳体、锁止活塞、扭转减振器、涡轮轮毂传给后面的机械变速器,相当于将泵轮和涡轮刚性连在一起,传动效率为100%常见的单向离合器有楔块式和滚柱式两种结构形式.楔块式单向离合器如图4—12所示,由内座圈、外座圈、楔块、保持架等组成.导轮与外座圈连为一体,内座圈与固定套管刚性连接,不能转动.当导轮带动外座圈逆时针转动时,外座圈带动楔块逆时针转动,楔块的长径与内、外座圈接触,如图4—12a〕所示由于长径长度大于内、外座圈之间的距离,所以外座圈被卡住而不能转动.当导轮带动外座圈顺时针转动时,外座圈带动楔块顺时针转动,楔块的短径与内、外座圈接触,如图 4 —12b〕所示由于短径长度小于内、外座圈之间的距离,所以外座圈可以自由转动图4-1Z楔块式单向离合器a〕不可转动匕〕可以转动①楔块结构d〕楔块式单向离合器1 -内座圈2-楔块3-外座圈4-保持架楔块的作用一般用于离合器锁紧、逆止作用,例如外圈相对于内圈沿逆时针方向转动时,楔块被推动发生倾斜,在内、外围之间让出一定空间,因而不会锁止离合器.换言之,图示楔块式单向离合器在任何时候都允许其外圈相对于内圈沿逆时针方向旋转,或允许其内圈相对于外围沿顺时针方向旋转.然而,假设外圈试图相对于内圈沿顺时针方向转动时,楔块因几何形状的缘故,将卡在内、外圈之间无法活动,从而将两者锁死在一起. 这就是说,一旦楔块卡住内、外圈,那么单向离合器出现锁止, 使外圈无法相对于内圈按顺时针方向旋转,或内圈相对于外圈按逆时针方向旋转.在汽车液力变矩器导轮的轴上为什么要装单向离合器液力变扭器所以能变扭,就是比液力耦合器多了一个固定的导轮机构.但是从传动特性看, 涡轮与泵论转速差较大时变扭器效率大于耦合器,当涡轮转速接近泵论时变扭器效率迅速下降,低于耦合器效率.所以采用一个自由轮斜面滚柱锁销机构,也就是你所说的单向离合器,其工作原理也就是一种超越离合器.在两轮传动比大时导轮固定不动,充分利用变扭器效率, 在传动比小时导轮随涡轮转动,成为耦合器,目的是提升液力变扭器的工作效率.变矩器的导轮中间为什么设置单向离合器当变矩器涡轮和泵轮转数相等, 泵轮的油液除了驱动涡轮旋转外, 已没有剩余能量,油液流动角度也变到了最小点, 涡轮返回的油液冲向了导轮的反面.在导轮上安装单向离合器,负责锁止左转,当油液冲击固定在单向离合器上导轮的反面时,导轮便开始旋转,这是个临界点,在这临界点之前为变矩工况,临界点之后为偶合工况.。
液力变矩器的结构与工作原理

液力变矩器的结构与工作原理•(一)液力变矩器的结构液力变矩器以液体作为介质,传递和增大来自发动机的扭矩液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。
各件用铝合金精密铸造或用钢板冲压焊接而成。
泵轮与变矩器壳成一体。
用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。
所有工作轮在装配后,形成断面为循环圆的环状体。
(二)液力变矩器的工作原理导涡泵液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成了液力偶合器,它能传轴,并不增扭。
变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到阻碍,可使涡轮受到反作用力F2,由于F1、F2都作用于涡轮,所以使涡轮所受扭矩得到增大。
涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。
所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。
导轮下端装有单向离合器,可增大其变扭范围。
(三)锁止式变矩器是用液力来传递汽车动力的,而液压油的内部摩擦会造成一定的能量损失,因此传动效率较低。
