江苏省南通市2020高考数学二轮冲刺小练(29)

合集下载

2020届高考数学江苏省二轮复习训练习题:考前冲刺 必备六 高频考点练透

2020届高考数学江苏省二轮复习训练习题:考前冲刺 必备六 高频考点练透

必备六高频考点练透
高频考点一集合运算
1.(2019南京三模,1)已知集合U={x|1<x<6,x∈N},A={2,3},那么∁U A=.
2.(2019南通、如皋二模,1)已知集合A={x|x2-2x≤0},B={0,2,4},C=A∩B,则集合C 的子集共有个.
3.(2019锡山高级中学实验学校检测,1)集合A={0,e x},B={-1,0,1},若A∪B=B,则
x=.
4.(2019南师附中、天一中学、淮阴中学、海门中学联考,1)已知全集I={1,2,3,4,5,6},集合A={1,3,5},B={2,3,6},则(∁I A)∩B=.
高频考点二复数
1.(2019苏、锡、常、镇四市高三教学情况调查一,2)i为虚数单位,复数(1-2i)2的虚部.
2.(2019江苏七大市三模,2)已知复数z=a+i
1+3i
(i是虚数单位)是纯虚数,则实数a的值为.
3.(2019南京三模,2)若复数z满足z(1+i)=1,其中i为虚数单位,则z在复平面内对应的点在第象限.
4.(2019扬州中学检测,3)已知虚数z满足2z-。

2020届江苏省南通市高考第二次调研数学模拟试卷有答案(精品)

2020届江苏省南通市高考第二次调研数学模拟试卷有答案(精品)

