2015年历年山东省威海市数学中考真题及答案
2015-2016学年山东省威海市荣成市九年级(下)期中数学试卷详细答案与答案解析

2015-2016学年山东省威海市荣成市九年级(下)期中数学试卷一、选择题:1. 二次根式√x−1中字母x的取值范围是()A.x<1B.x≤1C.x>1D.x≥12. 下列计算错误的是()A.√2⋅√3=√6B.√2+√3=√5C.√12÷√3=2D.√8=2√23. 已知m=1+√2,n=1−√2,则代数式√m2+n2−3mn的值为()A.9B.±3C.3D.54. 关于x的方程(m−3)x m2−2m−1−mx+6=0是一元二次方程,则它的一次项系数是()A.−1B.1C.3D.3或−15. 用配方法解方程x2−2x−5=0时,原方程应变形为()A.(x+1)2=6B.(x+2)2=9C.(x−1)2=6D.(x−2)2=96. 对于任意的实数x,代数式x2−3x+3的值是一个()A.整数B.非负数C.正数D.无法确定7. 等腰三角形的底和腰是方程x2−6x+8=0的两根,则这个三角形的周长为()A.8B.10C.8或10D.不能确定8. 我市某楼盘原准备以每平方米8800元的价格对外销售,但是受国家楼市调控政策的影响,对价格进行了两次下调,最终的销售价格是每平方米6860元.设平均每次下调的百分率是x,可得方程()A.6860(1+x)+6860(1+x)x=8800B.6860(1+x)2=8800C.8800(1−x)x=6860D.8800(1−x)2=68609. 已知2+√3是关于x的方程x2−4x+c=0的一个根,则方程的另一个根与c的值是()A.2−√3,1B.−6−√3,15−8√3C.√3−2,−1D.2+√3,7+4√310. 若a +b +c =0,则关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有一根是( )A.1B.−1C.0D.无法判断11. 关于x 的方程x 2+(k 2−4)x +k +1=0的两个实数根互为相反数,则k 的值是( )A.k =±2B.k =2C.k ≥−1D.k =−212. 某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x =1000C.200+200×3x =1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:计算(√5−3)2=________.方程x 2−5x =0的解是________.方程3x 2−2x +m −1=0的根是−1,则另一个根是________.√50⋅√a 的值是一个整数,则正整数a 的最小值是________.甲公司前年缴税40万元,今年缴税67.6万元,则该公司缴税的年平均增长率为________.已知关于x 的方程2kx 2−(4k +1)x +2k −1=0有两个实数根,则k 的取值范围是________.三、解答题:计算:(1)(√24−√0.5+2√23)+(√18−√6);(2)23√9x −6√x 4+2x√1x .已知a ,b 满足√4a −5b +√a −b −1=0,求√ab ÷√b 3a 的值.解方程:(1)x2+2√5x+2=0;(2)2x(x−1)=3x−2;(3)(3y−2)2=4(2y−1)2;(4)(2x−5)2−4(2x−5)+3=0.当x为何值时,代数式x2−13x−12的值等于18.关于x的一元二次方程x2−2x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)如果x1+x2−x1x2<4,且k为整数,求k的值.商场某种商品平均每天可销售20件,每件盈利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?此时,每件衬衫盈利多少元?(2)每件衬衫降价多少元,商场平均每天盈利最多?学校计划利用一块空地修建一个学生自行车棚,其中一面靠墙,这堵墙的长度为12米,建造车棚的面积为80平方米.已知新建板墙的木板材料的总长为26米.为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么车棚的长与宽分别为多少米?参考答案与试题解析2015-2016学年山东省威海市荣成市九年级(下)期中数学试卷一、选择题:1.【答案】D【考点】二次根式有意义的条件【解析】根据被开方数大于等于0列式计算即可得解.【解答】由题意得,x−1≥0,解得x≥1.2.【答案】B【考点】二次根式的混合运算【解析】利用二次根式的运算方法逐一算出结果,比较得出答案即可.【解答】A、√2⋅√3=√6,计算正确;B、√2+√3,不能合并,原题计算错误;C、√12÷√3=√4=2,计算正确;D、√8=2√2,计算正确.3.【答案】C【考点】二次根式的化简求值【解析】原式变形为√(m+n)2−5mn,由已知易得m+n=2,mn=(1+√2)(1−√2)=−1,然后整体代入计算即可.【解答】m+n=2,mn=(1+√2)(1−√2)=−1,原式=√(m+n)2−5mn=√22−5×(−1)=√9=3.4.【答案】B【考点】一元二次方程的定义【解析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】由题意得:m 2−2m −1=2,m −3≠0,解得m =−1或m =3.m =3不符合题意,舍去,所以它的一次项系数−m =1.5.【答案】C【考点】解一元二次方程-配方法【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x 2−2x =5,方程的两边同时加上一次项系数−2的一半的平方1,得x 2−2x +1=6,∴ (x −1)2=6.故选C.6.【答案】C【考点】配方法的应用非负数的性质:偶次方【解析】根据完全平方公式,将x 2−3x38转化为完全平方的形式,再进一步判断.【解答】解:多项式x 2−3x +3变形得x 2−3x +94+34=(x −32)2+34,任意实数的平方都是非负数,其最小值是0,所以(x −32)2+34的最小值是34, 故多项式x 2−3x +3的值是一个正数,故选C .7.【答案】B【考点】解一元二次方程-因式分解法等腰三角形的判定与性质【解析】先求出方程的根,再根据三角形三边关系确定是否符合题意,然后求解.【解答】解:∵方程x2−6x+8=0的解是x=2或4,当2为腰,4为底时,2+2=4不能构成三角形;当4为腰,2为底时,4,4,2能构成等腰三角形,周长=4+4+2=10.故选B.8.【答案】D【考点】由实际问题抽象出一元二次方程【解析】关系式为:原价×(1−下调的百分比)2=实际的价格,把相关数值代入即可得到方程.【解答】解:设平均每次下调的百分率为x.根据题意得:88000(1−x)2=6860,故选D.9.【答案】A【考点】根与系数的关系【解析】首先设方程x2−4x+c=0的另一根为α,由根与系数的关系即可求得另一个根与c的值.【解答】设方程x2−4x+c=0的另一根为α,则α+2+√3=4,解得α=2−√3.所以c=(2+√3)(2−√3)=1.10.【答案】A【考点】一元二次方程的定义解一元二次方程-因式分解法一元二次方程的解【解析】把a+b+c=0转化为b=−(a+c)代入一元二次方程,再用因式分解法求出方程的根.【解答】∵a+b+c=0,∴b=−(a+c)①把①代入一元二次方程ax2+bx+c=0(a≠0)中,得:ax2−(a+c)x+c=0,ax2−ax−cx+c=0,ax(x−1)−c(x−1)=0,(x−1)(ax−c)=0,∴x1=1,x2=c.a11.【答案】D【考点】根与系数的关系【解析】根据一元二次方程根与系数的关系列出方程求解即可.【解答】设x1,x2是关于x的一元二次方程x2+(k2−4)x+k+1=0的两个实数根,且两个实数根互为相反数,则=−(k2−4)=0,即k=±2,x1+x2=−ba当k=2时,方程无解,故舍去.12.【答案】D【考点】由实际问题抽象出一元二次方程【解析】先得到二月份的营业额,三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000万元,把相关数值代入即可.【解答】∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1000,即200[1+(1+x)+(1+x)2]=1000.二、填空题:【答案】14−6√5【考点】二次根式的混合运算【解析】利用完全平方公式计算.【解答】解:原式=5−6√5+9=14−6√5.故答案为14−6√5.【答案】x1=0,x2=5【考点】解一元二次方程-因式分解法【解析】在方程左边两项中都含有公因式x,所以可用提公因式法.【解答】直接因式分解得x(x−5)=0,解得x1=0,x2=5.【答案】53【考点】根与系数的关系【解析】,然后解一次方程即可.设方程另一个根是t,根据根与系数的关系得到−1+t=−−23【解答】解:设方程另一个根是t,,根据题意得−1+t=−−23.解得t=53.故答案为53【答案】2【考点】二次根式的乘除法【解析】根据二次根式的乘法法则计算得到5√2a,再根据条件确定正整数a的最小值即可.【解答】∵√50⋅√a=√50a=5√2a是一个整数,∴正整数a是最小值是2.【答案】30%【考点】一元二次方程的应用【解析】设公司缴税的年平均增长率为x,根据增长后的纳税额=增长前的纳税额×(1+增长率),即可得到去年的纳税额是40(1+x)万元,今年的纳税额是40(1+x)2万元,据此即可列出方程求解.【解答】设该公司缴税的年平均增长率为x,依题意得40(1+x)2=67.6解方程得x=0.3=10%(舍去负值)所以该公司缴税的年平均增长率为30%.【答案】k≥−1且k≠016【考点】根的判别式【解析】根据x 的方程2kx 2−(4k +1)x +2k −1=0有两个实数根得到2k ≠0,△=b 2−4ac ≥0,列出k 的不等式,求出k 的取值范围即可.【解答】解:∵ 关于x 的方程2kx 2−(4k +1)x +2k −1=0有两个实数根,∴ k ≠0且Δ≥0,即Δ=(4k +1)2−4×2k ×(2k −1)≥0,且k ≠0,∴ Δ=16k +1≥0且k ≠0,∴ k ≥−116且k ≠0.故答案为:k ≥−116且k ≠0. 三、解答题:【答案】原式=2√6−√22+2√63+√24−√6=5√63−√24; 原式=2√x −3√x +2√x=√x .【考点】二次根式的加减混合运算二次根式的混合运算【解析】(1)先把各二次根式化为最简二次根式,然后去括号合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可.【解答】原式=2√6−√22+2√63+√24−√6=5√63−√24; 原式=2√x −3√x +2√x=√x .【答案】解:由题意得,4a −5b =0,a −b −1=0,则{4a −5b =0a −b =1, 解得,{a =5b =4, 则√ab ÷√b 3a =√ab ×a b 3=a b ,当a =5,b =4时,原式=54.【考点】非负数的性质:算术平方根【解析】根据非负数的性质列出二元一次方程组,求出a 、b 的值,根据二次根式的除法法则把原式化简,代入计算即可.【解答】解:由题意得,4a −5b =0,a −b −1=0, 则{4a −5b =0a −b =1, 解得,{a =5b =4, 则√ab ÷√b 3a =√ab ×ab 3=a b, 当a =5,b =4时,原式=54.【答案】解:(1)∵ △=(2√5)2−8=12,∴ x =−2√5±√122,∴ x 1=−√5+√3,xx 2=−√5−√3,(2)原方程可化为2x 2−5x +2=0, ∴ (2x −1)(x −2)=0,∴ x 1=2,x 2=12(3)两边直接开平方得,3y −2=±(4y −2), ∴ y 1=0,y 2=47;(4)∵ (2x −5)2−4(2x −5)+3=0. ∴ (2x −5−1)(2x −5−3)=0,∴ x 1=3,x 2=4.【考点】解一元二次方程-因式分解法解一元二次方程-公式法【解析】(1)直接用公式法求解;(2)原方程化简,再用因式分解法求解;(3)用直接开平方法求解即可;(4)把2x −5看作整体用因式分解法求解即可.【解答】解:(1)∵ △=(2√5)2−8=12,∴ x =−2√5±√122,∴ x 1=−√5+√3,xx 2=−√5−√3,(2)原方程可化为2x 2−5x +2=0, ∴ (2x −1)(x −2)=0,∴ x 1=2,x 2=12(3)两边直接开平方得,3y −2=±(4y −2),∴y1=0,y2=4;7(4)∵(2x−5)2−4(2x−5)+3=0.∴(2x−5−1)(2x−5−3)=0,∴x1=3,x2=4.【答案】解:由题意可得,x2−13x−12=18移项及合并同类项,得x2−13x−30=0∴(x−15)(x+2)=0∴x−15=0或x+2=0,解得x=15或x=−2,即当x=15或x=−2时,代数式x2−13x−12的值等于18.【考点】解一元二次方程-因式分解法【解析】根据题意可得x2−13x−12=18,从而可以得到x的值,本题得以解决.【解答】解:由题意可得,x2−13x−12=18移项及合并同类项,得x2−13x−30=0∴(x−15)(x+2)=0∴x−15=0或x+2=0,解得x=15或x=−2,即当x=15或x=−2时,代数式x2−13x−12的值等于18.【答案】∵方程有实数根,∴△=(−2)2−4(k+1)>0,解得k<0.故K的取值范围是k<0.