高一物理必修2第二章圆周运动的问题难点突破(答案)

合集下载

山东科技版高一物理必修二匀速圆周运动含详细解析答案

山东科技版高一物理必修二匀速圆周运动含详细解析答案

匀速圆周运动一.单项选择题1.—个物体以角速度ω做匀速圆周运动时.下列说法中正确的是:(A)A.轨道半径越大线速度越大B.轨道半径越大线速度越小C.轨道半径越大周期越大D.轨道半径越大周期越小2.下列说法正确的是:( C )A.匀速圆周运动是一种匀速运动B.匀速圆周运动是一种匀变速运动C.匀速圆周运动是一种变加速运动D.物体做圆周运动时,其合力垂直于速度方向,不改变线速度大小3.如下图所示,小物体A与圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A的受力情况是:( B )A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.受重力、支持力、向心力、摩擦力D.以上均不正确4.一重球用细绳悬挂在匀速前进中的车厢天花板上,当车厢突然制动时,则:( B )A.绳的拉力突然变小B.绳的拉力突然变大C.绳的拉力没有变化D.无法判断拉力有何变化5.如图3所示的皮带传动装置中,轮A和B同轴,A、B 、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A:a B:a C等于( A )A.4:2:1B.2:1:2C.1:2:4D.4:1:46.质量为m 的小球用一条绳子系着在竖直平面内做圆周运动,小球到达最低点和最高点时,绳子所受的张力之差是:( A )A 、6mgB 、5mgC 、2mgD 、条件不充分,不能确定7.A 、B 两小球都在水平面上做匀速圆周运动,A 球的轨道半径是B 球轨道半径的2倍,A 的转速为30r/min ,B 的转速为15r/min 。

则两球的向心加速度之比为( D )A .1:1B .2:1C .4:1D .8:18.如图所示,为一皮带传动装置,右轮半径为r ,a 为它边缘上一点;左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心的距离为r 。

c 点和d 点分别位于小轮和大轮的边缘上。

若传动过程中皮带不打滑,则:( C )①a 点和b 点的线速度大小相等 ②a 点和b 点的角速度大小相等 ③a 点和c 点的线速度大小相等 ④a 点和d 点的向心加速度大小相等A.①③B. ②③C. ③④D.②④9.如右图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平布做匀速圆周运动,以下说法正确的是:( A )A. V A >V BB. ωA >ωBC. a A >a BD.压力N A >N B10.半径为R 的光滑半圆柱固定在水平地面上,顶部有一小物块,如图所示,今给小物块一个初速度gR v 0,则物体将:( C )A. 沿圆面A 、B 、C 运动B. 先沿圆面AB 运动,然后在空中作抛物体线运动C. 立即离开圆柱表面做平抛运动D. 立即离开圆柱表面作半径更大的圆周运动11.如图所示,轻绳一端系一小球,另一端固定于O 点,在O 点正下方的P 点钉一颗钉子,使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时:( B ) ①小球的瞬时速度突然变大 ②小球的加速度突然变大 ③小球的所受的向心力突然变大 ④悬线所受的拉力突然变大 A. ①③④ B. ②③④C. ①②④D.①②③12.如图所示,汽车以速度V通过一半圆形拱桥的顶点时,关于汽车受力的说法正确的是( D )A. 汽车受重力、支持力、向心力B. 汽车受重力、支持力、牵引力、摩擦力、向心力C. 汽车的向心力是重力D. 汽车的重力和支持力的合力是向心力13.在光滑的水平面上相距40 cm的两个钉子A和B,如图所示,长1 m的细绳一端系着质量为0.4 k g的小球,另一端固定在钉子A上,开始时,小球和钉子A、B在同一直线上,小球始终以2 m/s的速率在水平面上做匀速圆周运动.若细绳能承受的最大拉力是4 N,那么,从开始到细绳断开所经历的时间是:( B )A.0.9πs B.0.8πs C.1.2πs D.1.6πs二.计算题1.两个质量分别是m1和m2的光滑小球套在光滑水平杆上,用长为L的细线连接,水平杆随框架以角速度ω做匀速转动,两球在杆上相对静止,如下图所示,求两球离转动中心的距离R1和R2及细线的拉力.解:绳对m1和m2的拉力是它们做圆周运动的向心力,根据题意R1+R2=L,R2=L-R1对m1:F=m1ω2R1对m2:F=m2ω2R2=m2ω2(L-R1)所以m1ω2R1=m2ω2(L-R1)即得:R 1=212m L m m + R 2=L -R 1=112m L m m + F =m 1ω2·212m L m m +=21212m m L m m ω+2.如图所示,质量m=0.1kg 的小球在细绳的拉力作用下在竖直面内做半径为r=0.2m 的圆周运动,已知小球在最高点的速率为v 1=2m/s ,g 取10m/s 2,试求:(1)小球在最高点时的细绳的拉力T 1=? (2)小球在最低点时的细绳的拉力T 2=? (1)T ﹦3N (2)T ﹦7N3.如下图所示,半径为R 的圆板置于水平面内,在轴心O 点的正上方高h 处,水平抛出一个小球,圆板做匀速转动,当圆板半径OB 转到与抛球初速度方向平行时,小球开始抛出,要使小球和圆板只碰一次,且落点为B ,求:(1)小球初速度的大小. (2)圆板转动的角速度.(1)小球做平抛运动在竖直方向 h =12gt 2tv在水平方向: s =v 1t =v=R所以v 0=(2)因为t =nT =n2πω=n2πω所以ω=2π(n =1,2,…) 答案:(1)(2)2π(n =1,2,…)4.长为L=0.4m 的轻质细杆一端固定在O 点,在竖直平面内作匀速圆周运动,角速度为ω=6rad/s ,若杆的中心处和另一端各固定一个质量为m=0.2kg 的小物体,则端点小物体在转到竖直位置的最高点时,求: (g 取10m/s 2) (1)杆对端点小物体的作用力的大小和方向;(2)杆对轴O 的作用力的大小和方向。