南通市高三第二次调研测试数学Ⅰ参考公式:柱体的体积公式V Sh =柱体,其中S 为柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲. 2.已知复数12i34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 3.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图所示, 则成绩不低于60分的人数为▲.4.如图是一个算法流程图,则输出的S 的值为▲.5.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积 大于32 cm 2的概率为▲.6.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲./分(第3题)8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.9.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲.11.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲.12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点,则实数 m 的取值范围是▲.13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.14.已知a为常数,函数()f x =23-,则a 的所有值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b,()12=-c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于 端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为AA 1B 1C 1B CFE(第16题)(第18题)(1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆 柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形 (各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大?19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,.记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由.20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(第17题)0(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <.南通市高三第二次调研测试数学Ⅱ(附加题)若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=.B .[选修4-2:矩阵与变换](本小题满分10分)换1T ,在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变2T 对应的矩阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积.C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)ABDOC(第21—A 题)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张 如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元, 点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖总金额为X 元. (1)求概率(600)P X =;(2)求X 的概率分布及数学期望()E X .23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除.南通市高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲.【答案】{}13,2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 【答案】433.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图 所示,则成绩不低于60分的人数为▲.【答案】304.如图是一个算法流程图,则输出的S 的值为▲. 【答案】1255.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积大于32 cm 2的概率为▲. 【答案】136.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲. 【答案】8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A,,(51)B ,,则tan()αβ-的值为▲./分(第3题)【答案】979.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 【答案】6-10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲. 【答案】811.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲. 【答案】22(1)4x y -+=12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点, 则实数m 的取值范围是▲. 【答案】()1+∞,13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.【答案】1014.已知a为常数,函数()f x =23-,则a 的所有值为▲.【答案】144,二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b ,()12=-c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.解:(1)因为()cos sin αα=,a ,()sin cos ββ=-,b,()12=-c ,所以1===a b c ,且cos sin sin cos sin ()αβαβαβ⋅=-+=-a b . ……3分因为+=a b c ,所以22+=a bc ,即a 2+ 2a ⋅b + b 2= 1,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.……6分(2)因为5π6α=,所以()12=,a .依题意,()1sin cos 2ββ+=--,b c .……8分因为()//+a b c,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ=,所以()π1sin 32β-=.…… 12分因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.…… 14分16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异 于端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .证明:(1)在三棱柱ABC -A 1B 1C 1中,BB 1 // CC 1. 因为AF ⊥CC 1,所以AF ⊥BB 1.…… 2分 又AE ⊥BB 1,AE I AF A =,AE ,AF ⊂平面AEF , 所以BB 1⊥平面AEF .…… 5分又因为BB 1⊂平面BB 1C 1C ,所以平面AEF ⊥平面BB 1C 1C .…… 7分 (2)因为AE ⊥BB 1,AF ⊥CC 1,∠ABE =∠ACF ,AB = AC , 所以Rt △AEB ≌Rt △AFC . 所以BE = CF .…… 9分 又由(1)知,BE // CF . 所以四边形BEFC 是平行四边形. 从而BC // EF .…… 11分又BC ⊄平面AEF ,EF ⊂平面AEF , 所以BC // 平面AEF .…… 14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为AA 1B 1C 1B CFE (第16题)(1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值. 解:设()00P x y ,,()11Q x y ,.(1)在3y x =+中,令0x =,得3y =,从而b = 3. …… 2分由222193y x a y x ⎧+=⎪⎨⎪=+⎩,得()222319x x a ++=. 所以20269a x a =-+.…… 4分因为10PB x ==,所以2269a a=+,解得218a =. 所以椭圆的标准方程为221189y x +=.…… 6分 (2)方法一: 直线PB 1的斜率为1003PB y k x -=, 由11QB PB ⊥,所以直线QB 1的斜率为1003QB x k y =--. 于是直线QB 1的方程为:0033x y x y =-+-. 同理,QB 2的方程为:0033x y x y =--+.…… 8分 联立两直线方程,消去y ,得20109y x x -=.…… 10分因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以012x x =-.…… 12分 所以1212012PB B QB B S xS x ∆∆==.…… 14分 方法二:设直线PB 1,PB 2的斜率为k ,k ',则直线PB 1的方程为3y kx =+. 由11QB PB ⊥,直线QB 1的方程为13y x k=-+.将3y kx =+代入221189y x +=,得()2221120k x kx ++=, (第17题)0(第18题)因为P 是椭圆上异于点B 1,B 2的点,所以00x ≠,从而0x =21221k k -+.…… 8分 因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以2000200033912y y y k k x x x -+-'⋅=⋅==-,得12k k '=-.…… 10分 由22QB PB ⊥,所以直线2QB 的方程为23y kx =-.联立1323y x k y kx ⎧=-+⎪⎨⎪=-⎩,则2621k x k =+,即12621k x k =+.…… 12分 所以1212201212212621PB B QB B k S xk S x kk ∆∆-+===+.…… 14分18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿 虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形(各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大? 解:(1)设所得圆柱的半径为r dm ,则()2π24100r r r +⨯=, (4)分解得r =6分(2)设所得正四棱柱的底面边长为a dm ,则21004x a a a x ⎧⎪⎨⎪-⎩≤≤,,即220.x a a x ⎧⎪⎨⎪⎩≤≤, (9)分 方法一:所得正四棱柱的体积3204400x x V a x x x⎧<⎪=⎨⎪>⎩≤≤,,……11分记函数304()400x x p x x x⎧<⎪=⎨⎪>⎩≤,, 则()p x在(0,上单调递增,在)⎡+∞⎣上单调递减,所以当x =max ()p x =所以当x =a =max V=3.…… 14分 方法二:202a x a≤≤,从而a 11分所得正四棱柱的体积()222020V a x a a a ==≤≤.所以当a =x =max V=3.…… 14分答:(1dm ;(2)当x 为 16分 【评分说明】①直接“由()21002xx x ⋅+=得,x=2分;②方法一中的求解过程要体现()p x V ≤≤,凡写成()p x V =≤5分, 其它类似解答参照给分.19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由. 解:(1)假设数列123c c c ,,是等差数列, 则2132c c c =+,即()()()2211332a b a b a b +=+++.因为12b b ,,3b 是等差数列,所以2132b b b =+.从而2132a a a =+.……2分 又因为12a a ,,3a 是等比数列,所以2213a a a =. 所以123a a a ==,这与1q ≠矛盾,从而假设不成立.所以数列123c c c ,,不是等差数列.……4分 (2)因为11a =,2q =,所以12n n a -=.因为2213c c c =,所以()()()2222214b b d b d +=+-++,即223b d d =+,……6分 由2220c b =+≠,得2320d d ++≠,所以1d ≠-且2d ≠-.又0d ≠,所以223b d d =+,定义域为{}120d d d d ∈≠-≠-≠R ,,.……8分 (3)方法一:设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则1111111221111331111=2=3=.a b c a q b d c q a q b d c q a q b d c q +=⎧⎪++⎪⎨++⎪⎪++⎩①②③④,,,……10分将①+③-2×②得,()()2211111a q c q -=-,⑤将②+④-2×③得,()()22111111a q q c q q -=-,⑥……12分 因为10a ≠,1q ≠,由⑤得10c ≠,11q ≠. 由⑤⑥得1q q =,从而11a c =.……14分 代入①得10b =.再代入②,得0d =,与0d ≠矛盾. 所以c 1,c 2,c 3,c 4不成等比数列.……16分方法二:假设数列1234c c c c ,,,是等比数列,则324123c c c c c c ==.……10分 所以32432132c c c c c c c c --=--,即32432132a a d a a d a a d a a d -+-+=-+-+. 两边同时减1得,321432213222a a a a a a a a d a a d-+-+=-+-+.……12分 因为等比数列a 1,a 2,a 3,a 4的公比为q ()1q ≠,所以()321321213222q a a a a a a a a d a a d-+-+=-+-+. 又()23211210a a a a q -+=-≠,所以()2132q a a d a a d -+=-+,即()10q d -=. ……14分这与1q ≠,且0d ≠矛盾,所以假设不成立.所以数列1234c c c c ,,,不能为等比数列.……16分20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f xb x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <. 解:(1)由题意,()1cos 0f x a x '=-≥对x ∈R 恒成立,因为0a >,所以1cos x a≥对x ∈R 恒成立,因为()max cos 1x =,所以11a ≥,从而01a <≤.……3分(2)①()1sin ln 12g x x x b x =-++,所以()11cos 2b g x x x '=-+.若0b <,则存在02b ->,使()()11cos 0222b b g '-=---<,不合题意,所以0b >.……5分 取30e bx -=,则001x <<.此时()30000111sin ln 11ln 10222b g x x x b x b e -=-++<+++=-<.所以存在00x >,使()00g x <.……8分 ②依题意,不妨设120x x <<,令21x t x =,则1t >. 由(1)知函数sin y x x =-单调递增,所以2211sin sin x x x x ->-. 从而2121sin sin x x x x ->-.……10分因为()()12g x g x =,所以11122211sin ln 1sin ln 122x x b x x x b x -++=-++,所以()()()2121212111ln ln sin sin 22b x x x x x x x x --=--->-. 所以212120ln ln x x b x x -->>-.……12分下面证明2121ln ln x x x x ->-1ln t t ->()ln 0t <*.设())ln 1h t t t =>,所以()210h t -'=<在()1+∞,恒成立.所以()h t 在()1+∞,单调递减,故()()10h t h <=,从而()*得证.所以2b ->2124x x b <.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=. 证明:延长AO 交⊙O 于点E ,则()()DB DC DE DA OD OE OA OD ⋅=⋅=+⋅-.……5分因为OE OA =,所以()()22DB DC OA OD OA OD OA OD ⋅=+⋅-=-. 所以22DB DC OD OA ⋅+=.……10分B .[选修4-2:矩阵与变换](本小题满分10分)在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换1T ,2T 对应的矩 阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积. 解:依题意,依次实施变换1T ,2T 所对应的矩阵=NM 201020010202⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ……5分则20000200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20360200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20240224⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 所以(00)(30)(22)A B C ,,,,,分别变为点(00)(60)(44)A B C ''',,,,,. 从而所得图形的面积为164122⨯⨯=.……10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.解:以极点为原点,极轴为x 轴的非负半轴,建立平面直角坐标系xOy .ABDC(第21—A 题)EO则点P的直角坐标为()1.……2分将直线l :()sin 23ρθπ-=的方程变形为:sin cos cos sin 233ρθρθππ-=,40y -+=.……5分所以()1P 到直线l40y -+=2=.故所求圆的普通方程为()(2214x y -+=.……8分化为极坐标方程得,()π4sin 6ρθ=+.……10分D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2. 证明:因为a ,b ,c 为正实数,=2=(当且仅当a b c ==取“=”).……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元. (1)求概率()600P X =;(2)求X 的概率分布及数学期望()E X .解:(1)从3⨯3表格中随机不重复地点击3格,共有39C 种不同情形. 则事件:“600X =”包含两类情形: 第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含34C 种情形,第二类包含111144C C C ⋅⋅种情形.所以()3111414439C C C C 560021C P X +⋅⋅===.……3分 (2)X 的所有可能值为300,400,500,600,700.则()3439C 413008421C P X ====,()121439C C 242400847C P X ⋅====, ()1212144439C C C C 3055008414C P X ⋅+⋅====,()121439C C 637008442C P X ⋅====. 所以X 的概率分布列为:……8分所以()12553300400500600700500217142142E X=⨯+⨯+⨯+⨯+⨯=(元). ……10分23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除. 解:由二项式定理,得21C i i n a +=(i =0,1,2,…,2n +1).(1)210221055535C 3C 5C 30T a a a =++=++=;…… 2分(2)因为()()()()()12121!1C 11!!n kn n n k n k n k n k ++++++=++⋅++-()()()()212!!!n n n k n k +⋅=+-()221C n kn n +=+, …… 4分所以()021nn n k k T k a -==+∑()21021C nn kn k k -+==+∑ ()121021C nn k n k k +++==+∑ ()()12102121C nn k n k n k n +++==++-+⎡⎤⎣⎦∑ ()()112121021C21C nnn kn kn n k k n k n ++++++===++-+∑∑()()12210221C21C nnn k n knn k k n n ++++===+-+∑∑()()()2212112212C 21222n n n n n n +=+⋅⋅+-+⋅⋅ ()221C n n n =+. …… 8分()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----=+=++=+. 因为21C n n *-∈N ,所以n T 能被42n +整除.…… 10分。