根据一元二次方程根与系数的关系,得x1+x2=2,x1x2=k+1,x1+x2−x1x2=2−(k+1).由已知,得2−(k+1)<4,解得k>−3.又由(1)k<0,∴−3<k<0.∵k为整数,∴k的值为−2和−1.【考点】根的判别式根与系数的关系【解析】(1)方程有两个实数根,必须满足△=b2−4ac≥0,从而求出实数k的取值范围;(2)先由一元二次方程根与系数的关系,得x1+x2=−2,x1x2=k+1.再代入不等式x1+x2−x1x2<4,即可求得k的取值范围,然后根据k为整数,求出k的值.【解答】∵方程有实数根,∴△=(−2)2−4(k+1)>0,解得k<0.故K的取值范围是k<0.根据一元二次方程根与系数的关系,得x1+x2=2,x1x2=k+1,x1+x2−x1x2=2−(k+1).由已知,得2−(k+1)<4,解得k>−3.又由(1)k<0,∴−3<k<0.∵k为整数,∴k的值为−2和−1.【答案】设每件商品降价x元,由题意得,(40−x)(20+2x)=1200解得:x1=20,x2=10∵该商场为了尽快减少库存,则x=10不合题意,舍去.∴x=20,∴40−x=20,即每件衬衫应降价20元,每件衬衫盈利20元;设商场每天盈利为y,每件衬衫降价x元,由题意可得,y=(40−x)(20+2x)=−2(x−15)2+1250,∴当x=15时,商场平均每天盈利最多,即每件衬衫降价15元,商场平均每天盈利最多.【考点】二次函数的应用【解析】(1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以列出相应的函数关系式,将函数关系式化为顶点式即可解答本题.【解答】设每件商品降价x元,由题意得,(40−x)(20+2x)=1200解得:x1=20,x2=10∵该商场为了尽快减少库存,则x=10不合题意,舍去.∴x=20,∴40−x=20,即每件衬衫应降价20元,每件衬衫盈利20元;设商场每天盈利为y,每件衬衫降价x元,由题意可得,y=(40−x)(20+2x)=−2(x−15)2+1250,∴当x=15时,商场平均每天盈利最多,即每件衬衫降价15元,商场平均每天盈利最多.【答案】车棚的长为10米,宽为8米.【考点】一元二次方程的应用【解析】设垂直墙的一边为x米,则其长为26−2x+2米,根据长方形面积公式列方程求解可得.【解答】解:设垂直墙的一边为x米,根据题意,得:x(26−2x+2)=80,解得:x1=10,x2=4(经分析知不合题意,舍去)∴26−2×10+2=8(米)。
2015年山东省威海市中考数学试卷附详细答案(原版+解析版)

2015年山东省威海市中考数学试卷一、选择题1.(3分)(2015•威海)检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是( )2.(3分)(2015•威海)如图,在△ABC 中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC 的长,则下列按键顺序正确的是( )A .B . 、C .D .3.(3分)(2015•威海)据中国新闻网报道,在2014年11月17日公布的全球超级计算机500强榜单中,中国国防科技大学研制的“天河”二号超级计算机,以峰值计算速度每秒5.49亿亿次、持续计算速度每秒3.39亿亿次双精度浮点运算的优异性能位居榜首,第四次摘得全球运行速度最快的超级计算机桂冠.用科学记数法表示“5.49亿亿”,记作( )4.(3分)(2015•威海)如图是由4个大小相等的正方形搭成的几何体,其左视图是( )CD5.(3分)(2015•威海)已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )6.(3分)(2015•威海)若点A (a+1,b﹣2)在第二象限,则点B (﹣a ,b+1)在( )7.(3分)(2015•威海)下列运算正确的是( )8.(3分)(2015•威海)若用一张直径为20cm 的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为( ) 5cmD9.(3分)(2015•威海)如图,已知AB=AC=AD ,∠CBD=2∠BDC ,∠BAC=44°,则∠CAD 的度数为( )10.(3分)(2015•威海)甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( )CD11.(3分)(2015•威海)如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )CD12.(3分)(2015•威海)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()C D二、填空题13.(3分)(2015•威海)计算:20+()﹣1的值为.14.(3分)(2015•威海)如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为.15.(3分)(2015•威海)因式分解:﹣2x2y+12xy﹣18y=.16.(3分)(2015•威海)分式方程的解为.17.(3分)(2015•威海)如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为.18.(3分)(2015•威海)如图①,②,③,用一种大小相等的正多边形密铺成一个“环”,我们称之为环形密铺.但图④,⑤不是我们所说的环形密铺.请你再写出一种可以进行环形密铺的正多边形:.三、计算题19.(7分)(2015•威海)先化简,再求值:()÷,其中x=﹣2+.20.(8分)(2015•威海)某学校为了推动球类运动的普及,成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整).请你根据图中提供的信息,解答下列问题:(1)本次抽样调查,共调查了名学生;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生1800人,根据以上数据分析,试估计选择排球运动的同学约有多少人?21.(9分)(2015•威海)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y 元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.22.(9分)(2015•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.23.(10分)(2015•威海)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.24.(11分)(2015•威海)如图1,直线y=k1x与反比例函数y=(k≠0)的图象交于点A,B,直线y=k2x与反比例函数y=的图象交于点C,D,且k1•k2≠0,k1≠k2,顺次连接A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G,连接FG,EH.(1)四边形ADBC的形状是;(2)如图2,若点A的坐标为(2,4),四边形AEHC是正方形,则k2=;(3)如图3,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标;(4)判断:随着k1、k2取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由.25.(12分)(2015•威海)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B 的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E (5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.2015年山东省威海市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2015•威海)检验4个工件,其中超过标准质量的克数记作正数,不足标准质量2.(3分)(2015•威海)如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()B C D,根据计算器的应用,可得答案.,得3.(3分)(2015•威海)据中国新闻网报道,在2014年11月17日公布的全球超级计算机500强榜单中,中国国防科技大学研制的“天河”二号超级计算机,以峰值计算速度每秒5.49亿亿次、持续计算速度每秒3.39亿亿次双精度浮点运算的优异性能位居榜首,第四次摘得4.(3分)(2015•威海)如图是由4个大小相等的正方形搭成的几何体,其左视图是()C D5.(3分)(2015•威海)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()8.(3分)(2015•威海)若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略D5cmr=r==59.(3分)(2015•威海)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD 的度数为()10.(3分)(2015•威海)甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3C D∴混合后摸出红球的概率为:=,11.(3分)(2015•威海)如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF ⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()C DEF=ED=ED EF=((y=12.(3分)(2015•威海)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()C D=×)E×)二、填空题13.(3分)(2015•威海)计算:20+()﹣1的值为3.)14.(3分)(2015•威海)如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为55°.15.(3分)(2015•威海)因式分解:﹣2x2y+12xy﹣18y=﹣2y(x﹣3)2.16.(3分)(2015•威海)分式方程的解为x=4.17.(3分)(2015•威海)如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为().,,y=﹣﹣x+2=0,))18.(3分)(2015•威海)如图①,②,③,用一种大小相等的正多边形密铺成一个“环”,我们称之为环形密铺.但图④,⑤不是我们所说的环形密铺.请你再写出一种可以进行环形密铺的正多边形:正十二边形.三、计算题19.(7分)(2015•威海)先化简,再求值:()÷,其中x=﹣2+.÷÷•,﹣=20.(8分)(2015•威海)某学校为了推动球类运动的普及,成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整).请你根据图中提供的信息,解答下列问题:(1)本次抽样调查,共调查了400名学生;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生1800人,根据以上数据分析,试估计选择排球运动的同学约有多少人?=25%,排球所占的百分比为:21.(9分)(2015•威海)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y 元.(1)y与x的函数关系式为:y=﹣20x+1890;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.22.(9分)(2015•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.=,即=,23.(10分)(2015•威海)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.AB=6== AB=6===,AD=24.(11分)(2015•威海)如图1,直线y=k1x与反比例函数y=(k≠0)的图象交于点A,B,直线y=k2x与反比例函数y=的图象交于点C,D,且k1•k2≠0,k1≠k2,顺次连接A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G,连接FG,EH.(1)四边形ADBC的形状是平行四边形;(2)如图2,若点A的坐标为(2,4),四边形AEHC是正方形,则k2=;(3)如图3,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标;(4)判断:随着k1、k2取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由.y=y=.故答案为;;y=的图象过点y=(25.(12分)(2015•威海)已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B 的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.=1,﹣)=a=(x﹣,y=x;x),xx,可解得,时,)﹣(x﹣)x+4x+﹣(),≤,∴当x=时,有最大值;<x)﹣(﹣x﹣=﹣,时,×)=12。