为提高汽车的传动效率,减少燃油消耗,现代很多轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。
这种变矩器内有一个由液压油操纵的锁止离合器。
锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作轴向移动的压盘,它通过花键套与涡轮连接(如图2.3).压盘背面(如图2.3右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力);压盘左侧(压盘与变矩器壳体之间)的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。
锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。
自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,操纵锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。
液力变矩器结构与原理

液力变矩器结构与原理液力变矩器(Torque Converter)是一种被广泛应用于汽车、船舶等动力传动系统中的液力传动装置。
它的主要作用是将发动机输出的高速低扭矩转化成低速大扭矩,从而实现汽车启动、加速、变速和传动的功能。
液力变矩器的结构复杂而精密,它包含了泵轮、涡轮、导叶轮等不同的部件,其中每个部件都扮演着特定的角色。
本文将详细介绍液力变矩器的结构与原理。
一、液力变矩器的结构液力变矩器是由泵轮、涡轮、导叶轮和油封等部件组成的。
泵轮和涡轮是液力变矩器的两个主要组成部分,其结构和相互配合决定液力变矩器的工作性能。
1. 泵轮(Pump Impeller)泵轮是液力变矩器的输入元件,它由一定数量的楔形叶片组成,其主要作用是将发动机输出的动力转化成液力。
当发动机运转时,泵轮产生旋转的动力,它通过离心力作用将工作介质(液体)强制送入涡轮。
2. 涡轮(Turbine Runner)涡轮是液力变矩器的输出元件,它与泵轮相对应,也由楔形叶片组成。
当泵轮发送液力流入涡轮时,涡轮受到液压的作用转动,从而输出扭矩。
涡轮的运转速度受到扭矩的大小以及返转器的变矩比的影响。
3. 导叶轮(Stator)导叶轮是液力变矩器的第三个组成部分,它位于泵轮和涡轮之间,主要用于改变流体的流向。
导叶轮的叶片可以自由调节,可以根据工作状态的需求来改变流体的流向,协助转化扭矩和提高效率。
4. 油封(Oil Seal)油封是用于保持液力变矩器内压力稳定的部件,它位于泵轮和涡轮之间,防止液体泄漏。
油封的质量和性能直接影响液力变矩器的工作效果和寿命。
二、液力变矩器的工作原理液力变矩器主要依靠流体的转化和涡旋流的原理来工作,通过泵轮、涡轮和导叶轮之间复杂的相互作用来实现转矩的变化。
液力变矩器的工作原理分为四个工作区域:冲击区、变矩区、松开区和高效率区。
1. 冲击区当发动机启动并带动泵轮开始旋转时,泵轮产生的涡旋流体流向涡轮,但此时导叶轮的叶片处于开启状态。
液力变矩器结构与原理

受力分析ห้องสมุดไป่ตู้
受力分析
液力变矩器结论
3.输出转矩——随着涡轮转速的变化而变化。 a.涡轮转速低时(nw=0),nB>nw,液体流向导轮正面,涡轮 转矩大于泵轮转矩,MD>0,MW=MB+MD, b.随着涡轮转速的升高(nw>0),接近0.85nB时,涡轮出口 处工作油流向与导轮叶片相切,涡轮转矩等于泵轮转矩, MD=0,Mw=MB(耦合点) c.涡轮转速继续升高,涡轮出口处工作油冲击导轮叶片背面, 此时涡轮转矩小于泵轮输入转矩,MD<0,Mw=MB-MD
d.当涡轮转速与泵轮转速( nB=nw )时,不再传递扭矩, Mw=0
