EMC电源谐波整改
_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在特定的电磁环境中,正常工作而不产生或者受到不可接受的电磁干扰的能力。
为了确保产品的EMC符合相关标准和要求,需要进行EMC测试和整改工作。
本文将介绍一些常见的EMC整改措施。
二、EMC整改常见措施1. 电源滤波器的安装:电源滤波器可有效减少电源线上的高频噪声和干扰电压,提高设备的抗干扰能力。
常见的电源滤波器包括LC型滤波器、RC型滤波器和Pi型滤波器等。
根据实际情况选择合适的电源滤波器进行安装。
2. 地线设计与布线:合理的地线设计和布线对于减少电磁干扰具有重要作用。
地线应尽量短而粗,与设备的外壳连接良好。
布线时应避免地线与信号线、电源线等相互交叉,减少干扰。
3. 屏蔽设计:屏蔽是减少电磁辐射和接收电磁干扰的有效手段。
采用金属屏蔽盒、屏蔽罩等材料对设备进行屏蔽,可以有效地阻挡外部电磁干扰的入侵和内部电磁辐射的泄漏。
4. 接地设计:良好的接地设计有助于降低设备的电磁辐射和提高抗干扰能力。
设备应与地线连接良好,接地电阻应符合相关标准要求。
同时,需要避免接地回路上的共模电流引起的干扰。
5. 信号线和电源线的分离:信号线和电源线的分离可以减少电磁干扰的传导。
在布线时,尽量避免信号线和电源线平行走向,尽量交叉布线或者采用屏蔽线缆。
6. 合理的路线布局:合理的路线布局有助于减少电磁干扰。
将高频和低频路线分开布局,避免相互干扰。
同时,要注意路线的长度和走向,尽量缩短路线长度,减少电磁辐射。
7. 合适的滤波器选择:根据设备的实际情况选择合适的滤波器进行安装。
滤波器可以有效地滤除高频噪声和干扰信号,提高设备的抗干扰能力。
8. 合格的电磁屏蔽材料:选择合格的电磁屏蔽材料对于减少电磁辐射和接收电磁干扰至关重要。
材料的选择应符合相关标准和要求,确保其良好的屏蔽性能。
9. 设备的绝缘和接地测试:定期进行设备的绝缘和接地测试,确保设备的绝缘电阻和接地电阻符合标准要求。
_EMC_整改常见措施

_EMC_整改常见措施标题:EMC整改常见措施引言概述:电磁兼容性(Electromagnetic Compatibility,EMC)是指电子设备在电磁环境中能够正常工作而不对周围环境和其他设备造成干扰的能力。
在实际应用中,由于各种因素的影响,电子设备可能出现EMC问题,需要进行整改措施。
本文将介绍EMC整改的常见措施,帮助读者更好地解决EMC问题。
一、电路设计方面的整改措施1.1 优化PCB布局:合理布局电路板上的元器件,减少信号线长度,减小回路面积,降低电磁辐射。
1.2 使用屏蔽罩:对容易产生电磁辐射的元器件或电路进行屏蔽,减少电磁波的辐射和传播。
1.3 降低电路噪声:采取滤波、隔离等措施,减少电路中的噪声干扰,提高电路的抗干扰能力。
二、外壳设计方面的整改措施2.1 选择合适的外壳材料:外壳材料应具有良好的屏蔽性能,能够有效阻挡电磁波的传播。
2.2 设计合理的接地结构:外壳的接地结构应设计合理,确保外壳与地线连接良好,减少接地回路的阻抗。
2.3 添加滤波器:在外壳上添加滤波器,对进出的电磁波进行滤波处理,降低外壳内的电磁辐射水平。
三、电源线设计方面的整改措施3.1 优化电源线布局:电源线应尽量远离信号线,减少电磁干扰的可能性。
3.2 使用滤波器:在电源线上添加滤波器,减少电源线传导的电磁干扰。
3.3 稳定电源供应:确保电源供应稳定,避免电源波动引起的电磁干扰。
四、设备测试方面的整改措施4.1 进行辐射测试:对设备进行辐射测试,检测设备的电磁辐射水平,及时发现问题并进行整改。