2015年山东省威海市乳山市中考数学一模试卷和答案

2015年山东省威海市乳山市中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)计算(﹣)﹣1=()A.﹣ B.C.﹣2 D.22.(3分)下列各数中,为不等式组的解的是()A.﹣1 B.2 C.0 D.43.(3分)下列图形是中心对称图形的是()A.B.C.D.4.(3分)在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在()A.直线y=﹣x上B.直线y=x上C.双曲线y=D.抛物线y=x2上5.(3分)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长6.(3分)在△ABC中,∠C=90°,BC:AC=1:2,则cosA=()A.2 B.C.D.7.(3分)如果a,b是一元二次方程x2﹣2x﹣4=0的两个根,那么a3b﹣2a2b的值为()A.﹣8 B.8 C.﹣16 D.168.(3分)某工厂现在平均每天比原计划多生产30台机器,现在生产500台机器所需时间与圆计划生产350台机器所需时间相同.设原计划平均每天生产x 台机器,下面所列方程正确的是()A.B.C.D.9.(3分)如图,等边△ABC的边长是2,内心O是直角坐标系的原点,点B在y轴上.若反比例函数y=(x>0),则k的值是()A.B.C.D.10.(3分)如图,PA,PB是⊙O的切线,切点分别为A,B,∠APB=50°,C是⊙O上一点,则∠ACB的度数为()A.50°B.55°C.60°D.65°11.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.912.(3分)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣3,0),(x1,0),且2<x1<3,与y轴的负半轴交于点(0,﹣3)的上方.下列结论:①a>b>0;②6a+c<0;③9a+c>0;④3a<b+1.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:a3b﹣2a2b2+ab3=.14.(3分)在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.15.(3分)已知2a+2b+ab=,且a+b+3ab=,那么a+b+ab的值.16.(3分)如图,从点A(0,2)出发的一束光,经x轴反射,过点B(3,4),则入射点C的坐标是.17.(3分)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.18.(3分)在直角坐标系xOy中,对于点P(x,y),我们把点P′(y+1,﹣x+1)叫做点P的影子点.已知点A1的影子点为A2,点A2的影子点为A3,点A3的影子点为A4,…,这样依次得到点A1,A2,A3,…,A n,…若点A1的坐标为(a,b),对于任意的正整数n,点A n均在y轴的右侧,则a,b应满足的条件是.三、解答题(共7小题,满分66分)19.(7分)化简代数式,并判断当x满足不等式组时该代数式的符号.20.(8分)某中学拟组织学生开展唱红歌比赛活动.团委对初四一班会唱红歌的学生人数进行了统计(A:会唱1首;B会唱2首;C:会唱3首;D:会唱4首以上),并绘制了如下两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)在条形统计图中,将会唱4首以上的部分补充完整.(2)求该班会唱1首的学生人数占全班人数的百分比.(3)在扇形统计图中,计算会唱3首的部分所对应的圆心角的度数.(4)若该校初四共有350人,请你估计会唱3首红歌的学生约有多少人?21.(8分)某工厂一种产品2013年的产量是300万件,计划2015年的产量达到363万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品产量应达到多少万件?22.(9分)如图,山坡AB的坡度i=1:,AB=10米,AE=15米.在高楼的顶端竖立一块倒计时牌CD,在点B处测量计时牌的顶端C的仰角是45°,在点A 处测量计时牌的底端D的仰角是60°,求这块倒计时牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.414,≈1.732)23.(10分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.(1)求证:DE是⊙O的切线;(2)求证:BD2=AB•CE.24.(12分)如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E.(1)求证:PA=PE;(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且AD=10,DC=8,求AP:PE;(3)在(2)的条件下,当P滑动到BD的延长线上时(如图3),请你直接写出AP:PE的比值.25.(12分)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.2015年山东省威海市乳山市中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)计算(﹣)﹣1=()A.﹣ B.C.﹣2 D.2【分析】根据负指数的意义:负指数具有倒数的意义,计算即可.【解答】解:.故选:C.2.(3分)下列各数中,为不等式组的解的是()A.﹣1 B.2 C.0 D.4【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,由①得:x<4,由②得:x>,不等式组的解集为:<x<4,故选:B.3.(3分)下列图形是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称的定义知,绕一个点旋转180°后能与原图重合,则只有选项A是中心对称图形.故选:A.4.(3分)在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在()A.直线y=﹣x上B.直线y=x上C.双曲线y=D.抛物线y=x2上【分析】分别根据一次函数、反比例函数及二次函数图象上点的坐标特点进行分析即可.【解答】解:A、若此点坐标是(0,0)时,在直线y=﹣x上,故本选项错误;B、若此点坐标是(0,0)时,在直线y=x上,故本选项错误;C、因为双曲线y=上的点必须符合xy=1,故x、y同号与已知矛盾,故本选项正确;D、若此点坐标是(0,0)时,在抛物线y=x2上,故本选项错误.故选:C.5.(3分)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长【分析】可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.【解答】解:∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∴将a向右平移即可得到b、c,∵图形的平移不改变图形的大小,∴三户一样长.故选:D.6.(3分)在△ABC中,∠C=90°,BC:AC=1:2,则cosA=()A.2 B.C.D.【分析】根据勾股定理,可得AB的长,根据锐角三角函数的定义,可得答案.【解答】解:设BC=x,AC=2x,由勾股定理得AB=x,cosA===.故选:B.7.(3分)如果a,b是一元二次方程x2﹣2x﹣4=0的两个根,那么a3b﹣2a2b的值为()A.﹣8 B.8 C.﹣16 D.16【分析】先根据根与系数的关系得到ab=﹣4,再把原式表示得到原式=a2•ab﹣2a•ab,利用整体代入的方法可化简得到原式=﹣4a2+8a,接着根据一元二次方程解的定义得到a2=2a+4,然后再次利用整体代入的方法计算即可.【解答】解:根据题意,ab=﹣4,所以原式=a2•ab﹣2a•ab=﹣4a2﹣2a•(﹣4)=﹣4a2+8a,∵a是一元二次方程x2﹣2x﹣4=0的根,∴a2﹣2a﹣4=0,即a2=2a+4,∴原式=﹣4(2a+4)+8a=﹣8a﹣16+8a=﹣16.故选:C.8.(3分)某工厂现在平均每天比原计划多生产30台机器,现在生产500台机器所需时间与圆计划生产350台机器所需时间相同.设原计划平均每天生产x 台机器,下面所列方程正确的是()A.B.C.D.【分析】设原计划平均每天生产x台机器,则实际每天生产(x+30)台机器,根据现在生产500台机器所需时间与圆计划生产350台机器所需时间相同,列方程即可.【解答】解:设原计划平均每天生产x台机器,则实际每天生产(x+30)台机器,由题意得,=.故选:A.9.(3分)如图,等边△ABC的边长是2,内心O是直角坐标系的原点,点B在y轴上.若反比例函数y=(x>0),则k的值是()A.B.C.D.【分析】AC与y轴交于D,如图,连结OC,根据三角形内心性质得BD平分∠ABC,OC平分∠ACB,再根据等边三角形的性质得BD⊥AC,AD=CD=AC=1,∠OCD=×60°=30°,接着在Rt△ODC中利用三角函数可计算出OD=,则C(1,),然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:AC与y轴交于D,如图,连结OC,∵点O△ABC的内心,∴BD平分∠ABC,OC平分∠ACB,∵△ABC为等边三角形,∴BD⊥AC,AD=CD=AC=1,∠OCD=×60°=30°,在Rt△ODC中,∵tan∠OCD=,∴OD=1×tan30°=,∴C(1,),∵点C在反比例函数y=(x>0)的图象上,∴k=1×=.故选:A.10.(3分)如图,PA,PB是⊙O的切线,切点分别为A,B,∠APB=50°,C是⊙O上一点,则∠ACB的度数为()A.50°B.55°C.60°D.65°【分析】要求∠ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解.【解答】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠AOB=360°﹣(90°+90°+50°)=130°,∴∠ACB=∠AOB=65°.故选:D.11.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【分析】先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.12.(3分)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣3,0),(x1,0),且2<x1<3,与y轴的负半轴交于点(0,﹣3)的上方.下列结论:①a>b>0;②6a+c<0;③9a+c>0;④3a<b+1.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个【分析】①首先根据二次函数的图象开口向上,可得a>0;然后根据二次函数y=ax2+bx+c的图象与x轴交于点(﹣3,0),(x1,0),且2<x1<3,可得﹣<﹣<0,所以a>b>0,据此判断即可.②首先根据x=﹣3时,y=0,可得9a﹣3b+c=0,所以(6a+c)+(3a﹣3b)=0;然后根据a>b>0,可得3a﹣3b>0,所以6a+c<0,据此判断即可.③首先根据x=﹣3时,y=0,可得9a﹣3b+c=0;然后根据x=3时,y>0,可得9a+3b+c >0,据此推得9a+c>0即可.④首先根据x=﹣3时,y=0,可得9a﹣3b+c=0,则3a﹣b=﹣,进而得出答案.【解答】解:∵二次函数的图象开口向上,∴a>0;∵二次函数y=ax2+bx+c的图象与x轴交于点(﹣3,0),(x1,0),且2<x1<3,∴﹣<﹣<0,∴a>b>0,∴结论①正确;∵x=﹣3时,y=0,∴9a﹣3b+c=0,∴(6a+c)+(3a﹣3b)=0;又∵a>b>0,∴3a﹣3b>0,∴6a+c<0,∴结论②正确;∵x=﹣3时,y=0,∴9a﹣3b+c=0;∵x=3时,y>0,∴9a+3b+c>0,∴(9a﹣3b+c)+(9a+3b+c)>0,∴9a+c>0,∴结论③正确;当x=﹣3时,y=0,可得9a﹣3b+c=0,则3a﹣b=﹣,∵﹣3<c<0,∴﹣<1,∴3a<b+1,故④正确.故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:a3b﹣2a2b2+ab3=ab(a﹣b)2.【分析】先提取公因式ab,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.故填:ab(a﹣b)2.14.(3分)在一个不透明的袋子中,有3个白球和1个红球,它们只有颜色上的区别,从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸出白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次都摸出白球的有9种情况,∴两次都摸出白球的概率是:.故答案为:.15.(3分)已知2a+2b+ab=,且a+b+3ab=,那么a+b+ab的值.【分析】把第二个方程左右同乘2得:2a+2b+6ab=﹣1,与第一个方程联立可解得ab的值,代入其一方程即可得a+b的值,即可得a+b+ab的值.【解答】解:∵已知2a+2b+ab=①,a+b+3ab=②,∴②×2得:2a+2b+6ab=﹣1③,则③﹣①得:5ab=﹣1﹣,解得ab=﹣,把ab的值代入②式得:a+b=﹣+1=,∴a+b+ab=﹣=.