解析几何求轨迹基本方法

合集下载

浅谈解析几何中如何求轨迹方程

浅谈解析几何中如何求轨迹方程

动 M 轨 是 () 心 半 为 , 轴 争 点 的 迹 以, 中, 轴 争 半 为 的 a为 长 o 短
垂 直 的直 线 l l 若 l交 X 于 A ,: ,, 。 轴 点 , 交 Y轴 于 B点 , l : 求线 段 A B的
中点 M 的 轨迹 方 程 。 分析 l :设 M( Y , 由 已知 x,)
P运 动 的某 个 几 何 量 t以 此 量 作 为 参 变 数 , 别 建 立 P点 坐 标 。 分
x Y与该 参 数 t 函数 关 系 x f t ,= () 进 而 通 过 消参 化 为 轨 , 的 = () y g t , 迹 的 普通 方 程 F x y = 。 ( , )0
l上l 联 想 到 两 直 线 垂 直 的充 要 条 件 : , 一 1 即 可 列 出 轨 迹 方 。 : , kk : , 程 , 键 是 如 何 用 M 点 坐 标 表 示 A、 关 B两 点 坐 标 。事 实 上 , M 由
综 上 可 知 . M 的轨 迹 方 程 为 x 2 - = 。 点 + y5 O
{ ( ( 参 来表 若 判 轨 方程 示 种曲 t 数) 示, 要 断 迹 表 何 线, 爿 为
t= () y g t
分析 2 :解 法 1中在 利 用 k 2 l时 ,需 注 意 k、2 否 存 l一 k l 是 k 在 . 而 分 情 形讨 论 , 故 能否 避 开 讨 论 呢 ? 只需 利 用 AP B 为直 角 A
中 图 分 类 号 :G6 2 3
文 献标 识 码 :C
文 章 编号 : 6 2 1 7 ( 0 10 — 0 6 0 1 7 — 5 8 2 1 )6 0 9 — 2 即 点 B坐 标 可 表 为 ( x 2 .y 2一 a 2 )

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。

4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

解析几何--交点轨迹求解方法

解析几何--交点轨迹求解方法

解析几何A1,A2是椭圆x^2/9+y^/4=1长轴两端点,P1,P2是垂直于A1A2的弦的两端点,求A1P1与A2P2交点的轨迹2008年二轮复习高中数学方法讲解:5、交轨法一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.例1.设A1、A2是椭圆=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为( )A. B. C. D.解析:设交点P(x,y),A1(-3,0),A2(3,0),P1(x0,y0),P2(x0,-y0)∵A1、P1、P共线,∴∵A2、P2、P共线,∴解得x0=答案:C例2.如右图,给出定点A(a,0)(a>0)和直线l:x=-1.B是直线l上的动点,∠BOA的角平分线交AB于C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.依题意,记B(-1,b)(b∈R),则直线OA和OB的方程分别为y=0和y=-bx.设点C(x,y),则有0≤x <a,由OC平分∠AOB,知点C到OA、OB距离相等.根据点到直线的距离公式得依题设,点C在直线AB上,故有将②式代入①式得整理得y2[(1-a)x2-2ax+(1+a)y2]=0,若y≠0,则(1-a)x2-2ax+(1+a)y2=0(0<x<a);若y=0,则b=0,∠AOB=π,点C的坐标为(0,0),满足上式.综上得点C的轨迹方程为(1-a)x2-2ax+(1+a)y2=0(0≤x<a).(i)当a=1时,轨迹方程化为y2=x(0≤x<1).③此时,方程③表示抛物线弧段;(ii)当a≠1时,轨迹方程为所以,当0<a<1时,方程④表示椭圆弧段;当a>1时,方程④表示双曲线一支的弧段.例3.已知椭圆=1(a>b>0),点P为其上一点,F1、F2为椭圆的焦点,∠F1PF2的外角平分线为l,点F2关于l的对称点为Q,F2Q交l于点R.当P点在椭圆上运动时,求R形成的轨迹方程;.解:(1)∵点F2关于l的对称点为Q,连接PQ,∴∠F2PR=∠QPR,|F2R|=|QR|,|PQ|=|PF2|又因为l为∠F1PF2外角的平分线,故点F1、P、Q在同一直线上,设存在R(x0,y0),Q(x1,y1),F1(-c,0),F2(c,0).|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=2a,则(x1+c)2+y12=(2a)2.又得x1=2x0-c,y1=2y0.∴(2x0)2+(2y0)2=(2a)2,∴x02+y02=a2.故R的轨迹方程为:x2+y2=a2(y≠0)例4.如右图,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=17,|AN|=3,且|BN|有些小问题。