江苏省南通市2020高考数学二轮冲刺小练(26)

江苏省南通市2020高考数学二轮冲刺小练(26)

江苏南通2020高考数学二轮冲刺小练(26)班级 学号 姓名1.已知M={y |y =x 2},N={y |x 2+y 2=2},则M I N= .2.已知{(,)|(3)34}{(,)|7(5)80}x y m x y m x y x m y ++=-+--==∅I ,则直线(3)34m x y m ++=+与坐标轴围成的三角形面积是 .3.若点P (αcos ,αsin )在直线上x y 2-=上,则=+αα2cos 22sin .4.已知函数12()log f x =1()x x+,给出以下四个命题:①()f x 的定义域为(0,)+∞; ②()f x 的值域为[)1,-+∞ ;③()f x 是奇函数; ④()f x 在(0,1)上单调递增.其中所有真命题的序号是 .5.将直线0x =绕原点按顺时针方向旋转30︒,所得直线与圆22(2)3x y -+=的位置关系是 .6.设][x 表示不超过x 的最大整数,则不等式2[]3[]100x x --≤的解集是 .7.已知函数22()1(,)f x x ax b b a b =-++-+∈∈R R ,对任意实数x 都有(1)(1)f x f x -=+ 成立,若当[1,1]x ∈-时,()0f x >恒成立,则b 的取值范围是 .8.已知直线l 、m ,平面βα、,则下列命题中是真命题的序号是 . ①若βα//,α⊂l ,则β//l ;②若βα//,α⊥l ,则β⊥l ;③若α//l ,α⊂m ,则m l //;④若βα⊥,l αβ=I ,α⊂m ,l m ⊥,则β⊥m .9.实数,x y 满足(6)(6)0,14,x y x y x -++-⎧⎨⎩≥≤≤ 则y x 的最大值是 . 10.已知函数①x x f ln 3)(=;②x e x f cos 3)(=;③xe xf 3)(=;④x x f cos 3)(=.其中对于)(x f 定义域内的任意一个自变量1x 都存在唯一个自变量2x 3=成立的函数序号是 .11.已知函数)(x f y =是R 上的奇函数,且当0x ≤时,21193)(-+=x x x f , (1)判断并证明)(x f y =在)0,(-∞上的单调性; (2)求)(x f y =的值域.12.已知圆O :222x y +=交x 轴于A ,B 两点,曲线C 是以AB为长轴,离心率为2的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交椭圆C 的左准线于点Q .(1)求椭圆C 的标准方程;(2)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切;(3)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.。

江苏省南通市2020届高三数学下学期二模考前综合练习试题含解析

江苏省南通市2020届高三数学下学期二模考前综合练习试题含解析
7。已知函数f(x)= 若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.
【答案】
【解析】
由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.
8.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.
【答案】
【解析】
【分析】
观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案。
【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,
最高次项的系数为该项次数的倒数,
∴A ,A 1,解得B ,所以A﹣B .
故答案为: .
【点睛】本题考查了归纳推理,意在考查学生的推理能力.
【详解】(1)因为角 为钝角, ,所以 ,
又 ,所以 ,
且 ,
所以

(2)因为 ,且 ,所以 ,
又 ,
则 ,
所以 .
16.如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.
(1)求证:VA∥平面BDE;
(2)求证:平面VAC⊥平面BDE.
综上所述,a=﹣2.
故答案为:﹣2.
【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.
9。已知双曲线 (a>0,b>0)的两个焦点为 、 ,点P是第一象限内双曲线上的点,且 ,tan∠PF2F1=﹣2,则双曲线的离心率为_____.
【答案】
【解析】
【分析】
根据正弦定理得 ,根据余弦定理得 2PF1•PF2cos∠F1PF2 3,联立方程得到 ,计算得到答案。

江苏南通2020 高考数学冲刺小练(2)

江苏南通2020 高考数学冲刺小练(2)

交 y 轴于 M , N ,且 ON 3OM ,则双曲线的离心率为
.
7.已知动圆 M 与圆 C1 : (x 1)2 y2 1 ,圆 C2 : (x 1)2 y2 25 均内切,则动圆圆心 M 的
轨迹方程是
.
8.设点 A1, 2 ,非零向量 a m, n ,若对于直线 3x y 4 0 上任意一点 P , AP a 恒为
P
(2) FG ∥平面 EBO .
E
F
A
G O
C
B
12. 数列{an}的前 n 项和为 Sn,若存在正整数 r,t,且 r<t,使得 Sr=t,St=r 同时成立,则称数 列{an}为“M(r,t)数列”. (1)若首项为 3,公差为 d 的等差数列{an}是“M(r,2r)数列”,求 d 的值; (2)已知数列{an}为等比数列,公比为 q.若数列{an}为“M(r,2r)数列”,r≤4,求 q 的值.
2
a2 a3,a3 a4,a4 a5 成等差数列,则 q 的值为
.
6.在平面直角坐标
xOy
中,双曲线 C
:
x2 a2
y2 b2
1(a
0,b
0)
的左右焦点分别为 F1, F2 , A, B
分别为
左,右顶点,点 P 为双曲线上一点,且满足 PF2 F1F2 ,点 Q 为 PF2 上一点,直线 QF1, BQ 分别
.
是 i 100 否
N N 1 i
S N T
4.高三某班级共 48 人,班主任为了解学生高考前的心理状 况,将学生按 1 至 48 的学号用系统抽样方法抽取 6 人进行
T
T
i
1 1
输出 S 结束
调查,若抽到的最大学号为 45,则抽到的最小学号为