故答案填:.16.(3分)如图,从点A(0,2)出发的一束光,经x轴反射,过点B(3,4),则入射点C的坐标是(1,0).【分析】过B点作x轴的垂线与x轴相交于点D,由已知条件可以得到△OAC∽△DBC,从而得到OC和OA,CD,BD的数量关系,求出OC的长,进而求出C 的坐标.【解答】解:过B点作X轴的垂线与X轴相交于点D,则BD⊥CD,∵A点经过点C反射后经过B点,∴∠OCA=∠DCB,∴△OAC∽△DBC,∴=,∵A的坐标为(0,2),点B的坐标为(3,4),∴OA=2,CD=OD﹣OC=3﹣OC,BD=4,∴=,∴OC=1,∴点C(1,0),故答案为:(1,0).17.(3分)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= 4m2.【分析】延长BD交AC于点E,则可知△ABE为等腰三角形,则S=S△ADE,S△△ABD=S△CDE,可得出S△ADC=S△ABC.BDC【解答】解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD ≌△AED (ASA ),∴BD=DE ,∴S △ABD =S △ADE ,S △BDC =S △CDE ,∴S △ABD +S △BDC =S △ADE +S △CDE =S △ADC ,∴S △ADC ═S △ABC =×8=4(m 2),故答案为:4.18.(3分)在直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(y +1,﹣x +1)叫做点P 的影子点.已知点A 1的影子点为A 2,点A 2的影子点为A 3,点A 3的影子点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,…若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n 均在y 轴的右侧,则a ,b 应满足的条件是 0<a <2且﹣1<b <1 .【分析】根据“影子点”的定义依次求出A 2,A 3,A 4,A 5,不难发现,每4个点为一个循环组依次循环,然后根据y 轴的右侧点的横坐标大于0列出不等式组求解即可.【解答】解:∵点A 1的坐标为(a ,b ),∴A 2(b +1,﹣a +1),A 3(﹣a +2,﹣b ),A 4(﹣b +1,a ﹣1),A 5(a ,b ), …,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n ,点A n 均在y 轴的右侧, ∴,,解得0<a <2,﹣1<b <1.故答案为:0<a <2且﹣1<b <1.三、解答题(共7小题,满分66分)19.(7分)化简代数式,并判断当x 满足不等式组时该代数式的符号.【分析】做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分化简为;再分别求出一元一次不等式组中两个不等式的解,从而得到一元一次不等式组的解集,依此分别确定x+1<0,x+2>0,从而求解.【解答】解:===,不等式组,解不等式①,得x<﹣1.解不等式②,得x>﹣2.∴不等式组的解集是﹣2<x<﹣1.∴当﹣2<x<﹣1时,x+1<0,x+2>0,∴,即该代数式的符号为负号.20.(8分)某中学拟组织学生开展唱红歌比赛活动.团委对初四一班会唱红歌的学生人数进行了统计(A:会唱1首;B会唱2首;C:会唱3首;D:会唱4首以上),并绘制了如下两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)在条形统计图中,将会唱4首以上的部分补充完整.(2)求该班会唱1首的学生人数占全班人数的百分比.(3)在扇形统计图中,计算会唱3首的部分所对应的圆心角的度数.(4)若该校初四共有350人,请你估计会唱3首红歌的学生约有多少人?【分析】(1)先求出全班总人数,再求出会唱4首以上的人数,补充条形统计图即可,(2)利用会唱1首的学生人数占全班人数的百分比=求解即可,(3)利用会唱3首的部分所对应的圆心角的度数=360°×对应的百分比求解即可,(4)利用会唱3首红歌的学生=总人数×会唱3首红歌的学生百分比求解即可.【解答】解:(1)全班总人数为18÷30%=60(人),会唱4首以上的人数为:60﹣6﹣18﹣24=12(人),补充条形统计图为:(2)该班会唱1首的学生人数占全班人数的百分比为:×100%=10%;(3)会唱3首的部分所对应的圆心角的度数为:×360°=144°;(4)会唱3首红歌的学生约有:350×=140(人).21.(8分)某工厂一种产品2013年的产量是300万件,计划2015年的产量达到363万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品产量应达到多少万件?【分析】(1)根据提高后的产量=提高前的产量(1+增长率),设年平均增长率为x,则第一年的常量是300(1+x),第二年的产量是300(1+x)2,即可列方程求得增长率,然后再求第4年该工厂的年产量.(2)2014年的产量是300(1+x).【解答】解:(1)2013年到2015年这种产品产量的年增长率x,则300(1+x)2=363,解得x1=0.1=10%,x2=﹣2.1(舍去),答:2013年到2015年这种产品产量的年增长率10%.(2)2014年这种产品的产量为:300×(1+0.1)=330(万件).答:2014年这种产品的产量应达到330万件.22.(9分)如图,山坡AB的坡度i=1:,AB=10米,AE=15米.在高楼的顶端竖立一块倒计时牌CD,在点B处测量计时牌的顶端C的仰角是45°,在点A 处测量计时牌的底端D的仰角是60°,求这块倒计时牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.414,≈1.732)【分析】首先作BF⊥DE于点F,BG⊥AE于点G,得出四边形BGEF为矩形,进而求出CF,EF,DE的长,进而得出答案.【解答】解:作BF⊥DE于点F,BG⊥AE于点G,∵CE⊥AE,∴四边形BGEF为矩形,∴BG=EF,BF=GE,在Rt△ADE中,∵tan∠ADE=,∴DE=AE•tan∠ADE=15,∵山坡AB的坡度i=1:,AB=10,∴BG=5,AG=5,∴EF=BG=5,BF=AG+AE=5+15,∵∠CBF=45°∴CF=BF=5+15,∴CD=CF+EF﹣DE=20﹣10≈20﹣10×1.732=2.68≈2.7(m),答:这块宣传牌CD的高度为2.7米.23.(10分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.(1)求证:DE是⊙O的切线;(2)求证:BD2=AB•CE.【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出=,从而求得BD•CD=AB•CE,由BD=AD,即可求得BD2=AB•CE.【解答】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)证明:∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴=,∴BD•CD=AB•CE,∵BD=AD,∴BD2=AB•CE.24.(12分)如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E.(1)求证:PA=PE;(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且AD=10,DC=8,求AP:PE;(3)在(2)的条件下,当P滑动到BD的延长线上时(如图3),请你直接写出AP:PE的比值.【分析】(1)过P作PM⊥AB于M,PN⊥BC于N,四边形BMPN是正方形,得出PM=PN,∠MPN=90°,求出∠APM=∠NPE,∠AMP=∠PNE,证△APM≌△EPN,推出AP=PE即可;(2)证△BPM∽△BDA,△BNP∽△BCD,得出=,=,推出=,求出==,证△APM∽△EPN,推出=即可;(3)过P作PM⊥AB于M,PN⊥BC于N,证△BPM∽△BDA,△BNP∽△BCD,得出=,=,推出=,求出==,证△APM∽△EPN,推出=即可.【解答】(1)证明:过P作PM⊥AB于M,PN⊥BC于N,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠MPB=45°=∠ABD,∴PM=BM,同理BP=BN,∵四边形ABCD是正方形,∴∠ABC=90°=∠BMP=∠BNP,∴四边形BMPN是正方形,∴PM=PN,∠MPN=90°,∵∠APE=90°,∴都减去∠MPE得:∠APM=∠NPE,∵PM⊥AB,PN⊥BC,∴∠AMP=∠PNE,在△APM和△EPN中∴△APM≌△EPN(ASA),∴AP=PE;(2)解:∵四边形ABCD是矩形,∴∠BAD=∠C=90°,∵∠PMB=ϖPNB=90°,∴PM∥AD,PN∥CD,∴△BPM∽△BDA,△BNP∽△BCD,∴=,=,∴=,∴===,∵∠AMP=∠ENP=90°,∠MPA=∠EPN,∴△APM∽△EPN,∴==,AP:PE=5:4;(3)解:AP:PE=5:4.25.(12分)如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.【分析】(1)由直线y=﹣x+2即可求得B、C的坐标;(2)待定系数法即可求得二次函数的解析式;(3)过C点作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),则EF=﹣a2+2a,然后根据S=S△BCD+S△CEF+S△BEF即可得出S关于a的解析式,根四边形CDBF据解析式的性质求得函数的最大值,进而求得E的坐标;(4)先求得CD的长,然后根据△CDP是以CD为腰的等腰三角形,求得CP1=DP2=DP3=CD,作CE⊥对称轴于E,得出EP1=ED=2,DP1=4,从而求得P1(,4),P2(,),P3(,﹣).【解答】解:(1)令x=0,则y=﹣x+2=2;令y=0,则0=﹣x+2,解得x=4,所以B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,把A、B的坐标代入得,,解得.∴该二次函数的关系式为y=﹣x2+x+2;(3)如图2,过C点作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2)∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a,(0≤a≤4),=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN∵S四边形CDBF=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a)=﹣a2+4a+=﹣(a﹣2)2+,(0≤a≤4),∴a=2时,S的最大值为;四边形CDBF∴E(2,1);(4)存在,如图3,∵抛物线y=﹣x2+x+2的对称轴x=﹣==,∴OD=,∵C(0,2),∴OC=2,在RT△OCD中,由勾股定理得CD=,∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD,如图所示,作CE⊥对称轴于E,∴EP1=ED=2,∴DP1=4,∴P1(,4),P2(,),P3(,﹣).赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
山东省威海市2015届中考数学模拟试卷(5)含答案解析

2015年山东省威海市中考数学模拟试卷(5)一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=32.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b63.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB 为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.2015年山东省威海市中考数学模拟试卷(5)参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R (⊙O的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A.【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD与⊙O相切,∵在⊙O中,∠COB=2∠CAB=2×30°=60°,又∵OB=OC,∴△OBC 是正三角形,∴∠OCB=60°,又∵∠BCD=30°,∴∠OCD=60°+30°=90°,∴OC ⊥CD ,又∵OC 是半径,∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°,∵OC=1,∴CD=,∴S △COD =OC •CD=, 又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB 为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。
山东省威海市中考试题 含答案

13.(3分)(2015•威海)计算:20+( )﹣1的值为3.