例谈动点的轨迹方程的四种求法

例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。

学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程常用技法。

1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。

例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。

解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。

2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。

3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。

例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。

解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。

所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。

例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

专题:解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题

专题:解析几何中的动点轨迹问题学大苏分教研中心 周坤轨迹方程的探求是解析几何中的基本问题之一,也是近几年各省高考中的常见题型之一。

解答这类问题,需要善于揭示问题的内部规律及知识之间的相互联系。

本专题分成四个部分,首先从题目类型出发,总结常见的几类动点轨迹问题,并给出典型例题;其次从方法入手,总结若干技法(包含高考和竞赛要求,够你用的了...);然后,精选若干练习题,并给出详细解析与答案,务必完全弄懂;最后,回顾高考,列出近几年高考中的动点轨迹原题。

OK ,不废话了,开始进入正题吧...Part 1 几类动点轨迹问题一、动线段定比分点的轨迹例1 已知线段AB 的长为5,并且它的两个端点A 、B 分别在x 轴和y 轴上滑动,点P 在段AB 上,(0)AP PB λλ=>,求点P 的轨迹。

()()()00P x y A a B b 解:设,,,,,,()()011101a a xx y b b y λλλλλλλ+⋅⎧⎧=+=⎪⎪⎪+⎨⎨++⋅=⎪⎪=⎩⎪+⎩, 2225a b +=代入()()222221125y x λλλ+++=()()222221252511x y λλλ+=++222514P x y λ=+=当时,点的轨迹是圆;① 1P y λ>当时,点的轨迹是焦点在轴上的椭圆;②01P x λ<<当时,点的轨迹是焦点在轴上的椭圆③;例2 已知定点A(3,1),动点B 在圆O 224x y +=上,点P 在线段AB 上,且BP:PA=1:2,求点P 的轨迹的方程.()()113P x y B x y AB BP =-解:设,,,,有()()()()1133131313x x y y ⎧+-=⎪+-⎪⎨+-⎪=⎪+-⎩11332312x x y y -⎧=⎪⎪⎨-⎪=⎪⎩化简即:22114x y +=代入223331422x y --⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭得 所以点P 的轨迹为()22116139x y ⎛⎫-+-= ⎪⎝⎭二、两条动直线的交点问题例3 已知两点P (-1,3),Q (1,3)以及一条直线:l y x =,设长为2的线段AB 在l 上移动(点A 在B 的左下方),求直线PA 、QB 交点M 的轨迹的方程 ()()()11M x y A t t B t t ++解:设,,,,,, ()()1313PM x y PA t t =+-=+-,,,, ()()131113QM x y QB t t =--=+-+-,,,, ////PM PAQM QB ∴,,()()()()()()()1313123x t t y x t t y ⎧+-=+-⎪∴⎨--=-⎪⎩34222x y t x y x t x y +⎧=⎪-+⎪⎨-⎪=⎪-+⎩32242x y x x y x y +-=-+-+()()()()32422x y x y x y x +-+=-+-228y x -=例4 已知12A A 、是双曲线22221(0,0)x y a b a b-=>>的两个顶点,线段MN 为垂直于实轴的弦,求直线1MA 与2NA 的交点P 的轨迹()()()()()11111200P x y M x y N x y A a A a --解:设,,,,,,,,,,1122A P A MA P A N k k k k =⎧⎪⎨=⎪⎩ 1111y yx a x ay y x a x a⎧=⎪++⎪⎨-⎪=⎪-+⎩ 1111y y y yx a x a x a x a-⋅=⋅+-+- 22122221y y x a x a =--- 2211221x y a b -= 22221112221y x x a b a a-∴=-= 2212221y b x a a=- 22222y b x a a ∴=-- 222222a y b x a b =-+()2222010x y a b x x a b >>+=≠当时,是焦点在轴上的椭圆,;2220a b x y a =>+=当时,是圆;()2222010x y b a y x a b>>+=≠当时,是焦点在轴上的椭圆,;三、动圆圆心轨迹问题例5 已知动圆M 与定圆2216x y +=相切,并且与x 轴也相切,求动圆圆心M 的轨迹()()0M x y y ≠解:设,,224M x y y +=-当圆与定圆内切时,,224M x y y +=+当圆与定圆内切时, 224x y y ∴+=±222168x y y y +=±+2816y x ±=-M 的轨迹是两条抛物线(挖去它们的交点) ()()2211202088y x y y x y =-≠=-+≠或例6 已知圆221:(3)4C x y ++=,222:(3)100C x y -+=,圆M 与圆1C 和圆2C 都相切,求动圆圆心M 的轨迹()()11113,0,3,0,6,C C C C -=解:,M r 设动圆的半径为12(1),,M C C 若圆与外切与内切则122,10MC r MC r ⎧=+⎪⎨=-⎪⎩121112,MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆,2126263a a c c ====,,,,22227b a c =-=,2213627x y +=椭圆的方程为12,M C C (2)若圆与、都内切则12210MC r MC r⎧=-⎪⎨=-⎪⎩ 12118MC MC C C +=>12M C C 的轨迹是以、为焦点的椭圆2222842637a a c c b a c =====-=,,,,, 221167x y +=椭圆的方程为四、动圆锥曲线中相关点的轨迹例7 已知双曲线过(3,0)A -和(3,0)B ,它的一个焦点是1(0,4)F -,求它的另一个焦点2F 的轨迹()2F x y 解:设,,2121AF AF BF BF -=-由双曲线定义, ()()()()2222113004530045AF BF =--+-==-+-=,,2255AF BF -=-若,222255AF BF AF BF ∴-=-=,,204F x y =≠±的轨迹是直线()2255AF BF -=-+若,22106AF BF AB +=>=,2F A B 的轨迹是以、为焦点的椭圆,210,5,26,3,4,a a c c b ===== 22142516x y y +=≠±椭圆方程为()22204142516x y F x y y =≠±+=≠±的轨迹是直线()或椭圆()例8 已知圆的方程为224x y +=,动抛物线过点(1,0)A -和(1,0)B ,且以圆的切线为准线,求抛物线的焦点F 的轨迹方程()F x y l M 解:设焦点,,准线与圆相切于,1111AA l A BB l B ⊥⊥作于,于,1124AF BF AA BB OM +=+==,F A B 的轨迹是以、为焦点的椭圆,2422213a c AB a c b ======,,,,,()221043x y F y +=≠轨迹的方程是Part 2 求动点轨迹的十类方法一、直接法根据已知条件及一些基本公式如两点间距离公式、点到直线的距离公式、直线的斜率公式、切线长公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