教科版高中物理必修第二册课后习题 第二章匀速圆周运动 圆周运动的实例分析 圆周运动与人类文明(选学)

教科版高中物理必修第二册课后习题 第二章匀速圆周运动 圆周运动的实例分析 圆周运动与人类文明(选学)

3 圆周运动的实例分析4 圆周运动与人类文明(选学)A级必备知识基础练1.(多选)(黑龙江哈尔滨高一期末)生活中的很多现象都可以从物理的角度进行解释。

甲图为正在脱水的衣物,乙图为正在转弯的火车,丙图为正在荡秋千的儿童,丁图为摩托车骑手在球形铁笼竖直平面内沿内壁进行“飞车走壁”的表演。

下列对四幅图有关现象的说法正确的是( AD )A.甲图衣物中的水分因做离心运动而被甩出B.乙图中只要外轨高于内轨,火车的轮缘就不会对外轨产生侧向挤压C.丙图中秋千从高处摆至最低点时,儿童处于失重状态D.丁图中在竖直面内做圆周运动的摩托车,在最高点时的速度一定不为零,水离开衣服,故A正确;图乙中当火车的速度满足一定值时,设为v0,此时火车靠重力和支持力的合力提供圆周运动的向心力,内外轨均无压力,当火车的速度v>v0时,重力和支持力的合力不足以提供向心力,此时外轨对火车的轮缘有侧压力,则火车的轮缘对外轨有挤压作用,故B错误;丙图中秋千从高处摆至最低点时,儿童具有向上的加速度,儿童处于超重状态,故C错误;丁图中在竖直面内做圆周运动的摩托车,在最高点时,当铁笼对摩托车的作用力为零时,由牛顿第二定律有mg=m v 2r,可得v=√gr,此速度为过最高点的最小速度,则在最高点时的速度一定不为零,故D正确。

2.(湖南怀化湖天中学高二学业考试)摆式列车是集计算机技术、自动控制等高新技术于一体的新型高速列车。

当列车转弯时,在电脑控制下,车厢会自动倾斜,直线行驶时,车厢又恢复原状,实现高速行车,并能达到既安全又舒适的要求。

假设有一高速列车在水平面内行驶,以50 m/s的速度拐弯,由列车上的传感器测得一个质量为50 kg的乘客在拐弯过程中所受合力为500 N,则列车的拐弯半径为( B )A.150 mB.250 mC.300 mD.350 m,乘客所受合力提供向心力,可得F=m v 2r,代入数据解得r=250m,故选B。

3.(福建福州高一期末)如图所示,平衡浪木是一种训练器材,可用来训练人的平衡能力和抗眩晕能力。

(完整版)高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

(完整版)高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。

(一)基础知识1. 匀速圆周运动的基本概念和公式(1)线速度大小,方向沿圆周的切线方向,时刻变化;(2)角速度,恒定不变量;(3)周期与频率;(4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同;(5)线速度与角速度的关系为,、、、的关系为。

所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。

2. 质点做匀速圆周运动的条件(1)具有一定的速度;(2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。

合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。

3. 向心力有关说明向心力是一种效果力。

任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。

做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。

(二)解决圆周运动问题的步骤1. 确定研究对象;2. 确定圆心、半径、向心加速度方向;3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向;4. 根据向心力公式,列牛顿第二定律方程求解。

基本规律:径向合外力提供向心力(三)常见问题及处理要点1. 皮带传动问题例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A. a点与b点的线速度大小相等B. a点与b点的角速度大小相等C. a点与c点的线速度大小相等D. a点与d点的向心加速度大小相等图1解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向心加速度,由,,所以,故,D 正确。