江苏省南通市2020高考数学二轮冲刺小练(30)

江苏省南通市2020高考数学二轮冲刺小练(30)

江苏南通2020高考数学二轮冲刺小练(30) 班级 学号 姓名1.已知,a b 为实数,集合{,1},b M a =N={},0,:a f x x →表示把集合M 中的元素x 映射到集合N 中仍为x ,则a b += .2.若,i j 是互相垂直的两个单位向量,则2-i j 与2+i j 的夹角为 .3.点P (1,2,4)-关于点A (1,1,)a -的对称点是(,,2)Q b c -,则a b c ++= .4.设()f x 是定义在(0,)+∞上的增函数,且()()()xf f x f y y=-,若(2)1f =,则(4)f = .5.设全集22,{|4},{|1}1U M x y x N x x ===-=-R ≥ 都是U 的子集(如图所示),则阴影部分所示的集合是.6.已知G 是△ABC 的重心,过G 的一条直线交AB 、AC 两点分别于E 、 F ,且有,AE AB AF AC λμ==u u u r u u u r u u u r u u u r ,则11λμ+= . 7.已知函数)1lg(1)(222++++=x x x x x f ,且62.1)1(≈-f ,则≈)1(f . 8.设A ,B ,C ,D 是空间不共面的四点,且满足0,0,0,AB AC AC AD AB AD ⋅=⋅=⋅=u u u r u u u r u u u r u u u r u u u r u u u r 则△BCD 的形状是 三角形.(填“钝角”、“直角”、“锐角”之一)9.函数y=x 2(x>0)的图像在点(a k ,,a k 2)处的切线与x 轴交点的横坐标为a k+1,k 为正整数,a 1=16,则a 1+a 3+a 5=____ _.10.已知P 是直线3480x y ++=上的动点,PA 、PB 是圆222210x y x y +--+=的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值为 . 11.在△ABC 中,||2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r . (1)求22||||AB AC +u u u r u u u r 的值; (2)当△ABC 的面积最大时,求∠A 的大小.12.如图,在四棱锥P-ABCD中PD⊥底面ABCD,底面为正方形,PD=DC,E、F分别是CD、PB的中点.(1)求证:EF//平面PAD;(2)求证:EF⊥AB;(3)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.。

2020届南通市、扬州市、泰州市高考数学二模试卷(有答案)

2020届南通市、扬州市、泰州市高考数学二模试卷(有答案)