考点:
负整数指数幂;零指数幂..
分析:
根据0次幂和负整数指数幂,即可解答.
解答:
解:20+( )﹣1
=1+2
=3.
故答案为:3.
点评:
本题考查了0次幂和负整数指数幂,解决本题的关键是熟记相关法则.
14.(3分)(2015•威海)如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为55°.
∠CAD=2∠CBD,∠BAC=2∠BDC,
∴∠CAD=2∠BAC,而∠BAC=44°,
∴∠CAD=88°,
故选B.
点评:
该题主要考查了圆周角定理及其推论等几何知识点及其应用问题;解题的方法是作辅助圆,将分散的条件集中;解题的关键是灵活运用圆周角定理及其推论等几何知识点来分析、判断、推理或解答.
10.(3分)(2015•威海)甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( )
所以这个圆锥的高= =5 (cm).
故选A.
点评:
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
9.(3分)(2015•威海)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为( )
A.
68°
B.
88°
7.(3分)(2015•威海)下列运算正确的是( )
A.
(﹣3mn)2=﹣6m2n2
山东威海中考数学试题及答.doc

2015年山东威海中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2015年山东威海高级中等学校招生考试数学试卷

2015年威海市初中学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是()A.-2B.-3C.3D.52.如图,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5.若用科学计算器求边AC的长,则下列按键顺序正确的是()3.据中国新闻网报道,在2014年11月17日公布的全球超级计算机500强榜单中,中国国防科技大学研制的“天河二号”超级计算机,以峰值计算速度每秒5.49亿亿次、持续计算速度每秒3.39亿亿次双精度浮点运算的优异性能位居榜首,第四次摘得全球运行速度最快的超级计算机桂冠.用科学记数法表示“5.49亿亿”,记作()A.5.49×1018B.5.49×1016C.5.49×1015D.5.49×10144.下图是由4个大小相等的正方体搭成的几何体,其左视图是()5.已知实数a,b在数轴上的位置如下图所示,下列结论错误的是()A.|a|<1<|b|B.1<-a<bC.1<|a|<bD.-b<a<-16.若点A(a+1,b-2)在第二象限,则点B(-a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限7.下列运算正确的是()A.(-3mn)2=-6m2n2B.4x4+2x4+x4=6x4C.(xy)2÷(-xy)=-xyD.(a-b)(-a-b)=a2-b28.若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为()A.5cmB.5cmC.cmD.10cm9.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为()A.68°B.88°C.90°D.112°10.甲、乙两布袋都装有红、白两种小球,两袋装球总数相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍.将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是()A. B. C. D.11.如图,△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x 函数关系的图象是()12.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为()A. B. C. D.第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)13.计算:20+-的值为.14.如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为.15.因式分解:-2x2y+12xy-18y=.16.分式方程--=--2的解为.17.如图,点A,B的坐标分别为(0,2),(3,4),点P为x轴上的一个点.若点B关于直线AP的对称点B'恰好落在x轴上,则点P的坐标为.18.如图①、②、③,用一种大小相等的正多边形密铺成一个“环”,我们称之为环形密铺,但图④、⑤不是我们所说的环形密铺.请你再写出一种可以进行环形密铺的正多边形:.三、解答题(本大题共7小题,共66分)19.(7分)先化简,再求值:--÷-,其中x=-2+.20.(8分)某学校为了推动球类运动的普及,拟成立多个球类运动社团.为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动).并将调查结果绘制成了如下条形统计图和扇形统计图(不完整).请你根据图中提供的信息,解答下列问题:(1)本次抽样调查,共调查了名学生;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生1800人,根据以上数据分析,试估计选择排球运动的同学约有多少人.图①图②21.(9分)为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.22.(9分)如图,在△ABC中,AB=AC,以AC为直径的☉O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.23.(10分)(1)如图①,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长;(2)如图②,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.图①图②24.(11分)如图①,直线y=k1x与反比例函数y=(k≠0)的图象交于点A,B,直线y=k2x与反比例函数y=的图象交于点C,D,且k1·k2≠0,k1≠k2.顺次连结点A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G.连结FG,EH.(1)四边形ADBC的形状是;(2)如图②,若点A的坐标为(2,4),四边形AEHC是正方形,则k2=;(3)如图③,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标;(4)判断:随着k1,k2取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由.图①图②图③25.(12分)已知:抛物线l1:y=-x2+bx+3交x轴于点A,B(点A在点B的左侧),交y轴于点C,其对称轴为x=1.抛物线l2经过点A,与x轴的另一个交点为E(5,0),与y轴交于点D-.(1)求抛物线l2的函数表达式;(2)P为直线x=1上一点,连结PA,PC.当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.答案全解全析:一、选择题1.A由题意知,最接近标准的工件相应的绝对值最小.∵|-2|=2,|-3|=3,|3|=3,|5|=5,且2<3<5,∴选A.2.D在Rt△ACB中,由三角函数的定义得BC、AC与∠ABC之间的关系为AC=BC·tan∠ABC=5×tan26°,计算5×tan26°故选D.3.B∵1亿=1×108,∴5.49亿亿=5.49×108×108=5.49×1016.故选B.4.C从几何体的左面看,可得到竖直两列正方形,其中左边一列是上下叠放的两个正方形,右边一列是一个正方形.故选C.5.A如图,根据各数在数轴上的位置可知:-b<a<-1<1<-a(或|a|)<b(或|b|),所以1<-a<b、1<|a|<b、-b<a<-1均正确,只有|a|<1<|b|错误.故选A.6.A∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得a<-1,b>2,∴-a>0,b+1>0,∴点B(-a,b+1)在第一象限.故选A.7.C∵(-3mn)2=9m2n2,4x4+2x4+x4=7x4,(xy)2÷(-xy)=-(xy)2÷(xy)=-xy,(a-b)(-a-b)=-(a-b)(a+b)=-a2+ b2,∴只有选项C正确.故选C.8.A设圆锥底面圆的半径为r cm,依题意,得×20π=2πr,解得r=5,则所得圆锥的高为-=5cm.故选A.9.B∵AB=AC=AD,∴∠ABC=∠ACB,点B、C、D在以A为圆心的圆周上,∴∠BDC=∠BAC,∠CAD=2∠CBD,∵∠BAC=44°,∴∠BDC=22°,∵∠CBD=2∠BDC,∴∠C BD=44°,∴∠CAD=2∠CBD=88°.故选B.评析本题考查了等腰三角形的性质、圆周角与圆心角的关系,解题的关键是要能发现点B、C、D在以A为圆心的圆周上.10.C设甲袋中白球的个数为x,那么红球的个数为2x;乙袋中白球的个数为y,那么红球的个数为3y.根据题意,得3x=4y,球的总个数为3x+4y,红球的总个数为2x+3y,则将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是==.故选C.11.A∵DE∥AC,△ABC为等边三角形,∴△BDE也是等边三角形,∴∠BDE=60°,∵AB=2,AD=x,∴DE=BD=2-x,∵EF⊥DE,∴∠FED=90°,∴∠F=30°,∴EF=(2-x),∴y=DE·EF=×(2-x)×(2-x)=(2-x)2(0≤x≤2).故选A.12.D∵正六边形A1B1C1D1E1F1的边长为2=--,∴正六边形A2B2C2D2E2F2的外接圆的半径为2×=,则正六边形A2B2C2D2E2F2的边长为=--,同理,正六边形A3B3C3D3E3F3的边长为=--,……,正六边形A n B n C n D n E n F n的边长为--,则当n=10时,正六边形A10B10C10D10E10F10的边长为--===.故选D.二、填空题13.答案3解析20+-=1+=1+2=3.14.答案55°解析∠5=∠2=55°,∵a∥b,∴∠1=∠4=110°,∵∠4=∠3+∠5,∴∠3=110°-55°=55°.15.答案-2y(x-3)2解析先提取公因式,再用完全平方公式分解:-2x2y+12xy-18y=-2y(x2-6x+9)=-2y(x-3)2. 16.