(完整版)2017年人教版物理必修二匀速圆周运动知识点与应用有经典例题以及详答汇总

(完整版)2017年人教版物理必修二匀速圆周运动知识点与应用有经典例题以及详答汇总

4. 公式:an an
v2 r
2r v
2
2 T
ran (2 n)2 r.
5. 两个函数图像:
O
r
v 一定
O
r
ω一定
2
中小学 1 对 1 课外辅导专家
[ 触类旁通 ]1 、如图所示的吊臂上有一个可以沿水平方向运动的小车
A,小车下装有吊着物体 B 的吊钩。在小车 A 与物体 B 以相同的水平
A
速度沿吊臂方向匀速运动的同时,吊钩将物体 B 向上吊起。 A、 B 之 间的距离以 d = H-2t 2(SI)(SI 表示国际单位制,式中 H 为吊臂离地
名师堂学科辅导教案
中小学 1 对 1 课外辅导专家
教师
学生姓名
上课日期
2-15
学科
物理
年级
高三
教材版本
学案主题
教学目标
教学重点、 难点
圆周运动 教学内容
课时数量 第( 2 )课时
(全程或具体时间)
圆周运动 & 向心力 & 生活中常见圆周运动
个性化学习问 题解决
针对孩子的问题设计教案
学考重点内容
人教版 授课时段
(3)周期 T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是 s;
(4)频率 f 是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符
号是 Hz;
(5)转速 n 是质点在单位时间内转过的圈数,单位符号为 r/s ,以及 r/min .
4. 各运动参量之间的转换关系:
v R 2 R 2 nR 变形 T
7
中小学 1 对 1 课外辅导专家
8
中小学 1 对 1 课外辅导专家

2019届高一物理-必修2-第二章-圆周运动的问题难点突破(答案)

2019届高一物理-必修2-第二章-圆周运动的问题难点突破(答案)

高中物理必修2复习--圆周运动的问题难点突破难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。

圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。

b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。

c.匀速圆周运动只是速度方向改变,而速度大小不变。

做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。

非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。

例1:如图1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。

【解析】如图1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得:s rad /4.21=ω 要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。