江苏省南通市、扬州市、泰州市高考数学二模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为______.2.设集合A={﹣1,0,1},,A∩B={0},则实数a的值为______.3.如图是一个算法流程图,则输出的k的值是______.4.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]只数 5 23 44 25 3根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是______.5.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是______.6.已知函数f(x)=log a(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是______.7.设函数(0<x<π),当且仅当时,y取得最大值,则正数ω的值为______.8.在等比数列{a n}中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是______.9.在体积为的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为______.10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,与圆相交于点R,S,且PT=RS,则正数a的值为______.11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为______.12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C 分别在m、n上,,则的最大值是______.13.实数x,y满足﹣y2=1,则3x2﹣2xy的最小值是______.14.若存在α,β∈R,使得,则实数t的取值范围是______.二、解答题:本大题共6小题,共计90分.15.在斜三角形ABC中,tanA+tanB+tanAtanB=1.(1)求C的值;(2)若A=15°,,求△ABC的周长.16.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:方案①多边形为直角三角形AEB(∠AEB=90°),如图1所示,其中AE+EB=30m;方案②多边形为等腰梯形AEFB(AB>EF),如图2所示,其中AE=EF=BF=10m.请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.18.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,A为椭圆上异于顶点的一点,点P满足=2.(1)若点P的坐标为(2,),求椭圆的方程;(2)设过点P的一条直线交椭圆于B,C两点,且=m,直线OA,OB的斜率之积为﹣,求实数m的值.19.设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式•f(x)≥•g(x);(2)若k≥0,求关于x的方程f(x)=x•g(x)实根的个数.20.设数列{a n}的各项均为正数,{a n}的前n项和,n∈N*.(1)求证:数列{a n}为等差数列;(2)等比数列{b n}的各项均为正数,,n∈N*,且存在整数k≥2,使得.(i)求数列{b n}公比q的最小值(用k表示);(ii)当n≥2时,,求数列{b n}的通项公式.[附加题]21.在平面直角坐标系xOy中,设点A(﹣1,2)在矩阵对应的变换作用下得到点A′,将点B (3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.[附加题]22.在平面直角坐标系xOy中,已知直线(t为参数)与曲线(θ为参数)相交于A,B两点,求线段AB的长.23.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k倍的奖励(k∈N*),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X元.(1)求概率P(X=0)的值;(2)为使收益X的数学期望不小于0元,求k的最小值.(注:概率学源于赌博,请自觉远离不正当的游戏!)24.设S4k=a1+a2+…+a4k(k∈N*),其中a i∈{0,1}(i=1,2,…,4k).当S4k除以4的余数是b(b=0,1,2,3)时,数列a1,a2,…,a4k的个数记为m(b).(1)当k=2时,求m(1)的值;(2)求m(3)关于k的表达式,并化简.江苏省南通市、扬州市、泰州市高考数学二模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.设复数z满足(1+2i)•z=3(i为虚数单位),则复数z的实部为.【考点】复数代数形式的乘除运算.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+2i)•z=3,得,∴复数z的实部为.故答案为:.2.设集合A={﹣1,0,1},,A∩B={0},则实数a的值为1.【考点】交集及其运算.【分析】由A,B,以及两集合的交集确定出a的值即可.【解答】解:∵A={﹣1,0,1},B={a﹣1,a+},A∩B={0},∴a﹣1=0或a+=0(无解),解得:a=1,则实数a的值为1,故答案为:13.如图是一个算法流程图,则输出的k的值是17.【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的k的值,当k=17时满足条件k>9,退出循环,输出k 的值为17.【解答】解:模拟执行程序,可得k=0不满足条件k>9,k=1不满足条件k>9,k=3不满足条件k>9,k=17满足条件k>9,退出循环,输出k的值为17.故答案为:17.4.为了解一批灯泡(共5000只)的使用寿命,从中随机抽取了100只进行测试,其使用寿命(单位:h)如表:使用寿命[500,700)[700,900)[900,1100)[1100,1300)[1300,1500]只数 5 23 44 25 3根据该样本的频数分布,估计该批灯泡使用寿命不低于1100h的灯泡只数是1400.【考点】频率分布表.【分析】利用频率、频数与样本容量的关系进行求解即可.【解答】解:根据题意,估计该批灯泡使用寿命不低于1100h的灯泡的只数为5000×=1400.故答案为:1400.5.电视台组织中学生知识竞赛,共设有5个版块的试题,主题分别是:立德树人、社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力.某参赛队从中任选2个主题作答,则“立德树人”主题被该队选中的概率是.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,由“立德树人”主题被该队选中的对立事件是从社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力选两个主题,利用对立事件概率计算公式能求出“立德树人”主题被该队选中的概率.【解答】解:电视台组织中学生知识竞赛,共设有5个版块的试题,某参赛队从中任选2个主题作答,基本事件总数n==10,“立德树人”主题被该队选中的对立事件是从社会主义核心价值观、依法治国理念、中国优秀传统文化、创新能力选两个主题,∴“立德树人”主题被该队选中的概率p=1﹣=.故答案为:.6.已知函数f(x)=log a(x+b)(a>0,a≠1,b∈R)的图象如图所示,则a+b的值是.【考点】对数函数的图象与性质;函数的图象.【分析】由函数f(x)=log a(x+b)(a>0,a≠1,b∈R)的图象过(﹣3,0)点和(0,﹣2)点,构造方程组,解得答案.【解答】解:∵函数f(x)=log a(x+b)(a>0,a≠1,b∈R)的图象过(﹣3,0)点和(0,﹣2)点,∴,解得:∴a+b=,故答案为:7.设函数(0<x<π),当且仅当时,y取得最大值,则正数ω的值为2.【考点】正弦函数的图象.【分析】根据题意,得出ω+=+2kπ,k∈Z,求出ω的值即可.【解答】解:∵函数,且0<x<π,ω>0,∴<ωx+<ωπ+,又当且仅当时,y取得最大值,∴<ωx+<ωπ+<,∴ω+=,解得ω=2.故答案为:2.8.在等比数列{a n}中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是.【考点】等比数列的通项公式.【分析】由题意和等差数列可得q的方程,解方程由等比数列的通项公式可得.