4.2 进行传导测试:对设备进行传导测试,检测设备的电磁传导水平,找出潜在的干扰源。
4.3 进行整体测试:对整个设备进行综合测试,验证设备的整体电磁兼容性,确保设备符合相关标准要求。
五、软件设计方面的整改措施5.1 优化软件编程:减少软件中的电磁辐射源,降低软件对电磁兼容性的影响。
5.2 添加滤波算法:在软件中添加滤波算法,对输入输出信号进行滤波处理,减少电磁干扰。
emc 谐波不合格

如果EMC的谐波不合格,可能会对电网和其他电子设备造成干扰和影响。
以下是一些可能的解决方法:1. 减弱干扰源:在找到干扰源的基础上,可对干扰源进行允许范围内的减弱。
例如,在IC的Vcc和GND之间加去耦电容,该电容的容量在0.01μF~0.1μF之间,安装时注意电容器的引线越短越好。
还可以在保证灵敏度和信噪比的情况下加衰减器,如VCD、DVD视盘机中的晶振,它对电磁兼容性影响较为严重,减少其幅度就是可行的方法之一。
2. 电线电缆的分类整理:在电子设备中,线间耦合是一种重要的途径,也是造成干扰的重要原因。
因为频率的因素,可大体分为高频耦合与低频耦合。
低频耦合是指导线长度等于或小于1/16波长的情况。
高频耦合则是指频率高于1MHz的信号线。
对于高频信号线,需要使用屏蔽电缆,并确保电缆的屏蔽层完整,且端接可靠。
对于低频信号线,可以使用双绞线或编织线等措施来减少线间干扰。
3. 改善底线系统:在具体的电气电子设备中,理想的底线系统是不存在的。
当电流流过地线时必然会产生电压降。
因此,需要采取措施来降低地线的阻抗,以减少电压降。
例如,增加地线的截面积,使用低阻抗的连接器等。
4. 屏蔽:屏蔽是EMC整改中常用的一种方法。
它可以有效地抑制电磁波的传播,减少干扰源对周围电路的影响。
对于不同的干扰源,需要采取不同的屏蔽措施。
例如,对于传导干扰,需要将干扰源屏蔽在一个密闭的空间中;对于辐射干扰,需要使用导电材料将干扰源包裹起来,以减少电磁波的传播。
5. 使用滤波器:滤波器是一种用于抑制电磁干扰的装置,它可以有效地滤除电源线或信号线上的干扰信号。
根据不同的应用场景和需求,可以选择不同类型的滤波器,如电源滤波器、信号滤波器等。
以上是一些可能的解决方法,具体的整改措施需要根据具体情况进行选择和实施。
同时,还需要注意整改过程中的合规性和安全性。
EMC测试及整改办法

EMC测试及整改办法EMC测试主要包括了:空间辐射、传导、功率辐射、磁场辐射、谐波、电压波动、静电、抗辐射、快速脉冲群、雷击、抗传导、工频磁场、电压跌落、低频传导骚扰。
EMC整改办法:电磁干扰:低于30MHZ 以传导的方式进行传播,高于30MHZ以辐射的方式进行传播。
CE(传导骚扰)1. 在频率9KHz-1MHz, 电源输入端加X 电容和电感(共模、差模)或更换电容和电感的参数.2. 在频率500KHz-10MHz , 屏蔽变压器;更改变压器初次级之间Y 电容的参数或加共模电感及调整电感参数.3. 在频率10MHz-30MHz, 在MOS 管和场效应管的引脚套磁珠或调整接地方式.MOS管一般又叫场效应管,与二极管和三极管不同,二极管只能通过正向电流,反向截止,不能控制,三极管通俗讲就是小电流放大成受控的大电流,MOS管是小电压控制电流的,MOS管的输入电阻极大,兆欧级的,容易驱动,但是价格比三极管要高,一般适用于需要小电压控制大电流的情况,电磁炉里一般就是用的20A或者25A的场效应管。