2019-2020年教科版物理必修二讲义:第2章+3. 圆周运动的实例分析及答案

2019-2020年教科版物理必修二讲义:第2章+3. 圆周运动的实例分析及答案

3. 圆周运动的实例分析一、汽车过拱形桥 1.向心力来源:重力和桥面的支持力的合力提供向心力.2.动力学关系(1)如图甲所示,汽车在凸形桥的最高点时,满足的关系为mg -N =m v 2R ,N =mg -m v 2R ,由牛顿第三定律可知汽车对桥面的压力大小等于支持力,因此汽车在凸形桥上运动时,对桥的压力小于重力.当v =gR 时,其压力为零.甲 乙(2)如图乙所示,汽车经过凹形桥的最低点时,满足的关系为N -mg =m v 2R ,N=mg +m v 2R ,汽车对桥的压力大小N ′=N .汽车过凹形桥时,对桥的压力大于重力.二、“旋转秋千”“旋转秋千”运动可简化为圆锥摆模型,如图所示.1.向心力来源:重力和悬线的拉力的合力提供.2.动力学关系mg tan_α=mω2r ,又r =l sin_α,则ω=g l cos α,周期T =2πl cos αg所以cos α=g ω2l,由此可知,α与角速度ω和绳长l 有关,在绳长l 确定的情况下,角速度ω越大,α越大.三、火车转弯1.火车在弯道上的运动特点火车车轮上突出的轮缘在铁轨上起到限定方向的作用,如果火车在水平路基上转弯,外侧对轮缘的弹力就是火车转弯的向心力,轮缘与外轨间的作用力很大,铁轨与轮缘极易受损,故实际在转弯处,火车的外轨略高于内轨. 2.向心力的来源根据轨道半径和规定的行驶速度适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力和支持力的合力来提供.四、离心运动1.定义:物体沿圆周运动的切线方向飞出或远离圆心的运动.2.原因:合外力提供的向心力消失或不足.3.离心机械:利用离心运动的机械. 4.应用:脱水筒、离心机.1.思考判断(正确的打“√”,错误的打“×”)(1)汽车驶过凸形桥最高点时,对桥的压力可能等于零.( ) (2)汽车驶过凹形桥低点时,对桥的压力一定大于重力. ( )(3)体重越大的人坐在秋千上旋转时,缆绳与中心轴的夹角越小.( )(4)火车转弯时的向心力是车轨与车轮间的挤压提供的. ( )(5)火车按规定的速率转弯时,内外轨都不受火车的挤压作用.( )(6)做离心运动的物体一定不受外力作用. ( )(7)做圆周运动的物体只有突然失去向心力时才做离心运动.( )【提示】 (1)√ (2)√ (3)× (4)× (5)√ (6)× (7)×2.如图所示,在某次军事演习中,一辆战车以恒定的速度在起伏不平的路面上行进,则战车对路面的压力最大和最小的位置分别是( )A .A 点,B 点B .B 点,C 点 C .B 点,A 点D .D 点,C 点C [战车在B 点时由F N -mg =m v 2R 知F N =mg +m v 2R ,则F N >mg ,故对路面的压力最大,在C 和A 点时由mg -F N =m v 2R 知F N =mg -m v 2R ,则F N <mg 且R C >R A ,故F N C >F N A ,故在A 点对路面压力最小,故选C.]3.如图所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( )A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小D[在转动过程中,A、B两座椅的角速度相等,但由于B座椅的半径比较大,故B座椅的速度比较大,向心加速度也比较大,A、B项错误;A、B两座椅所需向心力不等,而重力相同,故缆绳与竖直方向的夹角不等,C项错误;根据F=mω2r 判断A座椅的向心力较小,所受拉力也较小,D项正确.]4.(多选)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.则在该弯道处()A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小AC[汽车转弯时,恰好没有向公路内外两侧滑动的趋势,说明公路外侧高一些,支持力的水平分力刚好提供向心力,此时汽车不受静摩擦力的作用,与路面是否结冰无关,故选项A正确,选项D错误.当v<v c时,支持力的水平分力大于所需向心力,汽车有向内侧滑动的趋势,摩擦力向外侧;当v>v c时,支持力的水平分力小于所需向心力,汽车有向外侧滑动的趋势,在摩擦力大于最大静摩擦力前不会侧滑,故选项B错误,选项C正确.]1.轻绳模型如图所示,轻绳系的小球或在轨道内侧运动的小球,在最高点时的临界状态为只受重力,由mg=m v2r,得v=gr.即绳类模型中小球在最高点的临界速度为v临=gr.在最高点时:(1)v=gr时,拉力或压力为零.(2)v>gr时,物体受向下的拉力或压力,并且随速度的增大而增大.(3)v<gr时,物体不能达到最高点.(实际上球未到最高点就脱离了轨道)2.轻杆模型如图所示,在细轻杆上固定的小球或在管形轨道内运动的小球,由于杆和管能对小球产生向上的支持力,所以小球能在竖直平面内做圆周运动的条件是在最高点的速度大于或等于零,即杆类模型中小球在最高点的临界速度为v临=0.在最高点时:(1)v=0时,小球受向上的支持力N=mg.(2)0<v<gr时,小球受向上的支持力且随速度的增大而减小.(3)v=gr时,小球只受重力.(4)v>gr时,小球受向下的拉力或压力,并且随速度的增大而增大.【例1】(多选)如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动.小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图像如图乙所示.则()甲 乙A .小球的质量为aR bB .当地的重力加速度大小为R bC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等思路点拨: 由于杆既可以提供支持力,又可以提供拉力,故小球通过最高点时的速度可以不同,则通过F -v 2图像,可得到小球通过最高点时杆的弹力和小球速度大小的定量关系,从而找到解题的突破口.ACD [对小球在最高点进行受力分析,速度为零时,F -mg =0,结合图像可知a -mg =0;当F =0时,由牛顿第二定律可得mg =m v 2R ,结合图像可知mg=mb R ,联立解得g =b R ,m =aR b ,选项A 正确,B 错误.由图像可知b <c ,当v 2=c 时,根据牛顿第二定律有F +mg =mc R ,则杆对小球有向下的拉力,由牛顿第三定律可知,选项C 正确;当v 2=2b 时,由牛顿第二定律可得mg +F ′=m ·2b R ,可得F ′=mg ,选项D 正确.]竖直平面内圆周运动的分析方法物体在竖直平面内做圆周运动时:1.明确运动的模型,是轻绳模型还是轻杆模型.2.明确物体的临界状态,即在最高点时物体具有最小速度时的受力特点.3.分析物体在最高点及最低点的受力情况,根据牛顿第二定律列式求解.1.(多选)如图所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )A .受到向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ⎝ ⎛⎭⎪⎫mg +m v 2R D .受到的合力方向斜向左上方CD [体在最低点时受到重力mg 、支持力F N 和摩擦力F f ,如图所示,其沿径向的合力F n 提供向心力,F n =m v 2R ,A 错误.由F n =F N -mg ,得F N =mg +m v 2R ,则物体受到的滑动摩擦力F f =μF N =μ⎝ ⎛⎭⎪⎫mg +m v 2R ,B 错误,C 正确.F f 水平向左,故物体受到的合力斜向左上方,D 正确.]物体在球壳最低点的受力分析1.明确圆周平面火车转弯处的铁轨,虽然外轨高于内轨,但整个外轨是等高的,整个内轨是等高的.因而火车在行驶的过程中,中心的高度不变,即火车中心的轨迹在同一水平面内.