【解答】解:∵在等比数列{a n}中a2=1,公比q≠±1,a1,4a3,7a5成等差数列,∴8a3=a1+7a5,∴8×1×q=+7×1×q3,整理可得7q4﹣8q2+1=0,分解因式可得(q2﹣1)(7q2﹣1)=0,解得q2=或q2=1,∵公比q≠±1,∴q2=,∴a6=a2q4=故答案为:9.在体积为的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为.【考点】棱锥的结构特征.【分析】由已知求得△BCD的面积,再由面积公式求得sinB,进一步求得cosB,再由余弦定理求得CD长度.【解答】解:如图,在四面体ABCD中,∵AB⊥平面BCD,∴AB为以BCD为底面的三棱锥的高,∵,AB=1,∴由,得.又BC=2,BD=3,得,得sinB=,∴cosB=.当cosB=时,CD2=22+32﹣2×2×3×=7,则CD=;当cosB=﹣时,CD2=22+32﹣2×2×3×()=19,则CD=.∴CD长度的所有值为,.故答案为:,.10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,与圆相交于点R,S,且PT=RS,则正数a的值为4.【考点】直线与圆的位置关系.【分析】设过点P(﹣2,0)的直线方程为y=k(x+2),由直线与圆相切的性质得k=,不妨取k=,由勾股定理得PT=RS=,再由圆心(a,)到直线y=(x+2)的距离能求出结果.【解答】解:设过点P(﹣2,0)的直线方程为y=k(x+2),∵过点P(﹣2,0)的直线与圆x2+y2=1相切于点T,∴=1,解得k=,不妨取k=,PT==,∴PT=RS=,∵直线y=(x+2)与圆相交于点R,S,且PT=RS,∴圆心(a,)到直线y=(x+2)的距离d==,由a>0,解得a=4.故答案为:4.11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为7.【考点】函数零点的判定定理.【分析】如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,结合图象即可得出零点个数.【解答】解:如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,利用偶函数的性质可得x∈[﹣2,0)上的图象.x∈[0,2)时,g(0)=g(1)=0,x∈[2,4]时,g(2)=g(4)=g(0)=0,g(3)=g(1)=0.x∈[﹣2,0)时,g(﹣2)=g(2)=0,g(﹣1)=g(1)=0.指数可得:函数g(x)共有7个零点.故答案为:7.12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C 分别在m、n上,,则的最大值是.【考点】平面向量数量积的运算.【分析】建立如图所示的坐标系,得到点A、B、C的坐标,由,求得a+b=±3,分类讨论,利用二次函数的性质求得的最大值.【解答】解:由点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3,可得平行线m、n间的距离为2,以直线m为x轴,以过点A且与直线m垂直的直线为y轴建立坐标系,如图所示:则由题意可得点A(0,1),直线n的方程为y=﹣2,设点B(a,0)、点C(b,﹣2),∴=(a,﹣1)、=(b,﹣3),∴+=(a+b,﹣4).∵,∴(a+b)2+16=25,∴a+b=3,或a+b=﹣3.当a+b=3时,=ab+3=a(3﹣a)+3=﹣a2+3a+3,它的最大值为=.当a+b=﹣3时,=ab+3=a(﹣3﹣a)+3=﹣a2﹣3a+3,它的最大值为=.综上可得,的最大值为,故答案为:.13.实数x,y满足﹣y2=1,则3x2﹣2xy的最小值是6+4.【考点】双曲线的简单性质.【分析】设出双曲线的参数方程,代入所求式,运用切割化弦,可得+= [(1﹣sinα)+(1+sinα)](+),展开再由基本不等式即可得到所求最小值.【解答】解:由﹣y2=1,可设x=2secα,y=tanα,则3x2﹣2xy=12sec2α﹣4secαtanα=﹣==+,其中﹣1<sinα<1,[(1﹣sinα)+(1+sinα)](+)=12++≥12+2=12+8,当且仅当=,解得sinα=3﹣2(3+2舍去),取得最小值.则3x2﹣2xy的最小值是6+4.故答案为:6+4.14.若存在α,β∈R,使得,则实数t的取值范围是[,1].【考点】三角函数中的恒等变换应用.【分析】由α≤α﹣5cosβ,得到cosβ<0,由已知α≤t,即,令,则f′(t)=,令f′(t)=0,则sinβ=0,当sinβ=0时,f(t)取得最小值,然后由t≤α﹣5cosβ,即,令,则.令f′(t)=0,则sinβ=0.当sinβ=0时,f(t)取得最大值.【解答】解:∵α≤α﹣5cosβ,∴0≤﹣5cosβ.∴cosβ<0.∵α≤t,∴,即.令,则f′(t)==,令f′(t)=0,则sinβ=0.∴当sinβ=0时,f(t)取得最小值.f(t)=.∵t≤α﹣5cosβ,∴α≥t+5cosβ.∴即.令,则.令f′(t)=0,则sinβ=0.当sinβ=0时,f(t)取得最大值.f(t)=.则实数t的取值范围是:[,1].故答案为:[,1].二、解答题:本大题共6小题,共计90分.15.在斜三角形ABC中,tanA+tanB+tanAtanB=1.(1)求C的值;(2)若A=15°,,求△ABC的周长.【考点】两角和与差的正切函数;正弦定理.【分析】(1)由条件利用两角和差的正切公式,诱导公式求得tanC的值可得C的值.(2)由条件利用正弦定理、两角和差的正弦公式求得a、b的值,可得△ABC的周长.【解答】解:(1)斜三角形ABC中,∵tanA+tanB+tanAtanB=1,∴tanA+tanB=1﹣tanAtanB,∴tan(A+B)==1,即﹣tanC=1,tanC=﹣1,∴C=135°.(2)若A=15°,则B=30°,∵,则由正弦定理可得===2,求得a=2sin(45°﹣30°)=2(sin45°cos30°﹣cos45°sin30°)=,b=•2=1,故△ABC的周长为a+b+c=+1+=.16.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.求证:(1)AP∥平面C1MN;(2)平面B1BDD1⊥平面C1MN.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)推导出四边形AMC1P为平行四边形,从而AP∥C1M,由此能证明AP∥平面C1MN.(2)连结AC,推导出MN⊥BD,DD1⊥MN,从而MN⊥平面BDD1B1,由此能证明平面B1BDD1⊥平面C1MN.【解答】证明:(1)在正方体ABCD﹣A1B1C1D1中,∵M,N,P分别为棱AB,BC,C1D1的中点,∴AM=PC1,又AM∥CD,PC1∥CD,故AM∥PC1,∴四边形AMC1P为平行四边形,∴AP∥C1M,又AP⊄平面C1MN,C1M⊂平面C1MN,∴AP∥平面C1MN.(2)连结AC,在正方形ABCD中,AC⊥BD,又M、N分别为棱AB、BC的中点,∴MN∥AC,∴MN⊥BD,在正方体ABCD﹣A1B1C1D1中,DD1⊥平面ABCD,又MN⊂平面ABCD,∴DD1⊥MN,而DD1∩DB=D,DD1、DB⊂平面BDD1B1,∴MN⊥平面BDD1B1,又MN⊂平面C1MN,∴平面B1BDD1⊥平面C1MN.17.植物园拟建一个多边形苗圃,苗圃的一边紧靠着长度大于30m的围墙.现有两种方案:方案①多边形为直角三角形AEB(∠AEB=90°),如图1所示,其中AE+EB=30m;方案②多边形为等腰梯形AEFB(AB>EF),如图2所示,其中AE=EF=BF=10m.请你分别求出两种方案中苗圃的最大面积,并从中确定使苗圃面积最大的方案.【考点】定积分在求面积中的应用;基本不等式.【分析】设方案①,②的多边形苗圃的面积分别为S1,S2,根据基本不等式求出S1的最大值,用导数求出S2的最大值,比较即可.【解答】解:设方案①,②的多边形苗圃的面积分别为S1,S2,方案①,设AE=x,则S1=x(30﹣x)≤ []2=,当且仅当x=15时,取等号,方案②,设∠BAE=θ,则S2=100sinθ(1+cosθ),θ∈(0,),由S2′=100(2cos2θ+cosθ﹣1)=0得cosθ=(cosθ=﹣1舍去),∵θ∈(0,),∴θ=,当S2′>0,解得0<x<,函数单调递增,当S2′<0,解得<x<,函数单调递减,∴当θ=时,(S2)max=75,∵<75,∴建立苗圃时用方案②,且∠BAE=.18.如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,A为椭圆上异于顶点的一点,点P满足=2.(1)若点P的坐标为(2,),求椭圆的方程;(2)设过点P的一条直线交椭圆于B,C两点,且=m,直线OA,OB的斜率之积为﹣,求实数m的值.【考点】椭圆的简单性质.【分析】(1)由已知得A(﹣1,﹣),代入椭圆,得,再由椭圆离心率为,得=,由此能求出椭圆方程.