RE(辐射骚扰)音视频产品 .1. 晶振引脚对地加电容及两脚之间并电阻;在时钟信号线上根据对应的频率串磁珠.2. 在数据连接线上套磁环.3. 屏蔽解码板接地或屏蔽干扰源.4. 信号接地方式.(多点接地、串接、并接)家电产品1. 更换马达碳刷或马达电感.2. 马达碳刷一端对地加Y 电容或更换电容参数.3. 电源线或控制线上套磁环.ESD1. 屏蔽IC 接地.2. 电路元件安全距离.3. 阻隔放电路径.4. I/O Port 接脚,与外壳地相接.5. 增长放电路径.EFT1.电源线上套磁环.2.电源输入端加共模电感.3.针对测试功能异常,在其异常电路上对地加电容.。
EMC常见问题整改的流程及经验总结

EMC常见问题整改的流程及经验总结EMC主要是通过测试产品在电磁方面的干扰大小和抗干扰能力的综合评定,是产品在质量安全认证重要的指标之一。
很多产品在做产品安全认证时都会遇到产品测试不合格的情况,尤其是在电磁兼容测试(即EMC测试)出错频率更是普遍。
当产品一旦测试不合格,那么随之而来的肯定是EMC整改通知书。
在EMC整改过程中很多管理人和技术人员并不太明白该从何处入手,今天我们就来分析EMC整改常遇到的问题和一些整改建议。
首先我们来从EMC测试项目构成说起,EMC主要包含两大项:EMI(干扰)和EMS(产品抗干扰和敏感度)。
当然这两大项中又包括许多小项目,EMI主要测试项:RE(产品辐射,发射)、CE(产品传导干扰)、Harmonic(谐波)、Ficker(闪烁)。
EMS主要测试项:ESD(产品静电)、EFT(瞬态脉冲干扰)、DIP(电压跌落)、CS(传导抗干扰)、RS(辐射抗干扰)、Surge (雷击)、PMS(磁场抗扰)。
通过这些测试项目我们不难看出EMC测试主要围绕产品的电磁干扰和敏感度两部分,如果一旦产品不符合安全认证标准需要EMC整改的时候我们可以通过降低其材料和零部件进行整改。
一、EMC整改意见1.1、在拿到整改意见书以后,需要提前定位好EMC整改计划。
没有定位好计划就去盲目的整改产品就像无头的苍蝇一样到处乱动,这样只会增加整改的成本。
2、定位手段,对于这里小编觉得主要可以分为两点。
第一:直觉判断,需要完全依托工程师的直觉和经验来进行判断。
第二:比较测试,根据测试仪器所提供的数据来进行分析问题。
二、EMC整改流程1、RE超标整改流程:2、电线电缆超标整改流程:3、信号电缆整改流程:4、屏蔽体泄漏整改流程:三、EMC整改的一些小建议1、电容的滤波作用即频率f越大,电容的阻抗Z越小。
当低频时,电容C由于阻抗Z比较大,有用信号可以顺利通过;当高频时,电容C由于阻抗Z已经很小了,相当于把高频噪声短路到GND上去了。
_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指电子设备在电磁环境中能够正常工作,同时不对周围的其他设备或者系统产生不可接受的干扰。
在实际应用中,由于各种原因,电子设备可能会存在电磁兼容性问题,需要进行整改措施。
二、EMC整改常见措施1. 设备屏蔽设备屏蔽是一种常见的EMC整改措施,通过在设备外壳或者电路板上添加屏蔽材料,有效地阻隔电磁辐射和电磁感应。
屏蔽材料可以是金属盖板、金属屏蔽罩等,能够将电磁波反射、吸收或者散射,从而达到减少干扰的效果。
2. 地线设计地线设计是EMC整改中的关键措施之一。
良好的地线设计可以有效地抑制电磁辐射和电磁感应,减少电磁干扰。
在地线设计中,需要合理规划地线的走向和布局,确保地线的连接良好,并避免浮现地线回流、地线环路等问题。
3. 滤波器应用滤波器是一种常用的EMC整改措施,通过滤除电源线上的高频噪声,减少电磁辐射和电磁感应。
滤波器可以分为入线滤波器和出线滤波器,分别用于滤波电源输入端和输出端的电磁干扰。