答案x=4解析去分母,得1-x=-1-2(x-3),去括号,得1-x=-1-2x+6,解得x=4,经检验,x=4是原方程的解.17.答案解析设点B'(m,0),则有AB'=AB,即-=,解得m=-3或m=3,易知当m=3时,不符合题意,故m=-3,即B'(-3,0),设直线B'B的解析式为y=kx+b,则有-解得由题意可知直线AP⊥B'B,故可设直线AP的解析式为y=-x+b',将点A的坐标代入,得2=-×0+b',解得b'=2,则直线AP的解析式为y=-x+2,令y=0,即-x+2=0,解得x=,故点P 的坐标为.18.答案正十二边形解析正n边形的每一个外角为(n≥3且n为正整数),以这个正多边形相邻的两个外角(顶点不在同一处)为一个等腰三角形的两个底角,则该等腰三角形的顶角为-×180°,易知只有当360°÷-=-为正整数时,相应的正n边形可以进行环形密铺,则还可以进行环形密铺的正多边形为正十二边形.三、解答题19.解析--÷-=----×-(2分)=--×-(3分)=-(4分)=-.(5分)当x=-2+时,原式=--=-=-.(7分) 20.解析(1)400.(2分)(2)本小题共4分,每画对一处得1分.(6分)图①图②(3)1800×10%=180(人).答:估计选择排球运动的同学约有180人.(8分)21.解析(1)y=-20x+1890.(3分)(2)由题意,知x<21-x,解得x<10.5.(5分)又∵x≥1,∴x的取值范围是1≤x≤10且x为整数.(6分)对于函数y=-20x+1890,y随x的增大而减小.∴当x=10时,y有最小值,y最小=-20×10+1890=1690.(8分)∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.(9分) 22.解析(1)证明:连结AE.(1分)图①∵AC为☉O的直径,∴∠AEC=90°.∴AE⊥BC.(3分)又∵AB=AC,∴BE=CE.(4分)(2)连结DE.(5分)图②∵四边形ACED为☉O的内接四边形,∴∠BED=∠BAC.又∵∠B=∠B,∴△BED∽△BAC.∴=.(7分)∵BE=CE=3,∴BC=6.又∵BD=2,∴AB=9.(8分)∴AC=9.(9分)评析本题是一道几何综合题,除考查圆的相关知识外,还考查了转化思想及构造法.23.解析(1)连结BE.(1分)图①∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD.又∵AC=BC,DC=EC,∴△ACD≌△BCE,∴AD=BE.(3分)∵AC=BC=6,∴AB=6.(4分)∵∠BAC=∠CAE=45°,∴∠BAE=90°.在Rt△BAE中,AB=6,AE=3,∴BE==9.∴AD=9.(5分)(2)连结BE.(6分)图②在Rt△ACB和Rt△DCE中,∠ABC=∠DEC=30°,∴tan30°===.∵∠ACB=∠DCE=90°,∴∠ACB+∠BCD=∠DCE+∠BCD.即∠ACD=∠BCE.∴△ACD∽△BCE.∴==.(8分)∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°.在Rt△ACB中,AC=3,∠ABC=30°,∴AB=6.在Rt△BAE中,AB=6,AE=8,∴BE=10.(9分)∵=,∴AD=.(10分)评析求线段长的常见方法有:①利用相似三角形的性质求线段长;②通过解直角三角形(含勾股定理)求线段长,所以对于此类问题要从相似或解直角三角形入手,通过作辅助线等寻找解题思路.24.解析(1)平行四边形.(1分)(2).(3分)(3)过点A作AM⊥y轴,垂足为M;过点C作CN⊥x轴,垂足为N.∵四边形EFGH为正方形,∴∠FEO=45°,EO=HO.∴∠AEM=45°.∵∠AME=90°,∴∠EAM=∠AEM=45°.∴AM=ME.同理可证CN=HN.(4分)∵点A(2,6),∴AM=ME=2,OM=6.∴OE=OH=4.设CN=HN=m,则点C的坐标为(4+m,m).(5分)∵反比例函数y=的图象经过点C和点A(2,6),∴(4+m)m=12.(6分)解得m1=2,m2=-6(舍去).当m=2时,m+4=6.∴点C的坐标为(6,2).(8分) (4)不能.(9分)∵反比例函数y=(k≠0)的图象不能与坐标轴相交,∴∠AOC<90°.(10分)∴四边形ADBC的对角线不能互相垂直.∴四边形ADBC不能为正方形.(11分)25.解析(1)对于抛物线l1,由题意,得-=1,∴b=2,-∴抛物线l1的函数表达式为y=-x2+2x+3.(1分)令-x2+2x+3=0,解得x1=-1,x2=3.∴点A的坐标为(-1,0).(2分)设抛物线l2的函数表达式为y=a(x+1)(x-5),将点D-代入,得a=.∴抛物线l2的函数表达式为y=x2-2x-.(3分)(2)设直线x=1与x轴交于点G,过点C作CH⊥PG,垂足为H.图①由(1)知,C的坐标为(0,3),(4分)则HG=OC=3.设P点的纵坐标为m.在Rt△APG中,AG=2,PG=m,∴AP2=22+m2=4+m2.(5分)在Rt△CHP中,CH=OG=1,HP=3-m,∴CP2=(3-m)2+12=m2-6m+10.(6分)∵AP=CP,∴4+m2=m2-6m+10.解得m=1.∴P点的坐标为(1,1).(7分)(3)设点M--,则N(x,-x2+2x+3).当-x2+2x+3=x2-2x-时,解得x1=-1,x2=.(8分)图②①当-1≤x≤时,MN=y N-y M=-x2+4x+=--+.显然,-1<<,∴当x=时,MN有最大值.(10分)②当≤x≤5时,MN=y M-y N=x2-4x-=--.显然,当x>时,MN随x的增大而增大,∴当点M与点E重合,即x=5时,MN有最大值:×52-4×5-=12.(11分)综上所述,在点M自点A运动至点E的过程中,线段MN长度的最大值为12.(12分)评析求解有关二次函数的综合题时,一定要认真审题,分清已知与未知之间的内在联系,灵活运用数学知识及数学思想方法解决问题.通过对试题的题干和图形的分析,找准解题的最佳切入点,在综合运用相关知识的同时,还要注意数学思想方法的运用.。
2015年山东省威海市开发区中考数学一模试卷及参考答案

2015年山东省威海市开发区中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)我区深入实施环境污染整治,去年排放的污水减少了256000吨,将256000用科学记数法表示为()A.2.56×104B.25.6×104C.2.56×105D.2.56×1083.(3分)下面的计算正确的是()A.3x2•4x2=12x2B.x3•x5=x15C.x4÷x=x3 D.(x5)2=x74.(3分)若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有()A.7桶 B.8桶 C.9桶 D.10桶5.(3分)如果0<m<10,并且m≤x≤10,那么,代数式|x﹣m|+|x﹣10|+|x ﹣m﹣10|化简的结果是()A.x﹣2m+20 B.x﹣2m C.x﹣20 D.20﹣x6.(3分)已知﹣=3,则分式的值为()A.B.﹣3 C.9 D.﹣7.(3分)已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为()A.2 B.﹣2 C.±2 D.±8.(3分)如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米 C.7.2米D.8米9.(3分)下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出的下列结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④3b=2c;其中正确的个数是()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度是()A.8 B.9 C.10 D.1112.(3分)某物流公司的快递车和货车每天往返于甲、乙两地,快递车比货车多往返一趟,如图表示快递车距离甲地的路程y(km)与货车出发所用时间x(h)之间的函数关系图象.已知货车比快递车早1小时出发,到达乙地后用1小时装卸货物,然后按原路以原速返回,结果与第二趟返回的快递车同时到达甲地,则下列说法正确的个数是()①货车的速度是50km/h;②两车在中途相遇3次;③货车从乙地返回甲地时,距离甲地的路程y(km)与所用时间x(h)的函数关系为y=﹣50x+450;④快递车第2次从甲出发到与返程的货车相遇所用时间为小时.A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:﹣x+2x2﹣x3=.14.(3分)计算:()﹣1+(﹣1)2﹣=.15.(3分)已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图所示),则sinθ的值为.16.(3分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是.17.(3分)如图,点D、E在△ABC的边BC、AB上,过A、C、D三点的圆的圆心为E,过B、F、E三点的圆的圆心为D,如果∠A=57°,那么∠B=度.18.(3分)如图,在平面直角坐标系中,已知直线l:y=﹣x﹣1,双曲线y=,在直线l上取点A1,过点A1作x轴的垂线交双曲线于点B1,过点B1作y轴的垂线交直线l于点A2,过点A2作x轴的垂线交双曲线于点B2,过点B2作y轴的垂线交直线l于点A3…,这样依次得到直线l上的点A1,A2,A3,A4,…,A n,…若点A1的横坐标为2,则点A2015的坐标为.三、解答题(共7小题,满分66分)19.(7分)解不等式组,并把解集在数轴上表示出来.20.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC和△DEF的顶点均在网格的格点上,按要求画出△A1B1C1和△D1E1F1(1)以图1中的点O为位似中心,在网格内画出△A1B1C1,使它与△ABC位似,且相似比为2;(2)以图2中的点O为位似中心,在网格内画出△D1E1F1,使它与△DEF位似,且相似比为2.21.(9分)如图,轮船从港口A出发,沿着南偏西15°的方向航行了100海里到达B处,沿着北偏东75°的方向航行200海里到达了C处.(1)求证:AC⊥AB;(2)轮船沿着BC方向继续航行去往港口D处,已知港口D位于港口A的正东方向,求轮船还需航行多少海里.22.(9分)某商场只销售A,B两个品牌的电视机,在四个月中共售出400台,具体的销售情况如图1、图2.(1)第四个月,A,B两个品牌的电视机共售出了台;(2)请在图2中补全表示B品牌电视机月销售的折线图;(3)已知该商场第三个月A,B两个品牌电视机的销售额共为27.5万元,第四个月的销售额共为34万元,请求出A,B两个品牌电视机每台的售价分别是多少?23.