(2)设A(x1,y1),B(x2,y2),C(x3,y3),推导出P(﹣2x1,﹣2y1),(﹣2x1﹣x2,﹣2y1﹣y2)=m (x3﹣x2,y3﹣y2),从而得到()+()﹣()=1,由直线OA,OB的斜率之积为﹣,得到=0,由此能求出实数m的值.【解答】解:(1)∵A为椭圆上异于顶点的一点,点P满足=2,点P的坐标为(2,),∴A(﹣1,﹣),代入椭圆,得,①∵椭圆+=1(a>b>0)的离心率为,∴=,②联立①②,解得a2=2,b2=1,∴椭圆方程为.(2)设A(x1,y1),B(x2,y2),C(x3,y3),∵=2,∴P(﹣2x1,﹣2y1),∵=m,∴(﹣2x1﹣x2,﹣2y1﹣y2)=m(x3﹣x2,y3﹣y2),∴,∴,代入椭圆,得=1,即()+()﹣()=1,③∵A,B在椭圆上,∴+=1,=1,④∵直线OA,OB的斜率之积为﹣,∴=﹣,结合②,知=0,⑤将④⑤代入③,得=1,解得m=.19.设函数f(x)=(x+k+1),g(x)=,其中k是实数.(1)若k=0,解不等式•f(x)≥•g(x);(2)若k≥0,求关于x的方程f(x)=x•g(x)实根的个数.【考点】根的存在性及根的个数判断.【分析】(1)若k=0,先化简不等式即可解不等式•f(x)≥•g(x);(2)若k≥0,化简方程f(x)=x•g(x),然后讨论k的取值范围即可得到结论.【解答】解:(1)若k=0,f(x)=(x+1),g(x)=,则不等式•f(x)≥•g(x)等价为•(x+1)≥•,此时,即x≥0,此时不等式等价为(x+1)x≥(x+3),即2x2+x﹣3≥0,得x≥1或x≤﹣,∵x≥0,∴x≥1,即不等式的解集为[1,+∞).(2)若k≥0,由f(x)=x•g(x)得(x+k+1)=x,①.由得,即x≥k,∴当x≥0时x﹣k+1>0,方程①两边平方整理得(2k﹣1)x2﹣(k2﹣1)x﹣k(k+1)2=0,(x≥k),②当k=时,由②得x=,∴方程有唯一解,当k ≠时,由②得判别式△=(k +1)2(3k ﹣1)2, 1)当k=时,判别式△=0,方程②有两个相等的根x=,∴原方程有唯一解.2)0≤k <且k ≠时,方程②整理为[(2k ﹣1)x +k (k +1)](x ﹣k ﹣1)=0, 解得x 1=,x 2=k +1,由于判别式△>0,∴x 1≠x 2,其中x 2=k +1>k ,x 1﹣k=≥0,即x 1≥k ,故原方程有两解,3)当k >时,由2)知,x 1﹣k=<0,即x 1<k ,故x 1不是原方程的解,而x 2=k +1>k ,则原方程有唯一解,综上所述,当k ≥或k=时,原方程有唯一解, 当0≤k <且k ≠时,原方程有两解.20.设数列{a n }的各项均为正数,{a n }的前n 项和,n ∈N *.(1)求证:数列{a n }为等差数列; (2)等比数列{b n }的各项均为正数,,n ∈N *,且存在整数k ≥2,使得.(i )求数列{b n }公比q 的最小值(用k 表示); (ii )当n ≥2时,,求数列{b n }的通项公式.【考点】数列的求和;等差关系的确定. 【分析】(1)数列{a n }的前n 项和,n ∈N *.利用递推关系可得:a n ﹣a n ﹣1=2,再利用等差数列的通项公式即可得出.(2)(i )由(1)可得:a n =2n ﹣1,S n =n 2.根据存在整数k ≥2,使得.可得b 1=.b n =k 2•.由,n ∈N *,可得:q n ﹣k ≥,当n=k 时,上式恒成立.当n ≥k +1时,可得:(n ﹣k )lnq=2,利用导数研究其单调性可得:的最大值为k ,q ≥.当n ≤k ﹣1时,q ≤.可得q 的最小值为(整数k ≥2). (ii )由题意可得:q ∈N *,由(i )可知:q ∈,(k ≥2),可得:q ≥>1,q ≤≤4,q ∈{2,3,4},分类讨论即可得出.【解答】(1)证明:∵数列{a n }的前n 项和,n ∈N *.∴当n=1时,,解得a 1=1.当n ≥2时,a n =S n ﹣S=﹣,化为:(a n +a n ﹣1)(a n ﹣a n ﹣1﹣2)=0,∵数列{a n }的各项均为正数,∴a n +a n ﹣1>0(n ≥2),a n ﹣a n ﹣1=2,∴数列{a n}是等差数列,公差为2.(2)解:(i)由(1)可得:a n=1+2(n﹣1)=2n﹣1,S n=n2.∵存在整数k≥2,使得.∴,可得b1=.∴b n==k2•,∵,n∈N*,∴k2•q n﹣k≥n2,∴q n﹣k≥,当n=k时,上式恒成立.当n≥k+1时,可得:(n﹣k)lnq=2,∴≥,令f(x)=,(x>1),则f′(x)=,令g(t)=1﹣t+lnt,(0<t<1),则g′(t)=>0,因此函数g(t)在(0,1)内单调递增,∴g(t)<g(1)=0,∴f′(x)<0,∴函数f(x)在(1,+∞)为减函数,∴的最大值为k,∴≥k,∴q≥.当n≤k﹣1时,q≤.∴q的最小值为(整数k≥2).(ii)由题意可得:q∈N*,由(i)可知:q∈,(k≥2),∴q≥>1,q≤≤4,∴q∈{2,3,4},当q=2时,≤2≤,只能取k=3,此时b n=,舍去.当q=3时,≤3≤,只能取k=2,此时b n=4,舍去.当q=4时,≤4≤,只能取k=3,此时b n=22n﹣3,符合条件.综上可得:b n=22n﹣3.[附加题]21.在平面直角坐标系xOy中,设点A(﹣1,2)在矩阵对应的变换作用下得到点A′,将点B(3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.【考点】几种特殊的矩阵变换.【分析】设B′(x,y),=,求得A′的坐标,写出向量,,=,即可求得x和y,求得点B′的坐标.【解答】解:设B′(x,y),由题意可知:=,得A′(1,2),则=(2,2),=(x﹣1,y﹣2),即旋转矩阵N=,则=,即=,解得:,所以B′的坐标为(﹣1,4).[附加题]22.在平面直角坐标系xOy中,已知直线(t为参数)与曲线(θ为参数)相交于A,B两点,求线段AB的长.【考点】参数方程化成普通方程.【分析】直线(t为参数),消去参数t化为普通方程.由曲线(θ为参数),利用倍角公式可得y=1﹣2sin2θ,联立解出,再利用两点之间的距离公式即可得出.【解答】解:直线(t为参数)化为普通方程:y=2x+1.由曲线(θ为参数),可得y=1﹣2sin2θ=1﹣2x2(﹣1≤x≤1),联立(﹣1≤x≤1),解得,或,.∴A(﹣1,﹣1),B(0,1),∴|AB|==.23.一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球.当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次,2次,3次时,参加者可相应获得游戏费的0倍,1倍,k倍的奖励(k∈N*),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X元.(1)求概率P(X=0)的值;(2)为使收益X的数学期望不小于0元,求k的最小值.(注:概率学源于赌博,请自觉远离不正当的游戏!)【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,由此能求出P(X=0).(2)依题意,X的可能取值为k,﹣1,1,0,分别求出相应的概率,由此求出E(X),进而能求出k的最小值.【解答】解:(1)事件“X=0”表示“有放回的摸球3回,所指定的玻璃球只出现1次”,则P(X=0)=3×=.(2)依题意,X的可能取值为k,﹣1,1,0,且P(X=k)=()3=,P(X=﹣1)=()3=,P(X=1)=3×=,P(X=0)=3×=,∴参加游戏者的收益X的数学期望为:E(X)==,为使收益X的数学期望不小于0元,故k≥110,∴k的最小值为110.24.设S4k=a1+a2+…+a4k(k∈N*),其中a i∈{0,1}(i=1,2,…,4k).当S4k除以4的余数是b(b=0,1,2,3)时,数列a1,a2,…,a4k的个数记为m(b).(1)当k=2时,求m(1)的值;(2)求m(3)关于k的表达式,并化简.【考点】整除的定义.【分析】(1)当k=2时,由题意可得数列a1,a2,…,a8中有1个1或5个1,其余为0,可得m(1)=;(2)依题意,数列a1,a2,…,a4k中有3个1,或7个1,或11个1,或(4k﹣1)个1,其余为0,然后用组合数表示m(3),同理用组合数表示m(1),结合m(1)=m(3),求出m(1)+m(3),即可求得m (3).【解答】解:(1)当k=2时,数列a1,a2,…,a8中有1个1或5个1,其余为0,∴m(1)=;(2)依题意,数列a1,a2,…,a4k中有3个1,或7个1,或11个1,或(4k﹣1)个1,其余为0,∴m(3)=,同理得:m(1)=,∵,∴m(1)=m(3).又m(1)+m(3)==24k﹣1,∴m(3)=24k﹣2=42k﹣1.。