合理选择并应用滤波器,可以有效地提高设备的抗干扰能力。
4. 等效电路仿真等效电路仿真是一种常见的EMC整改手段,通过建立设备的等效电路模型,分析电磁辐射和电磁感应的机理,预测设备在不同工作条件下的电磁兼容性。
通过仿真分析,可以找出设备中存在的电磁兼容性问题,并采取相应的措施进行整改。
5. 电磁屏蔽间隙控制电磁屏蔽间隙控制是一种常用的EMC整改措施,通过控制设备外壳或者电路板之间的间隙,减少电磁波的穿透和辐射。
合理设计和控制屏蔽间隙,可以有效地提高设备的抗干扰能力,减少电磁辐射和电磁感应。
6. 接地设计合理的接地设计是EMC整改中的重要措施之一。
通过良好的接地设计,可以减少电磁辐射和电磁感应,提高设备的抗干扰能力。
在接地设计中,需要注意接地回路的布局、接地电阻的选择和接地线的连接方式等方面。
_EMC_整改常见措施

_EMC_整改常见措施EMC整改常见措施一、背景介绍电磁兼容性(Electromagnetic Compatibility,简称EMC)是指在特定的电磁环境中,电子产品能够正常工作,不对周围环境产生电磁干扰,同时也不受到来自外界电磁干扰的影响。
为了确保电子产品的EMC性能达到要求,需要进行EMC测试和整改。
二、EMC整改的重要性1. 符合法规要求:各国都有相应的EMC法规和标准,电子产品必须符合这些法规要求,才能在市场上合法销售。
2. 保证产品质量:EMC问题可能导致电子产品性能下降、故障增多,甚至对人体健康造成影响。
通过EMC整改,可以提升产品质量和可靠性。
3. 提高市场竞争力:合格的EMC性能是产品质量的重要指标之一,具备良好的EMC性能的产品更容易获得市场认可,提高竞争力。
三、EMC整改常见措施1. 电路设计优化- 采用合适的滤波器:在电路中增加滤波器,可以有效抑制电磁噪声的传播。
- 优化接地设计:合理规划接地系统,降低共模干扰和差模干扰。
- 控制信号线长度:控制信号线的长度,减少电磁辐射和接收到的外界干扰。
- 选择合适的元器件:选择具有良好EMC性能的元器件,如低噪声放大器、抗干扰电容等。
- 电源线滤波:在电源线上添加滤波器,减少电源线上的电磁干扰。
2. 机械结构设计优化- 合理布局:合理布置电子元器件和线路板,减少电磁辐射和接收到的外界干扰。
- 金属屏蔽:对敏感电路进行金属屏蔽,阻隔外界电磁干扰。
- 接地设计:合理规划接地系统,降低共模干扰和差模干扰。
3. 电磁屏蔽设计- 选择合适的屏蔽材料:根据不同频率的电磁波选择合适的屏蔽材料,如金属、导电涂料等。
- 屏蔽结构设计:合理设计屏蔽结构,确保电磁波无法穿透屏蔽层。
4. 地线设计- 合理规划地线:地线是有效抑制电磁干扰的重要手段,需要合理规划地线的布局和连接方式。
- 减少回流路径:减少回流路径可以降低电磁辐射和接收到的外界干扰。
5. 整机测试和验证- 进行EMC测试:通过专业的EMC测试设备对整机进行测试,评估其EMC 性能是否符合要求。
开关电源各频率段EMC整改对策

设计开关电源时防止EMI的措施:1.把噪音电路节点的PCB铜箔面积最大限度地减小;如开关管的漏极、集电极,初次级绕组的节点,等。
2.使输入和输出端远离噪音元件,如变压器线包,变压器磁芯,开关管的散热片,等等。
3. 使噪音元件(如未遮蔽的变压器线包,未遮蔽的变压器磁芯,和开关管,等等)远离外壳边缘,因为在正常操作下外壳边缘很可能靠近外面的接地线。
4. 如果变压器没有使用电场屏蔽,要保持屏蔽体和散热片远离变压器。
5. 尽量减小以下电流环的面积:次级(输出)整流器,初级开关功率器件,栅极(基极)驱动线路,辅助整流器。