故火车的圆周平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平方向指向轨道的圆心.2.受力特点在实际的火车转弯处,外轨高于内轨,火车所受支持力的方向斜向上,火车所受支持力与重力的合力可以提供向心力.3.速度与轨道压力的关系(1)若火车转弯时,火车所受支持力与重力的合力充当向心力,则mg tan θ=m v20R,如图所示,则v0=gR tan θ,其中R为弯道半径,θ为轨道平面与水平面的夹角(tan θ≈hL,h为内外轨高度差,L为内外轨间距),v0为转弯处的规定速度.此时,内外轨道对火车均无挤压作用;(2)若火车行驶速度v0>gR tan θ,外轨对轮缘有侧压力;(3)若火车行驶速度v0<gR tan θ,内轨对轮缘有侧压力.【例2】有一列重为100 t的火车,以72 km/h的速率匀速通过一个内外轨一样高的弯道,轨道半径为400 m.(g取10 m/s2)(1)试计算铁轨受到的侧压力大小;(2)若要使火车以此速率通过弯道,且使铁轨受到的侧压力为零,我们可以适当倾斜路基,试计算路基倾斜角度θ的正切值.思路点拨:解答本题时可按以下思路进行分析:[解析](1)外轨对轮缘的侧压力提供火车转弯所需要的向心力,所以有N=m v2r=105×202400N=105 N.由牛顿第三定律可知铁轨受到的侧压力大小等于105 N.(2)火车的重力和铁轨对火车的弹力的合力提供向心力,如图所示,则mg tan θ=m v2r由此可得tan θ=v2rg=0.1.[答案](1)105 N(2)0.1火车转弯问题的两点注意(1)合外力的方向:火车转弯时,火车所受合外力沿水平方向指向圆心,而不是沿轨道斜面向下.因为,火车转弯的圆周平面是水平面,不是斜面,所以火车的向心力即合外力应沿水平面指向圆心.(2)规定速度的唯一性:火车轨道转弯处的规定速率一旦确定则是唯一的,火车只有按规定的速率转弯,内外轨才不受火车的挤压作用.速率过大时,由重力、支持力及外轨对轮缘的挤压力的合力提供向心力;速率过小时,由重力、支持力及内轨对轮缘的挤压力的合力提供向心力.2.(多选)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说法正确的是( )A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大C .r 一定时,v 越小则要求h 越大D .r 一定时,v 越大则要求h 越大AD [设轨道平面与水平方向的夹角为θ,由mg tan θ=m v 2r ,得tan θ=v 2gr ,又因为tan θ≈sin θ=h l ,所以h l =v 2gr .可见v 一定时,r 越大,h 越小,故A 正确,B 错误;当r 一定时,v 越大,h 越大,故C 错误,D 正确.]1.离心运动的实质:质是物体惯性的表现.做圆周运动的物体,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到指向圆心的力.2.离心运动、近心运动的判断:物体做离心运动还是近心运动,由实际提供的向心力F 与所需向心力(m v 2r 或mrω2)的大小关系决定.(如图所示)(1)若F =mrω2(或m v 2r )即“提供”满足“需要”,物体做圆周运动. (2)若F >mrω2(或m v 2r ),即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F<mrω2(或m v2r),即“提供”不足,物体做离心运动.(4)若F=0,物体做离心运动,并沿切线方向飞出.【例3】如图所示是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是()A.摩托车一直受到沿半径方向向外的离心力作用B.摩托车所受外力的合力小于所需的向心力C.摩托车将沿其线速度的方向沿直线滑去D.摩托车将沿其半径方向沿直线滑去B[摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,选项A 错误;摩托车正常转弯时可看作是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,选项B正确;摩托车将沿曲线做离心运动,选项C、D错误.]分析离心运动需注意的问题1.物体做离心运动时并不存在“离心力”,“离心力”的说法是因为有的同学把惯性当成了力.2.离心运动并不是沿半径方向向外远离圆心的运动.3.摩托车或汽车在水平路面上转弯,当最大静摩擦力不足以提供向心力时,即F max<m v 2r,做离心运动.3.如图所示,在光滑的水平面上,小球在拉力F作用下做匀速圆周运动,若小球到达P点时F突然发生变化,下列关于小球运动的说法正确的是()A.F突然消失,小球将沿轨迹Pa做离心运动B.F突然变小,小球将沿轨迹Pa做离心运动C.F突然变大,小球将沿轨迹Pb做离心运动D.F突然变小,小球将沿轨迹Pc逐渐靠近圆心A[F突然消失时,小球将沿该时刻线速度方向,即沿轨迹Pa做离心运动,选项A正确;F突然变小时,小球将会沿轨迹Pb做离心运动,选项B、D均错误;F突然变大时,小球将沿轨迹Pc做近心运动,选项C错误.]1.通过阅读课本,几个同学对生活中的圆周运动的认识进行交流.甲说:“洗衣机甩干衣服的道理就是利用了水在高速旋转时会做离心运动.”乙说:“火车转弯时,若行驶速度超过规定速度,则内轨与车轮会发生挤压.”丙说:“汽车过凸形桥时要减速行驶,而过凹形桥时可以较大速度行驶.”丁说:“我在游乐园里玩的吊椅转得越快,就会离转轴越远,这也是利用了离心现象.”你认为正确的是()A.甲和乙B.乙和丙C.丙和丁D.甲和丁D[甲和丁所述的情况都是利用了离心现象,D正确;乙所述的情况,外轨会受到挤压,汽车无论是过凸形桥还是凹形桥都要减速行驶,A、B、C选项均错.]2.(多选)如图所示,在匀速转动的洗衣机脱水桶内壁上,有一件湿衣服随圆桶一起转动而未滑动,则()A.衣服随圆桶做圆周运动的向心力由静摩擦力提供B.圆桶转速增大,衣服对桶壁的压力也增大C.圆桶转速足够大时,衣服上的水滴将做离心运动D.圆桶转速增大以后,衣服所受摩擦力也增大BC[衣服做圆周运动的向心力由桶壁的弹力提供,A错误.转速增大,衣服对桶壁压力增大,而摩擦力保持不变,B正确,D错误.转速足够大时,衣服上的水滴做离心运动,C正确.]3.(多选)火车在铁轨上转弯可以看做是做匀速圆周运动,火车速度提高易使外轨受损.为解决火车高速转弯时使外轨受损这一难题,你认为理论上可行的措施是()A.减小弯道半径B.增大弯道半径C.适当减小内外轨道的高度差D.适当增加内外轨道的高度差BD[当火车速度增大时,可适当增大转弯半径或适当增大轨道倾角,以减小外轨所受压力.]4.如图所示为模拟过山车的实验装置,小球从左侧的最高点释放后能够通过竖直圆轨道而到达右侧.若竖直圆轨道的半径为R,要使小球能顺利通过竖直圆轨道,则小球通过竖直圆轨道的最高点时的角速度最小为()A.gRB .2gR C.gR D.RgC [小球能通过竖直圆轨道的最高点的临界条件为重力提供向心力,即mg =mω2R ,解得ω=gR ,选项C 正确.]5.如图所示,小球A 质量为m ,固定在长为L 的轻细直杆一端,并随杆一起绕杆的另一端点O 在竖直平面内做圆周运动,如果小球经过最高位置时,杆对小球的作用力大小等于小球的重力.求:(1)小球的速度大小; (2)当小球经过最低点时速度为6gL ,此时,求杆对球的作用力的大小和球的向心加速度的大小.[解析] (1)小球A 在最高点时,对球受力分析:重力mg ,拉力F =mg 或支持力F =mg根据小球做圆周运动的条件,合外力等于向心力,得mg ±F =m v 2L① F =mg ②解①②两式,可得v =2gL 或v =0.(2)小球A 在最低点时,对球受力分析:重力mg 、拉力F ′,设向上为正方向根据小球做圆周运动的条件,合外力等于向心力,F ′-mg =m v ′2L ,解得F ′=mg+m v′2L=7mg,故球的向心加速度a=v′2L=6g. [答案](1)2gL或0(2)7mg6g。