(10分)如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点E,点E为弧CF的中点,连接BE交AC于点M,AD为△ABC的角平分线交BC于点D,且AD⊥BE,垂足为点H(1)求证:AB是⊙O的切线;(2)若AB=3,BC=4,求BE的长.24.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q与B不重合),过P作PE⊥AB于E,连接PQ交AB于D(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由;(3)在整个运动过程中,设AP为x,BD为y,求y关于x的函数关系式,并写出自变量x的取值范围.25.(12分)如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y 轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.2015年山东省威海市开发区中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、是轴对称图形,也是中心对称图形.故本选项正确.故选:D.2.(3分)我区深入实施环境污染整治,去年排放的污水减少了256000吨,将256000用科学记数法表示为()A.2.56×104B.25.6×104C.2.56×105D.2.56×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:256000=2.56×105,故选:C.3.(3分)下面的计算正确的是()A.3x2•4x2=12x2B.x3•x5=x15C.x4÷x=x3 D.(x5)2=x7【分析】根据单项式的乘法、同底数幂的乘法和除法、幂的乘方等知识点进行判断.【解答】解:A、3x2•4x2=12x4,故本选项错误;B、x3•x5=x8,故本选项错误;C、正确;D、(x5)2=x10,故本选项错误.故选:C.4.(3分)若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有()A.7桶 B.8桶 C.9桶 D.10桶【分析】根据三视图的知识,底层应有5桶方便面,第二层应有3桶,第三层有1桶,即可得出答案.【解答】解:综合三视图,这堆方便面底层应该有5桶,第二层应该有3桶,第三层应该有1桶,因此共有5+3+1=9桶.故选:C.5.(3分)如果0<m<10,并且m≤x≤10,那么,代数式|x﹣m|+|x﹣10|+|x ﹣m﹣10|化简的结果是()A.x﹣2m+20 B.x﹣2m C.x﹣20 D.20﹣x【分析】根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:∵0<m<10,且m≤x≤10,∴x﹣m≥0,x﹣10≤0,x﹣m﹣10<0,则原式=x﹣m﹣x+10﹣x+m+10=20﹣x,故选:D.6.(3分)已知﹣=3,则分式的值为()A.B.﹣3 C.9 D.﹣【分析】先根据题意得出x﹣y=﹣3xy,再代入原式进行计算即可.【解答】解:∵﹣=3,∴x﹣y=﹣3xy,∴原式====.故选:A.7.(3分)已知关于x的方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,那么m的值为()A.2 B.﹣2 C.±2 D.±【分析】先根据根与系数的关系得到=1,解得m=2或m=﹣2,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2+(4m﹣1)x+4=0的两个实数根互为倒数,∴=1,解得m=2或m=﹣2,当m=2时,方程变形为4x2+7x+4=0,△=49﹣4×4×4<0,方程没有实数解,所以m的值为﹣2.故选:B.8.(3分)如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米 C.7.2米D.8米【分析】由MC∥AB可判断△DCM∽△DAB,根据相似三角形的性质得=,同理可得=,然后解关于AB和BC的方程组即可得到AB 的长.【解答】解:∵MC∥AB,∴△DCM∽△DAB,∴=,即=①,∵NE∥AB,∴△FNE∽△FAB,∴=,即=②,∴=,解得BC=3,∴=,解得AB=6,即路灯A的高度AB为6m.故选:B.9.(3分)下列说法错误的是()A.李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是B.一组数据6,8,7,8,8,9,10的众数和中位数都是8C.对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定D.一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是【分析】根据概率的意义,可判断A;根据众数的定义、中位数的定义,可判断B;根据方差的性质,可判断C;根据频率表示概率,可判断D.【解答】解:A、李老师要从包括小明在内的四名班委中,随机抽取2名学生参加学生会选举,抽到小明的概率是=,故A正确;B、一组数据6,8,7,8,8,9,10的众数和中位数都是8,故B正确;C、对甲、乙两名运动员某个阶段的比赛成绩进行分析,甲的成绩数据的方差是S甲2=0.01,乙的成绩数据的方差是S乙2=0.1,则在这个阶段甲的成绩比乙的成绩稳定,故C正确;D、一个盒子中装有3个红球,2个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到相同颜色的球的概率是,故D错误.故选:D.10.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出的下列结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④3b=2c;其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】①根据二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,据此判断即可.②根据对称轴是x=1,可得﹣=1,所以2a+b=0,据此判断即可.③根据函数的图象,可得x=﹣2时,y<0,所以4a﹣2b+c<0,据此判断即可.④首先根据x=﹣1时,y=0,可得a﹣b+c=0;然后根据2a+b=0,即可推得3b=2c.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴结论①正确.∵﹣=1,∴2a+b=0,∴结论②不正确.∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴结论③不正确.∵x=﹣1时,y=0,∴a﹣b+c=0,又∵2a+b=0,∴﹣+c=0,∴3b=2c,∴结论④正确.综上,可得正确的结论个数是2个:①④.故选:B.11.(3分)如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度是()A.8 B.9 C.10 D.11【分析】根据反比例函数k的几何意义得到|k1|=,|k2|=,解得k1=﹣3,k 2=27,设C点坐标为(0,t),则A点坐标为(﹣,t),B点坐标为(,t),再证明Rt△AOC∽Rt△OBC,利用相似比得到t:=:t,解得t=3,然后计算AB=+即可.【解答】解:∵AB∥x轴,交y轴于点C,=|k1|=,S△BOC=|k2|=,∴S△AOC∴k1=﹣3,k2=27,设C点坐标为(0,t),则A点坐标为(﹣,t),B点坐标为(,t),∵OA⊥OB,∴∠AOC+∠BOC=90°,而∠AOC+∠OAC=90°,∴∠OAC=∠BOC,∴Rt△AOC∽Rt△OBC,∴OC:BC=AC:OC,即t:=:t,解得t=3,∴AB=+===10.故选:C.12.(3分)某物流公司的快递车和货车每天往返于甲、乙两地,快递车比货车多往返一趟,如图表示快递车距离甲地的路程y(km)与货车出发所用时间x(h)之间的函数关系图象.已知货车比快递车早1小时出发,到达乙地后用1小时装卸货物,然后按原路以原速返回,结果与第二趟返回的快递车同时到达甲地,则下列说法正确的个数是()①货车的速度是50km/h;②两车在中途相遇3次;③货车从乙地返回甲地时,距离甲地的路程y(km)与所用时间x(h)的函数关系为y=﹣50x+450;④快递车第2次从甲出发到与返程的货车相遇所用时间为小时.A.1个 B.2个 C.3个 D.4个【分析】求出货车从甲地开往乙地的时间,然后计算速度即可,作出函数图象,再根据图象判断出相遇的次数即可;设y=kx+b(k≠0),然后利用待定系数法求一次函数解析式解答;求出快递车第二次从甲地出发的函数解析式,在与货车的解析式联立求解得到距离乙地的距离,然后求解即可.【解答】解:①由题意得,货车从甲地到达乙地的时间为×(9﹣1)=4小时,货车的速度是200÷4=50km/h,故正确;从4小时到5小时y=200km,9小时时y=0km,作函数图象如图所示,②两车在中途相遇3次,正确;③设y=kx+b(k≠0),∵函数图象经过点(5,200),(9,0),∴,解得,∴y=﹣50x+450,正确;④设快递车第二次从甲地出发的函数解析式为y=mx+n(m≠0),则,解得,∴y=100x﹣500,联立,解得,∴﹣5=小时,快递车第二次从甲地出发到与返程货车相遇所用时间为小时,错误;故选:C.二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:﹣x+2x2﹣x3=﹣x(x﹣1)2.【分析】原式提取﹣x,再利用完全平方公式分解即可.【解答】解:原式=﹣x(x2﹣2x+1)=﹣x(x﹣1)2,故答案为:﹣x(x﹣1)214.(3分)计算:()﹣1+(﹣1)2﹣=6﹣4.【分析】根据负整式指数幂的意义和完全平方公式得到原式=2+3﹣2+1﹣2,然后合并即可.【解答】解:原式=2+3﹣2+1﹣2=6﹣4.故答案为6﹣4.15.(3分)已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图所示),则sinθ的值为.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求得圆锥的母线长.根据正弦函数定义求解.【解答】解:设圆锥的母线长为R,由题意得65π=π×5×R,解得R=13.∴sinθ=.16.(3分)如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是1.【分析】先利用配方法得到抛物线y=x2﹣2x的顶点坐标为(1,﹣1),则抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,然后利用阴影部分的面积等于三角形面积进行计算.