泵轮内的工作油在离心力的作用下,由泵轮叶片外缘冲 向涡轮,并沿涡轮叶片流向导轮,再经导轮叶片流回泵 轮叶片内缘,形成循环的工作油。
②在液体循环流动过程中,导轮给涡轮一个反作用力矩,
从而使涡轮输出力矩不同于泵轮输入力矩,具有“变矩” 功能。
③导轮的作用:改变涡轮的输出力矩。
液力变矩器
涡流、环流、循环圆
液力变矩器的组成
2.组成:主要由泵轮、涡轮、导轮组成
液力变矩器的实物图
液力变矩器的剖视图
液力变矩器的组成—泵轮
①泵轮
使发动机机械能 液体能量
液力变矩器的组成—涡轮
②涡轮
将液体能量 机械能 涡轮轴上
液力变矩器的组成—导轮
③导轮 通过改变工作 油的方向而起变 矩作用
液力变矩器
涡轮
导轮
泵轮
液力变矩器—工作原理 ①发动机运转时带动液力变矩器的壳体和泵轮一同旋转,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章福伊特液力传动箱简介T211re.4液力传动箱是德国福伊特公司是专门为铁路车辆设计的涡轮传动装置。
它是350kW性能级别的轨道车专用传动箱。
第一节 T211re.4液力传动箱的技术指标一、T211re.4液力传动箱的主要技术参数:二、T211re.4液力传动箱的特性参数第二节 T 211re.4液力传动箱的特点一、命名规则:T211re.4液力传动箱是铁路工程车辆专用设备,其命名规则如下:二、T211re.4液力传动箱的特点T211re.4液力传动箱其输入功率科大350kW,采用全新的福伊特驱动控制器(VTDC)可以直接安装在传动箱上并录入运行数据。
另外还具有监控诊断功能,液力制动可以通过联合制动的方式整合进入车辆制动系统以及性能的高可靠性。
第二章 T211re.4液力传动箱的结构第一节 T211re.4液力传动箱的组成一、液力传动箱组成T211re.4液力传动箱由液力制动、液力液力变扭器、液力耦合器、换向机构、电气控制模块VTIC及部分组成,其外形如图2-1所示。
其输入、输出侧分别如图2-2、2-3所示。
图2-1 T211re.4液力传动箱外形图其液力传动箱包括机械部分和液力部分组件,其结构如图2-4所示。
二、机械组件机械组件包括增速齿轮、扭转减振器、换向装置、齿轮变速器。
图2-2 T211re.4液力传动箱输入侧1-输入装置图2-3 T211re.4液力传动箱输出侧2-输出装置图2-4 转动装置组件1-输出装置;2-增速齿轮;3-输入装置;4-液力偶合器;5-液力变扭器6-机械部件;7-换向装置的幵关轴传动箱输入轴(3)直接与柴油机相连,通过一对增速齿轮(2)将转速提升至液力元件的工作转速,变扭器(5)和偶合器(4)的泵轮都装在泵轮轴上,两者的涡轮都装在与传动箱输出相连的涡轮轴上,涡轮轴再通过一系列的机械齿轮最终驱动传动箱输出(1),通过换向离合器(7)的作用,使传动链里机械齿轮(6)的数量增减,实现换向。
三、液力组件液力组件包括液力变扭器、液力耦合器。
变扭器在低速段运转,耦合器在高速段运转。
增速齿轮用于将传动转速调整到所需泵轮轴的转速;扭转减振器在涡轮传动装置的输入侧,连接着柴油发动机,作用就是转移临界共振并减少动力系统的振动;换向装置用于更改涡轮传动装置中的旋转方向;齿轮变速器用于调整传动装置的从动转速。
传动装置控制器根据行驶速度和发动机负荷水平自动从一个液力循环切换到另一个。
低速时注入液力变扭器,高速时注入液力偶合器,切换期间不得中断牵引力。
四、液力传动箱剖面图T211re.4液力传动箱配面图及结构示意如图2-5所示。
图2-5 液力变矩器配面示意图1-输入轴;2-弹性连轴节;3-液力制动器;4-液力耦合器;5-取力口6-液力变扭器;7-连接轴;8-滑动轴/换向轴;9-换向机构;10-输出轴11- 二级润滑泵;12-增速齿轮;13-油泵;14-控制栗涡轮传动装置中的能量传导是通过循环圆中工作液体(传动油)的惯性力实现的。