教科版高中物理必修第二册第二章匀速圆周运动3圆周运动的实例分析4圆周运动与人类文明(选学)含答案

教科版高中物理必修第二册第二章匀速圆周运动3圆周运动的实例分析4圆周运动与人类文明(选学)含答案

3.圆周运动的实例分析4.圆周运动与人类文明(选学)基础巩固1.(多选)做离心运动的物体,其速度变化情况是()A.速度的大小不变,方向改变B.速度的大小改变,方向不变C.速度的大小和方向可能都改变D.速度的大小和方向可能都不变答案:CD解析:当物体所受合外力突然消失时,物体将沿所在位置的切线方向做匀速直线运动,速度的大小、方向都不改变,选项D正确。

当合力不足以提供所需向心力时,物体做一般曲线运动,速度的大小、方向都改变,故选项C正确。

2.冰面对溜冰运动员的最大摩擦力为运动员重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,其安全速度为()A.v=k√RgB.v≤√kRgC.v≤√2kRgD.v≤√Rgk答案:B解析:水平冰面对运动员的摩擦力提供他做圆周运动的向心力,则运动员的安全速度v满足kmg≥m v 2R,解得v≤√kRg。

3.科技馆的科普器材中常有如图所示的匀速率的传动装置:在大齿轮盘内嵌有三个等大的小齿轮。

若齿轮的齿很小,大齿轮的半径(内径)是小齿轮半径的3倍,则当大齿轮顺时针匀速转动时,下列说法正确的是()A.小齿轮和大齿轮转速相同B.小齿轮和大齿轮周期相同C.小齿轮的角速度是大齿轮角速度的3倍D.大齿轮边缘的线速度是小齿轮的3倍答案:C解析:大齿轮和小齿轮边缘的线速度大小相等,D错误;根据v=ωr可知,大齿轮半径(内径)是小齿轮半径的3倍时,小齿轮的角速度是大齿轮角速度的3倍,根据T=2πω可知周期不同,根据ω=2πn可知转速不同,A、B错误,C正确。

4.(多选)铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为θ,弯道处的圆弧半径为R,若质量为m的火车以速度v通过该弯道时,内、外轨道均不受侧压力作用,下面分析正确的是()A.轨道半径R=v 2gB.v=√gRtanθC.若火车速度小于v时,外轨将受到侧压力作用,其方向平行轨道平面向内D.若火车速度大于v时,外轨将受到侧压力作用,其方向平行轨道平面向外答案:BD解析:火车转弯时受力如图所示,火车转弯的向心力由重力和支持力的合力提供,则mg tan θ=m v 2R ,故转弯半径R=v2gtanθ;转弯时的速度v=√gRtanθ;若火车速度小于v时,需要的向心力减小,此时内轨对车轮产生一个向外的作用力,即车轮挤压内轨;若火车速度大于v时,需要的向心力变大,外轨对车轮产生一个向里的作用力,即车轮挤压外轨。