6.不要将门极(基极)的驱动返馈环路和初级开关电路或辅助整流电路混在一起。
7.调整优化阻尼电阻值,使它在开关的死区时间里不产生振铃响声。
8. 防止EMI滤波电感饱和。
9.使拐弯节点和次级电路的元件远离初级电路的屏蔽体或者开关管的散热片。
10.保持初级电路的摆动的节点和元件本体远离屏蔽或者散热片。
11.使高频输入的EMI滤波器靠近输入电缆或者连接器端。
12.保持高频输出的EMI滤波器靠近输出电线端子。
13. 使EMI滤波器对面的PCB板的铜箔和元件本体之间保持一定距离。
14.在辅助线圈的整流器的线路上放一些电阻。
15.在磁棒线圈上并联阻尼电阻。
16.在输出RF滤波器两端并联阻尼电阻。
17.在PCB设计时允许放1nF/ 500 V陶瓷电容器或者还可以是一串电阻,跨接在变压器的初级的静端和辅助绕组之间。
18.保持EMI滤波器远离功率变压器;尤其是避免定位在绕包的端部。
19.在PCB面积足够的情况下, 可在PCB上留下放屏蔽绕组用的脚位和放RC阻尼器的位置,RC阻尼器可跨接在屏蔽绕组两端。
20.空间允许的话在开关功率场效应管的漏极和门极之间放一个小径向引线电容器(米勒电容, 10皮法/ 1千伏电容)。
21.空间允许的话放一个小的RC阻尼器在直流输出端。
22. 不要把AC插座与初级开关管的散热片靠在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED电源总谐波失真(THD)分析及对策1.总谐波失真THD 与功率因数PF 的关系市面上很多的LED 驱动电源,其输入电路采用简单的桥式整流器和电解电容器的整流滤波电路,见图1.图1该电路只有在输入交流电压的峰值附近,整流二极管才出现导通,因此其导通角θ比较小,大约为60°左右,致使输入电流波形为尖状脉冲,脉宽约为3ms,是半个周期(10ms)的1/3.输入电压及电流波形如图2 所示。
由此可见,造成LED 电源输入电流畸变的根本原因是使用了直流滤波电解电容器的容性负载所致。
图2对于LED 驱动电源输入电流产生畸变的非正弦波,须用傅里叶(Fourier)级数描述。
根据傅里叶变换原理,瞬时输入电流可表为:式中,n 是谐波次数,傅里叶系数an 和bn 分别表为:每一个电流谐波,通常会有一个正弦或余弦周期,n 次谐波电流有效值In 可用下式计算:输入总电流有效值上式根号中,I1 为基波电流有效值,其余的I2,3,分别代表2,3,…n 次谐波电流有效值。
用基波电流百分比表示的电流总谐波含量叫总谐波失真(THD),总谐波含量反映了波形的畸变特性,因此也叫总谐波畸变率。
定义为根据功率因数PF 的定义,功率因数PF 是指交流输入的有功功率P 与输入视在功率S 之比值,即其中,为输入电源电压;U cosΦ1 叫相移因数,它反映了基波电流i1 与电压u 的相位关系,Φ1 是基波相移角;输入基波电流有效值I1 与输入总电流有效值Irms 的百分比即K=I1 / Irms 叫输入电流失真系数。
上式表明,在LED 驱动电源等非线性的开关电源电路中,功率因数PF 不仅与基波电流i1 电压u 之间的相位有关,而且还与输入电流失真系数K 有关。
将式(6)代入式(7),则功率因数PF 与总谐波失真THD 有如下关系:上式说明,在相移因数cosΦ1 不变时,降低总谐波失真THD,可以提高功率因数PF;反之也能说明,PF 越高则THD 越小。
例如,通过计算,当相移角Φ1=0 时,THD=30% @ PF=0.9578;THD=10% @ PF=0.9950.2.谐波测量与分析为了很好地分析如图1 所示的LED 驱动电源的谐波含量,介绍一种使用示波器测量输入电流的方法。