【解答】解:y=x2﹣2x=(x﹣1)2﹣1,即平移后抛物线的顶点坐标为(1,﹣1),所以抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,所以对称轴与两抛物线所围成的阴影部分的面积=×1×2=1.故答案为1.17.(3分)如图,点D、E在△ABC的边BC、AB上,过A、C、D三点的圆的圆心为E,过B、F、E三点的圆的圆心为D,如果∠A=57°,那么∠B=22度.【分析】连接EC、ED,如图,设∠B=x,根据等腰三角形的性质由EA=EC得∠A=∠ACE,再根据三角形内角和定理得到∠4=180°﹣2∠A=66°,而DB=DE,则∠1=∠B=x,利用三角形外角性质得∠2=∠1+∠B=2x,再利用EC=ED得到∠3=∠2=2x,然后根据三角形外角性质得到2x+x=66°,即得x=22°.【解答】解:连接EC、ED,如图,设∠B=x,∵EA=EC,∴∠A=∠ACE,∴∠4=180°﹣2∠A=180°﹣2×57°=66°,∵DB=DE,∴∠1=∠B=x,∴∠2=∠1+∠B=2x,而EC=ED,∴∠3=∠2=2x,∵∠4=∠3+∠B,∴2x+x=66°,即得x=22°,即∠B=22°.故答案为22.18.(3分)如图,在平面直角坐标系中,已知直线l:y=﹣x﹣1,双曲线y=,在直线l上取点A1,过点A1作x轴的垂线交双曲线于点B1,过点B1作y轴的垂线交直线l于点A2,过点A2作x轴的垂线交双曲线于点B2,过点B2作y轴的垂线交直线l于点A3…,这样依次得到直线l上的点A1,A2,A3,A4,…,A n,…若点A1的横坐标为2,则点A2015的坐标为(﹣,).【分析】先利用一次函数图象上点的坐标特征得到A1(2,﹣3),由A1B1⊥x轴得到B1点的横坐标为2,则利用反比例函数图象上点的坐标特征得到B1(2,),同理依次得到A2(﹣,),B2(﹣,﹣),A3(﹣,﹣),B3(﹣,﹣3),A4(2,﹣3),则可发现点A1与点A4的坐标相同,而2015=3×671+2,于是利用规律得到点A2015的坐标为与点A2的坐标相同,即A2015(﹣,).【解答】解:当x=2时,y=﹣x﹣1=﹣3,则A1(2,﹣3),∵A1B1⊥x轴,∴B1点的横坐标为2,当x=2时,y==,则B1(2,),同理,当y=时,﹣x﹣1=,解得x=﹣,则A2(﹣,),当x=﹣时,y==﹣,则B2(﹣,﹣),当y=﹣时,﹣x﹣1=﹣,解得x=﹣则A3(﹣,﹣),当x=﹣时,y==﹣3,则B3(﹣,﹣3),当y=﹣3时,﹣x﹣1=﹣3,解得x=2,则A4(2,﹣3),而2015=3×671+2,∴点A2015的坐标为与点A2的坐标相同,即A2015(﹣,).故答案为(﹣,).三、解答题(共7小题,满分66分)19.(7分)解不等式组,并把解集在数轴上表示出来.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,由①得:x<4,由②得:x≥3,不等式组的解集为:3≤x<4,在数轴上表示为:.20.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC和△DEF的顶点均在网格的格点上,按要求画出△A1B1C1和△D1E1F1(1)以图1中的点O为位似中心,在网格内画出△A1B1C1,使它与△ABC位似,且相似比为2;(2)以图2中的点O为位似中心,在网格内画出△D1E1F1,使它与△DEF位似,且相似比为2.【分析】(1)连结OA且延长OA到A1,使OA1=2OA,连结OB且延长OB到B1,使OB1=2OB,连结OC且延长OC到C1,使OC1=2OC,然后连结A1、B1、C1即可;(2)连结OD且反向延长OD到D1,使OD1=2OD,连结OE且反向延长OE到E1,使OE1=2OE,连结OF且反向延长OF到F1,使OF1=2OF,然后连结D1、E1、F1即可.【解答】解:(1)如图1,△1B1C1为所求;(2)如图2,△D1E1F1为所求.21.(9分)如图,轮船从港口A出发,沿着南偏西15°的方向航行了100海里到达B处,沿着北偏东75°的方向航行200海里到达了C处.(1)求证:AC⊥AB;(2)轮船沿着BC方向继续航行去往港口D处,已知港口D位于港口A的正东方向,求轮船还需航行多少海里.【分析】(1)利用方向角结合锐角三角函数关系得出AN的长,进而求出∠ACB 的度数,进而得出答案;(2)根据题意得出AC=DC,进而求出答案.【解答】(1)证明:过点A作AN⊥BC于点N,由题意可得:∠EBA=∠BAM=15°,∠EBC=75°,则∠ABC=60°,∵AB=100海里,∴BN=50海里,AN=50海里,故NC=200﹣50=150(海里),则tan∠ACN==,故∠ACF=30°,故∠BAC=90°,则AC⊥AB;(2)解:如图所示:延长BC交于一点D,∵∠BAC=90°,∠BAM=15°,∴∠DAC=15°,∵∠DAB=90°+15°=105°,∠ABC=60°,∴∠ADC=15°,∴AC=DC,∵AC==100(海里),答:轮船还需航行100海里.22.(9分)某商场只销售A,B两个品牌的电视机,在四个月中共售出400台,具体的销售情况如图1、图2.(1)第四个月,A,B两个品牌的电视机共售出了120台;(2)请在图2中补全表示B品牌电视机月销售的折线图;(3)已知该商场第三个月A,B两个品牌电视机的销售额共为27.5万元,第四个月的销售额共为34万元,请求出A,B两个品牌电视机每台的售价分别是多少?【分析】(1)先求得第四个月所占的百分比,然后400×第四个月所占的百分比即可求得第四个月的销售量;(2)先求的第三个月的销售量,然后三、四月份的销售量减去A品牌的销售量,求得B品牌的销售量,最后不全统计图即可;(3)设A品牌的单价为x万元,B品牌的单价为y元,根据销售额列出二元一次方程组求解即可.【解答】解:(1)400×(100%﹣15%﹣30%﹣25%)=400×30%=120;故答案为:120.(2)400×25%=100,100﹣50=50,120﹣40=80.不全统计图如图所示:(3)设A品牌的单价为x万元,B品牌的单价为y元.根据题意得:,解得;.答:A品牌的单价为0.25万元,B品牌的单价为0.3元.23.(10分)如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点E,点E为弧CF的中点,连接BE交AC于点M,AD为△ABC的角平分线交BC于点D,且AD⊥BE,垂足为点H(1)求证:AB是⊙O的切线;(2)若AB=3,BC=4,求BE的长.【分析】(1)连接EC,AD为△ABC的角平分线,得∠1=∠2,又AD⊥BE,可证∠3=∠4,由对顶角相等得∠4=∠5,即∠3=∠5,由E为的中点,得∠6=∠7,由BC为直径得∠E=90°,即∠5+∠6=90°,由AD∥CE可证∠2=∠6,从而有∠3+∠7=90°,得出即可;(2)在Rt△ABC中,由勾股定理可求AC=5,由∠3=∠4得AM=AB=3,则CM=AC ﹣AM=2,证得△CME∽△BCE,利用相似比可得EB=2EC,进而根据勾股定理即可求得.【解答】(1)证明:连接EC,∵AD⊥BE于H,∠1=∠2,∴∠3=∠4∵∠4=∠5,∴∠4=∠5=∠3,又∵E为的中点,∴∠6=∠7,∵BC是直径,∴∠E=90°,∴∠5+∠6=90°,又∵∠AHM=∠E=90°,∴AD∥CE,∴∠2=∠6=∠1,∴∠3+∠7=90°,又∵BC是直径,∴AB是半圆O的切线;(2)解:∵AB=3,BC=4,由(1)知,∠ABC=90°,∴AC=5在△ABM中,AD⊥BM于H,AD平分∠BAC,∴AM=AB=3,∴CM=2∵∠6=∠7,∠E为公共角,∴△CME∽△BCE,得===,∴EB=2EC.在RT△BCE中,根据勾股定理得,BE=.24.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q与B不重合),过P作PE⊥AB于E,连接PQ交AB于D(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由;(3)在整个运动过程中,设AP为x,BD为y,求y关于x的函数关系式,并写出自变量x的取值范围.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.(3)根据AP=x,BD=y,得出AE=x,得出关系式即可.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,在△APE与△BQF中,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变;(3)△APE中,∠APE=30°,AE=x,可得:,y=;自变量的取值范围为:0<x<6.25.(12分)如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y 轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.【分析】(1)利用待定系数法代入求出二次函数解析式即可;(2)利用配方法求出二次函数顶点坐标,再利用GH是△BEA的中位线.得出EA=3GH=.进而得出CF=FM+CM得出答案;(3)根据要使四边形BCPQ的周长最小,可将点C向上平移一个单位,再做关于对称轴对称的对称点C1,求出直线BC1的解析式,以及P、Q两点的坐标.【解答】解:(1)由题意得A(0,2)、B(2,2)、C(3,0).设经过A,B,C三点的抛物线的解析式为y=ax2+bx+2.则,解得,∴.(2)由=.∴顶点坐标为G(1,).过G作GH⊥AB,垂足为H.则AH=BH=1,GH=﹣2=.∵EA⊥AB,GH⊥AB,∴EA∥GH.∴GH是△BEA的中位线.∴EA=2GH=.过B作BM⊥OC,垂足为M.则MB=OA=AB.∵∠EBF=∠ABM=90°,∴∠EBA=∠FBM=90°﹣∠ABF.∴Rt△EBA≌Rt△FBM.∴FM=EA=.∵CM=OC﹣OM=3﹣2=1,∴CF=FM+CM=.(3)要使四边形BCPQ的周长最小,将B向下平移一个单位至K,取C关于对称轴对称点M.连接KM交对称轴于P,将P向上平移1个单位至Q,可使KP+PM最短.则QPKB为平行四边形,QB=PK,连接CP,轴对称求出CP=MP,则CP+BQ最小,因为CB,QP定值,则四边形BCPQ周长最短,∵将点C向上平移一个单位,坐标为(3,1),再做关于对称轴对称的对称点C1,∴得点C 1的坐标为(﹣1,1).可求出直线BC1的解析式为.直线与对称轴x=1的交点即为点Q,坐标为Q(1,).∴点P的坐标为(1,).赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-a a-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。