教科版高中物理必修第二册课后习题 第二章 匀速圆周运动 2 匀速圆周运动的向心力和向心加速度

教科版高中物理必修第二册课后习题 第二章 匀速圆周运动 2 匀速圆周运动的向心力和向心加速度

2 匀速圆周运动的向心力和向心加速度A级必备知识基础练1.下列关于向心加速度的说法正确的是( C )A.向心加速度表示做圆周运动的物体速率改变的快慢B.向心加速度表示角速度变化的快慢C.匀速圆周运动的向心加速度大小不变D.只要是圆周运动,其加速度都是不变的,一是匀速圆周运动,二是非匀速圆周运动。

在匀速圆周运动中,加速度的方向指向圆心,叫向心加速度(大小不变,方向时刻改变);非匀速圆周运动中加速度可以分解为向心加速度和切向加速度。

圆周运动中的加速度是反映速度变化快慢的物理量。

故选项C正确。

2.(四川宜宾高一期末)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动,座舱的质量为m,运动半径为R,角速度为ω,重力加速度为g,则座舱( D )A.运动周期为ω2πB.线速度大小为ω2RC.受摩天轮作用力的大小始终为mgD.所受合力的大小始终为mω2R,A错误;由线速度,运动周期为T=2πω与角速度的关系公式可得,线速度大小为v=ωR,B错误;座舱在竖直平面内做匀速圆周运动,座舱受到的合力提供向心力,则由牛顿第二定律可知合力大小为F=mω2R,由于座舱的重力和摩天轮对座舱的作用力的合力提供向心力,因此摩天轮对座舱的作用力大小不等于mg,C错误,D正确。

3.(广东中山高一期末)很多餐厅在大餐桌中心设置可绕中心轴匀速转动的圆盘,以方便就餐,如图所示。

现在放置一小物体在转动的圆盘上并与其保持相对静止,圆盘角速度维持不变,则下列说法正确的是( D )A.小物体处于平衡状态B.小物体受到重力、支持力、摩擦力和向心力C.放置另外一个相同小物体在原有小物体正对面,两物体到转动轴距离相等,则两物体线速度一样D.小物体位置离圆盘中心越远所受摩擦力越大,合力提供向心力,不是平衡状态,A错误;小物体受到重力、支持力、摩擦力,向心力是效果力,由合力提供,受力分析时不含向心力,B错误;放置另外一个相同小物体在原有小物体正对面,两物体到转动轴距离相等,则两物体线速度大小相同,方向不同,C错误;根据f=mω2r,小物体位置离圆盘中心越远,所受摩擦力越大,D正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理必修2复习--圆周运动的问题难点突破难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。

圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。

b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。

c.匀速圆周运动只是速度方向改变,而速度大小不变。

做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。

非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。

例1:如图1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。

【解析】如图1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得:s rad /4.21=ω 要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。

要使AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有: 图1T 2cos θ=m ω2L BC sin θ ⑤而L AC sin30°=L BC sin45°L BC =2m ⑥ 由⑤、⑥可解得N T 3.22=;01=T【总结】当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上的合外力必然为零。

(2)同轴装置与皮带传动装置在考查皮带转动现象的问题中,要注意以下两点:a 、同一转动轴上的各点角速度相等;b 、和同一皮带接触的各点线速度大小相等,这两点往往是我们解决皮带传动的基本方法。

例2:如图2所示为一皮带传动装置,右轮的半径为r ,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则A .a 点与b 点线速度大小相等B .a 点与c 点角速度大小相等C .a 点与d 点向心加速度大小相等D .a 、b 、c 、d 四点,加速度最小的是b 点【审题】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与皮带接触的各点线速度大小相同。

这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。

【解析】由图2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即v a =v c ,又v =ωR , 所以ωa r =ωc ·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =21ωa ,所以选项B错.又v b =ωb ·r = 21ωa r =2v a ,所以选项A 也错.向心加速度:a a =ωa 2r ;a b =ωb 2·r =(2ωa )2r =41ωa 2r =41a a ;a c =ωc 2·2r =(21ωa )2·2r = 21ωa 2r =21a a ;a d =ωd 2·4r =(21ωa )2·4r =ωa 2r =a a .所以选项C 、D 均正确。

图2图3【总结】该题除了同轴角速度相等和同皮带线速度大小相等的关系外,在皮带传动装置中,从动轮的转动是静摩擦力作用的结果.从动轮受到的摩擦力带动轮子转动,故轮子受到的摩擦力方向沿从动轮的切线与轮的转动方向相同;主动轮靠摩擦力带动皮带,故主动轮所受摩擦力方向沿轮的切线与轮的转动方向相反。