当传动达到运行温度后,才能达到规定的牵引力。
当传动装置控制器收到牵引命令后,需要一秒钟的时间注满涡轮传动装置的液力循环系统。
涡轮传动装置中使用的传动油除了传输能量外,还用于涡轮传动装置的润滑、冷却和控制。
由于涡轮传动装置中的传动油必须满足极高的要求,因此只允许使用福伊特批准的传动油。
在牵引模式下存在热量损耗。
耗损的热量经由柴油发动机的冷却剂循环导出。
T211re.4液力传动箱的泵由液压输油泵、控制油泵、润滑泵。
其中输油泵、控制油泵与初级侧相连,液压循环系统的输油泵为所有的液压循环系统供应变速箱油,控制油泵以液压油为控制线路和润滑位置供应变速箱油;润滑油泵与次级侧相连,以传动油供给润滑点。
五、液力传动箱电气组件T211 re.4传动箱是一个电控的传动装置,传动箱液力元件的充油、传动箱转动方向的切换都由来自车辆控制系统的电信号,通过电液伺服阀完成。
控制传动箱的主要部件是安装在传动箱上的集成化控制板VTDC,以及有关的传感器、伺服阀和电缆连接。
T211re.4液力传动箱使用了以下组件:传动装置控制器VTDC (Voith Turbo Drive Control)、诊断端口D-IF、传感器、执行器、接线、插头连接。
如图2-6所示。
图2-6 液力变扭器外观示意图VTDC的硬件是控制器VTIC.1 (Voith Turbo Integrated Control)。
传感器、执行器和插头连接满足防护等级IP 67,其他电子组件的防护等级满足相关要求。
VTDC 处理车辆控制器发出的命令以及传感器发出的信号,并根据运行状态接通涡轮传动装置的执行机构。
VTDC与车辆控制器间通过CAN总线进行沟通。
VTDC配有可永久保存诊断与运行数据的数据存储器。
可通过电脑或者诊断与运行数据采集系统VTBSwin可以从诊断端口读取VTDC中的存储数据。
第二节液力传动箱组件的构造一、液力变扭器的构造液力变扭器也叫变矩器,液力变扭器的结构如图2-7、2-8所示,液力变扭器(Fluid Torque Converter)它有3个工作轮即、涡轮、组成的液力元件。
导轮则位于泵轮和涡轮之间,并与泵轮和涡轮保持一定的轴向间隙,通过导轮固定套固定于液力变扭器壳体上,位于液力传动箱的输出侧。
以液压油(ATF)为工作介质,起传递转矩、变矩、变速及离合的作用。
图2-7 液力变扭器结构图液力变扭器以液体为工作介质的一种非刚性变换器,是的形式之一。
二、液力耦合器的构造液力耦合器由泵轮和涡轮组成,泵轮装在输入轴上,涡图2-8 液力变扭器构造示意图1—飞轮;2—涡轮;3—泵轮;4—导轮;5—变矩器输出轴6—曲轴;7—导轮固定套轮装在输出轴上,如图2-9、2-10所示。
液力耦合器以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
图2-9 液力耦合器构造示意图三、传感器液力传动箱传感器较多,传感器就是实现对设备检测、诊断的元图2-10 液力耦合器构造示意图1—输入轴;2—泵轮叶轮;3—涡轮叶轮;4—输出轴5—内环;6—导轮轴栓槽件,包括速度传感器、温度传感器、位置传感器等,为机车提供液力传动箱各种技术参数,通过这些参数,可以掌握设备的运行状态,确保设备的正常运行。
速度传感器就是为机车提供液力传动箱转速参数,转速传感器安装于液力传动箱壳体外部,如图2-11所示。
图2-11 速度传感器温度传感器监视液力传动箱的液力传动油工作温度,对油温实时监测,为司机正确操控设备提供技术保障。
如图2-12所示。
图2-12 温度传感器换向位置传感器监视液力传动箱的输出轴的转动方向,以此确定机车运动方向,如图2-13。
图2-13 换向位置传感器四、电磁阀电磁阀是控制电路中的执行元件,通过电磁阀的动作可实现对设备工作状态的转换。
包括换向电磁阀、变扭器电磁阀、耦合器电磁阀。
如图2-14、2-15所示。