先在电源输入回路串接一个10-20W 或以上的大功率电阻如R=10 OHM,通电后测量大功率电阻上两端的电压波形,由于纯功率电阻上两端的电压与电流始终是同相位,因此电阻上的脉冲电压波形亦即代表了输入电流的脉冲波形,但数值大小不同。
由波形显示可知,其脉冲电流i(t)与图2 的电流波形是一致的,见图3.图3此电流脉冲波近似于余弦脉冲波,因此可用余弦脉冲函数表为:为了计算方便,现取正弦交流输入电压的一个周期T:-5ms≤t≤15ms,即T=20ms.由此,一个周期为20ms 的输入脉冲电流的表达式如下:上式中,余弦脉冲电流幅值Im 可由示波器显示的电压幅值与电阻值之比而算出,即Im=Um/R,已知测得Um=1.5V,则Im=1.5/10=0.15A.图中脉冲宽度τ=3ms. 对于图2 所示的输入电流波形,是关于前后半波上下对称的奇次对称波,因而只含有a1、a3、a5……等奇次谐波分量,而直流分量a0 和偶次谐波分量a2、a4、a6……均为零。
将式(10)的输入电流波形进行傅里叶分解得:根据积分公式:并且有a=π/τ,b=nω,ω=2π/T,因此有:当n=1 时将T=20ms、τ=3ms、Im=0.15A 代入上式,得计算得基波电流幅值a1=I1m=0.06×(0.608+0.327)=0.056(A) .同理,分别计算a3,a5,a7,a9 次谐波幅值,如表1 所示。
表1.谐波幅值表根据表1,LED 驱动电源的输入电流的傅里叶级数为:根据谐波幅值Inm 与谐波有效值In 的关系,谐波有效值:由式(16),则分别计算各次谐波电流有效值如下(单位A):I1=0.040,I3=0.033,I5=0.023,I7=0.012,I9=0.003. 根据式(5),LED 驱动电源的输入总电流有效值:将表1 数据代入式(17),则输入总电流有效值Irms=0.058(A) .实际中,这个输入电流值可用测量真有效值的万用表测得或由功率计的输入电流显示屏读取。
根据式(6)计算总谐波失真:根据表1 的谐波幅值数据,并以基波(一次谐波)分量100%为基准,制定谐波电流幅值频谱图(忽略高于9 次以上的谐波)见图4.图4现按式(7)计算功率因数PF,当基波相移角Φ1 为零,cosΦ1=1 则有:实测PF=0.65,二者基本一致。
实际LED 驱动电源的输入功率:3.谐波的危害谐波的危害由以上分析计算可知,这类LED 驱动电源输入电流谐波含量高,对于这类装置如功率不大和少量的使用,其危害性也许不一定会表现出来,然而若成千上万的大量密集地使用,它所产生的谐波电流总量会严重污染整个供电系统和其他用电用户,同时也使电网电压波形发生畸变。
理论和实践证明,过大的电流谐波会产生以下危害:A.能使配电设施如电力变压器和发电机、感性负载设备如电动机等磁性材料的铁芯损耗Pkz 得到额外的增加,即增加了由于谐波电流引起的磁滞损耗Ph 分量和涡流损耗Pc 分量,使其过热而损坏,见式(21),其中fn 是各次谐波电流频率。
B.谐波电流通过功率补偿设备的电力电容器,图5 是电容器的等效图。
由图5 可见,B. 当由谐波电流引起的容抗与寄生电感引起的感抗相等时形成谐振,产生强大的谐波电流,从而导致电力电容器过流或过压损坏。
图5C.能对线路上的继电保护、仪器仪表、自动控制、电子通讯、卫星导航以及计算机系C. 统产生强烈的干扰,从而引起误动作、出现噪声等异常现象。
D.在三相四线制供电系统的中,线路正常时三相交流电基本平衡,各相电流在中线内D. 相互抵消,理论上中线电流接近于零,因此我国电力系统的中线一般比相线细。