是不是所有的题目都要是例1这种类型的呢?当然不是,当轮与轮之间不是依靠皮带相连转动,而是依靠摩擦力的作用或者是齿轮的啮合,如图3所示,同样符合例1的条件。

(3)向心力的来源a .向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再添加一个向心力。

b .对于匀速圆周运动的问题,一般可按如下步骤进行分析①确定做匀速圆周运动的物体作为研究对象。

②明确运动情况,包括搞清运动速率v ,轨迹半径R 及轨迹圆心O 的位置等。

只有明确了上述几点后,才能知道运动物体在运动过程中所需的向心力大小( mv 2/R )和向心力方向(指向圆心)。

③分析受力情况,对物体实际受力情况做出正确的分析,画出受力图,确定指向圆心的合外力F (即提供向心力)。

④选用公式F=m R v 2=mR ω2=mR 22⎪⎭⎫ ⎝⎛T π解得结果。

c .圆周运动中向心力的特点:①匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存在向心加速度,物体受到外力的合力就是向心力。

可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。

②变速圆周运动:速度大小发生变化,向心加速度和向心力都会相应变化。

求物体在某一点受到的向心力时,应使用该点的瞬时速度,在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。

合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向;合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。

③当物体所受的合外力F 小于所需要提供的向心力mv 2/R 时,物体做离心运动。

例3:如图4所示,半径为R 的半球形碗内,有一个具有一定质量的物体A ,A 与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO /匀速转动时,物体A 刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.【审题】物体A 随碗一起转动而不发生相对滑动,则物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω。

物体A 做匀速圆周运动所需的向心力方向指向球心O ,故此向心力不是由重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡。

【解析】物体A 做匀速圆周运动,向心力: R m F n 2ω=而摩擦力与重力平衡,则有: mg F n =μ即: μmg F n =由以上两式可得: μωmgR m =2即碗匀速转动的角速度为: Rg μω= 【总结】分析受力时一定要明确向心力的来源,即搞清楚什么力充当向心力.本题还考查了摩擦力的有关知识:水平方向的弹力为提供摩擦力的正压力,若在刚好紧贴碗口的基础上,角速度再大,此后摩擦力为静摩擦力,摩擦力大小不变,正压力变大。

例4:如图5所示,在电机距轴O 为r 处固定一质量为m 的铁块.电机启动后,铁块以角速度ω绕轴O 匀速转动.则电机对地面的最大压力和最小压力之差为__________。

【审题】铁块在竖直面内做匀速圆周运动,其向心力是重力mg 与轮对它的力F 的合力.由圆周运动的规律可知:当m 转到最低点时F最大,当m 转到最高点时F 最小。

【解析】设铁块在最高点和最低点时,电机对其作用力分别为F 1和F 2,且都指向轴心,根据牛顿第二定律有:图4图5在最高点:mg+F1=mω2r ①在最低点:F2-mg=mω2r ②电机对地面的最大压力和最小压力分别出现在铁块m位于最低点和最高点时,且压力差的大小为:ΔF N=F2+F1③由①②③式可解得:ΔF N=2mω2r【总结】(1)若m在最高点时突然与电机脱离,它将如何运动?(2)当角速度ω为何值时,铁块在最高点与电机恰无作用力?(3)本题也可认为是一电动打夯机的原理示意图。

若电机的质量为M,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少?解:(1)做初速度沿圆周切线方向,只受重力的平抛运动。

(2)电机对铁块无作用力时,重力提供铁块的向心力,则mg=mω12r即ω1=rg(3)铁块在最高点时,铁块与电动机的相互做用力大小为F 1,则F1+mg=mω22r F1=Mg即当ω2≥mr gmM)(+时,电动机可以跳起来,当ω2=mr gmM)(+时,铁块在最低点时电机对地面压力最大,则F2-mg=mω22r F N=F2+Mg解得电机对地面的最大压力为F N=2(M+m)g(4)圆周运动的周期性利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。

圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。

在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。

同时,要注意圆周运动具有周期性,因此往往有多个答案。

例5:如图6所示,半径为R的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h处沿OB方向水平抛出一个小球,要使球与盘只碰一次,且落点为B,则小球的初速度v=_________,圆盘转动的角速度ω=_________。

图6图7【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。

【解析】①小球做平抛运动,在竖直方向上:h =21gt 2 则运动时间t =gh 2 又因为水平位移为R 所以球的速度v =t R =R ·h g 2 ②在时间t 内,盘转过的角度θ=n ·2π,又因为θ=ωt则转盘角速度:ω=tn π2⋅=2n πh 2g (n =1,2,3…) 【总结】上题中涉及圆周运动和平抛运动这两种不同的运动,这两种不同运动规律在解决同一问题时,常常用“时间”这一物理量把两种运动联系起来。

例6:如图7所示,小球Q 在竖直平面内做匀速圆周运动,当Q 球转到图示位置时,有另一小球P 在距圆周最高点为h 处开始自由下落.要使两球在圆周最高点相碰,则Q 球的角速度ω应满足什么条件?【审题】下落的小球P 做的是自由落体运动,小球Q 做的是圆周运动,若要想碰,必须满足时间相等这个条件。

相关文档
最新文档