江苏省南通市2020高考数学二轮冲刺小练(20)

江苏省南通市2020高考数学二轮冲刺小练(20)

江苏南通2020高考数学二轮冲刺小练(20)班级 学号 姓名1.对于命题p :x ∃∈R ,x 2+ x +1 < 0,则p ⌝为:_____ .2.复数13i z =+,21i z =-,则复数12z z 在复平面内对应的点位于第__ __象限. 3.一个靶子上有10个同心圆,半径依次为1,2,…,10,击中由内至外的区域的成绩依次为10,9,…,1环.不考虑技术因素,则射击一次,在有成绩的情况下成绩为10环的概率为 .4.△ABC 中,︒=∠==30,1,3B AC AB ,则△ABC 的面积等于__ _.5.给出下列命题中,正确命题的序号是__ .①“()x A B ∈I ”是“()x A B ∈U ”的充分不必要条件;②若0,0a b >>,则不等式3323a b ab +≥恒成立;③对于函数2()2f x x mx n =++,若()0,()0,f a f b >>则函数在(,)a b 内至多有一个零点; ④(2)y f x =-与(2)y f x =-的图象关于2x =对称.6.若△ABC 内切圆半径为r ,三边长为a 、b 、c ,则△ABC 的面积S =12 r (a +b +c ) ;若四面体内切球半径为R ,四个面的面积为S 1,S 2 ,S 3 ,S 4,则四面体的体积V = .7.已知数列{}n a 为等差数列,且17134a a a π++=,则212tan()a a +=_ _ _.8.已知(1,2),(3,4)A B ,直线1l :20,:0x l y ==和3:l x +3y 10-=.设i P 是i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△P 1P 2P 3的面积是 .9.若21,0,()1,0,x x f x x ⎧+=⎨<⎩≥则满足不等式2(1)(2)f x f x ->的x 的范围是 . 10.已知点P 是抛物线24y x =上的动点,若点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当||4a >时,||||PA PM +的最小值是11.某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分 成六段[40,50),[50,60),…,[90,100]后,画出如下部分频率分布直方图:(1)求第四小组的频率,并补全这个频率分布直方图;(2)观察频率分布直方图的信息,估计这0.01频率组距次考试的及格率(60分及以上为及格)和平均分.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2,cos ),(,cos )b c C a A =-=m n ,且//m n .(1)求角A 的大小; (2)求)23cos(sin 22B B y -+=π的值域.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏南通2020高考数学二轮冲刺小练(29)
班级 学号 姓名
1.若3cos 5
α=
,则cos2α= . 2.已知复数z =x +yi
,且|2|z -=,则y x 的最大值 . 3.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 .
4.如果44x π
π
-≤≤,那么函数f (x )=cos 2x +sin x 的最小值是_____ _.
5.等差数列{a n }中,a n ≠0,23711220a a a -+=,数列{b n }是等比数列,且b 7=a 7,则
b 6b 8= .
6.二次函数()y f x =的导函数()2f x x m '=+,且(0)f m =,则()0f x >在R 上恒成立时,m 的取值范围是 .
7.已知函数()32f x x =+,数列{a n }满足:11a ≠-且1()n n a f a +=(n ∈N *),若数列{a n +c}是等比数列,则常数c = .
8.数式1
1111+++L 中虽然省略号“…”代表无限重复,但原式是一个固定值.可以用如下
方法求得:令原式t =,则1
1t t +=,即210t t --=
,取正值,t =
=____ ____.
9.已知O ,A ,B 是平面上不共线三点,设P 为线段AB 垂直平分线上任意一点,若
||7OA =u u u r ,||5OB =u u u r ,则()OP OA OB ⋅-u u u r u u u r u u u r 的值为 . 10.已知点A (4,0)和B (2,2),M 是椭圆22
1259
x y +=上的动点,则MA+MB 最大值是___ __.
11.若函数34()4,2,()3
f x ax bx x f x =-+=-
当时函数有极值. (1)求函数的解析式;
(2)是否存在实数k ,使得关于x 的方程k x f =)(有三个不同的实数解?若存在,求出
实数k的取值范围;若不存在.,说明理由.
12.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线
MN过C点,|AB|=3米,|AD|=2米.
(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(2)若AN的长度不小于6米,则当AM、AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.。

相关文档
最新文档