然而过大的三相三次及高次谐波电流,会使电网的相电流无法在中线内相互抵消,致使中线内电流产生叠加而过流损坏,线路示意图如图6.此外,中线电流过大引起三相不平衡,即三相电位发生偏移,严重时导致大批LED 灯具烧毁,甚至引起火灾!图6E.当大量的大功率的高谐波含量的电源设备使用时,其偶次谐波(a2、a4、a6……)不容忽视,它使供电回路电流正负半周不对称。
尤其是含量较大的二次谐波,它的直流分量使电力变压器铁芯产生局部磁化,损耗增大,严重时会危及变压器及电力运行安全。
因此,无论是从保护电力系统安全还是从保护用电设备和人身安全来看,严格控制并限定电流谐波含量,以减少谐波污染造成的危害已成为人们的共识。
4.降低THD 的措施随着开关电源类电子产品的应用普及,国际电工委员会制定了IEC61000-3-2、欧盟制定了EN60555-2 和我国制定了GB17625.1-2003 等法规,对用电设备的电压、电流波形失真作出了具体限制和规定。
目前这些法规也适用于LED 灯具及LED 驱动电源。
对于输入有功功率大于25W 的LED 照明灯具,谐波电流不应超过表2 限值。
表2. C 类设备的限值对于输入有功功率不大于25W 的LED 照明灯具,规定符合如下的其中一项:a.谐波电流不应超过表3 的第2 栏中与功率相关的限值;表3 D类设备的限制b. 用基波电流百分数表示的3 次谐波电流不应超过86%,5 次谐波不超过61%;而且,假设基波电压过零点为0°,输入电流波形应是60°或之前开始流通,65°或之前有最后一个峰值(如果在半个周期内有几个峰值),在90°前不应停止流通。
图1 所示的LED 驱动电源的输入功率为8.8W,根据表3 第2 栏的限值,THD 显然超标。
一个好的LED 驱动电源,不仅需要高功率因数PF,而且还要实现低THD,使奇次谐波含量不超过标准规定值。
但有的电源设计者,为了片面强调高PF 而将滤波电容值减小,其结果是桥式整流器的导通角增加,PF 增大,但桥式整流器输出的脉动直流电压导致电路的峰值电流极高,使电源变换器的功率管等损耗剧增,很容易损坏功率管、高频变压器、高频输出整流管元件。
目前,性能比较优良的LED 驱动电源,均采用了有源功率因数校正(Advantage Power Factor Correetion)APFC 电路,图7 是一种常用的临界导通模式(TCM)的单级PFC 反激式电源变换器示意图。
图7这种电路能使输入电流即电感电流的波形(见图8)与整流二极管输出的脉动电压波形保持一致的特点,不存在整流二极管导通角的影响,因此输入电流与输入电压的具有相同相位,如图9 所示。
图8图9这种电路的功率因数PF 与总谐波失真THD 的关系如下:该电路通常可以做到PF≥0.96、THD≤30%,甚至可以使PF 值接近于1,输入电流失真系数K=I1 / Irms≤3,THD≤10%. 图10 的输入电路是一种通用的填谷式的无源功率因数控制(PPFC)电路,对于输入功率较小的LED 驱动电源采用此电路,有成本低、线路简单等优点。
其功率因数可在0.85-0.9, 但谐波含量往往会超过符合规定。
图10它的电压和输入电流的波形如图11.Word 资料图11图(12)是其测试结果,结果表明谐波含量超标。
图12图13针对图10 电路的这一缺陷,可以提出一种改进方案。
即在无源PFC 电路中,增加一个2-5 OHM/2W 的电阻与二极管D3 串联,见图13.这样可以有效地降低谐波含量,同时还能进一步提高PF,对于这种结构的LED 驱动电源,是一种行之有效的改良方法。