图2-14 耦合器控制电磁阀图2-15 换向制阀电磁控五、电气控制模块电气控制模块包括控制单元、诊断模块、诊断连接RS232、上载VTIC操作软件、CAN诊断连接。
控制单元VTIC.1安装在液力传动箱上,其工作温度为-40℃——105℃、电压范围是0V——32V、工作电压范围是16.8V——32V。
控制单元接口面板接口如图2-16所示。
诊断模块安装在车辆的电气柜中,工作环境温度为-40图2-15 控制单元接口面板示意图1-X1传感器接口;2-X3车控接口(车控系统电缆);3-X4控制阀接口4- X2 CAN-Bus总线接口;5-接地螺钉℃——70℃。
RS232诊断连接用于读取液力传动箱工作参数并从VTIC控制单元中获得诊断信息。
CAN诊断连接用于监控CAN-Bus数据。
诊断模块如图2-17所示。
图2-17 诊断模块示意图诊断模块故障信息报文对照项目状态信号功能状态1 快闪(0.2s)并长停顿(2s) 功能正常2 长闪(2s)并快停顿(0.2s) 功能错误3 闪停交替等时长(1s) 控制单元软件需要下载或更新,否者不适用4 连续闪控制模块功能失效诊断模块接口面板如图2-18所示。
图2-18 诊断模块接口面板示意图1-保险管;2、3-X163/X164VTIC终端接口;4- X162诊断接口CAN5-X161诊断接口RS232第三节液力传动箱的工作原理一、变扭器的作用变扭器是液力传动箱的主要的动力传动设备之一,其作用就是:1.离合器的作用。
当发动机怠速运行时,变扭器在发动机和变速箱之间充当一个断开连接(未接合)的离合器。
2.增扭矩作用。
当需要时,按高泵轮转速/低涡轮转速来倍增扭矩以提供一个更大的起动或驱动扭矩。
3.液力耦合作用。
在非怠速或非起动的其它工作过程中充当一个将发动机扭矩传递给变速箱的液力耦合器。
4.锁止作用。
工作时在发动机和变速箱之间提供1:1的动力传递。
另外变扭器还具有缓冲发动机及传动系的扭转振动的作用;还起到飞轮的作用,使发动机转动平稳;驱动液压控制的油泵;将发动机输出功率100%传递给变速器从而提高发动机燃油经济性并降低变速器温度等作用。
二、变扭器的工作过程发动机飞轮带动泵轮(输入)开始转动,泵轮带动了液力变扭器内的传动油转动;传动油转动带动涡轮(输出),最后经过固定的导轮叶片,再次回到泵轮完成循环。
变扭器传动油从涡轮流入导轮后方向会发生改变,当传动油经过涡轮再流回到泵轮时,其流动方向变得与泵轮运动方向相同(就像长江后浪推前浪),这就加强了泵轮的转动力矩,进而也就增大了输出扭矩。
如图2-19所示。
图2-19 变扭器工作过程1-泵轮;2-涡轮;3-导轮柴油发动机以增速齿轮驱动泵轮,柴油发动机的机械能转换成传动油的流动能量;涡轮通过减缓传动油速度和改变传动油方向吸收流动能量并再转换成机械能;导轮的作用是,无论涡轮流出方向如何,始终保持理想的泵轮流入方向。
导轮吸收泵轮与涡轮间的扭矩差,并以这种方式实现扭矩转换。
涡轮上产生的扭矩取决于体积流量、传动油偏转角度和速度。
涡轮力矩在涡轮停止时最大并随着涡轮转速的增加o 而降低。
泵轮的输入功率受各自涡轮转速影响则很小。
三、变扭器的动力传递过程1.变扭器的工作状态变扭器有三种工作状态,即增矩状态、耦合状态、自由旋转状态。
⑴增矩状态。
当泵轮的转速较高,而涡轮的转速较低时,传动油在涡轮的环流速度小(因传动油随涡轮绕轴线旋转而产生环流,涡轮转速低所以环流速度低),而涡流速度大(泵轮转速较大于涡轮转速,因泵轮外缘处压力较大于涡轮外缘处压力,所以涡流速度大),传动油由涡轮叶片内缘流出后,合成液流的方向冲击导轮叶片的正面(凹面),力图使导轮逆时针旋转,因为单向离合器对导轮的逆时针旋转有锁止作为,即导轮不能相对于固定套管作逆时针的旋转,导轮给传动油的反作用力矩再次作用于涡轮上,使涡轮的输出转矩增大,同时传动油经导轮叶片导向后,朝着有利于泵轮叶片旋转方向进入泵轮。