解析几何(动点轨迹求法)

解析几何(动点轨迹求法)

动点轨迹的求法从近年高考题说起:1、(15年广东理科)已知过原点的动直线l 与圆221:650C x y x 相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程; (3)是否存在实数k ,使得直线:(4)L y k x 与曲线C 只有一个交点:若存在,求出k 的取值范围;若不存在,说明理由.【解析】(1)由22650x y x +-+=得()2234x y -+=,∴ 圆1C 的圆心坐标为()3,0; (2)设(),M x y ,则∵ 点M 为弦AB 中点即1C M AB ⊥,∴ 11C M AB k k ⋅=-即13y yx x⋅=--, ∴ 线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)由(2)知点M 的轨迹是以3,02C ⎛⎫ ⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且5,33E ⎛ ⎝⎭,5,33F ⎛- ⎝⎭,又直线L :(y k x =-当直线L 与圆C 32=得34k =±上图可知当3325,,447k ⎡⎧⎫∈--⎨⎬⎢⎩⎭⎣⎦时,直线L :y k =2、(2013上海)已知抛物线24C y x =: 的焦点为F .点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程。

解:设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,,因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,, 由2AP FA =-得( )2(1 )A A A A x x y y x y --=--,,. 即2(1)2A A A A x x x y y y -=--⎧⎨-=-⎩ 解得2A Ax xy y =-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.3、(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|. 解:由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1Rr ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =当k=时,将y x =代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x12|x x -=187.当k时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=动点轨迹常用求法:一、待定系数法它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中轨迹问题的求解策略
求曲线方程的常用思路和方法
1.直译法
例1 求与y 轴相切,并且和圆2240x y x +-=外切的圆的圆心的轨迹方程. 解 由2240x y x +-=,有()2
2222x y -+=.
设动圆的圆心P 的坐标为(x ,y).根据题意设点A 的坐标为(2,0),则有2PA x =+,即
2x =+.化简整理得2
44y x x =+.当0x ≥时,28;y x =当x ﹤0时,
y=0.
综上可知,所求圆心的轨迹方程为28y x =(x ≥0)或y=0(x <0).
小结 直接将动点满足的几何等量关系“翻译”成动点x 、y ,所得方程即为所求动点的轨迹方程.用直译法求解,列式容易,但在对等式等价变形与化简过程中应特别留心是否需要讨论.
2.定义法
例2 已知圆C :()2
2
125x y ++=内一点A(1,0),Q 点为圆C 上任意一点,线段AQ
的垂直平分线与线段CQ 连线交于点M ,求点M 的轨迹方程.
解 连接AM ,点M 在线段AQ 的垂直平分线上,则AM=MQ. 5=+MQ CM ,∴5=+MA CM .
故点M(x ,y)到点C(-1,0)和点A(1,0)的距离之和是常数5,且5>2.所以点P 的轨迹是一个以A 、C 为焦点的椭圆.
∵2a=5,2c=2,∴2
2
2
214
b a
c =-=
.∴点M 的轨迹方程为
2
2
125214
4
x
y
+
=.
小结 若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程.用定义法求解可先确定曲线的类型与方程的具体结构式,然后用待定系数法求解. 3.代入法
例3 抛物线x 2
=4y 的焦点为F ,过点M(0,-1)作直线l 交抛物线于不同两点A 、B ,以AF 、BF 为邻边作平行四边形FARB ,求顶点R 的轨迹方程.
解 设点R 的坐标为(x ,y),平行四边形FARB 的对角线的点为P(x 0,y 0),F(0,1),由中点坐标公式可得001,22
x y x y +=
=
.
设A 点的坐标为(x 1,y 1),B(x 2,y 2),则可知x 1≠x 2, 且x 12=4y 1,x 22
=4y 2.上述两式对应相减得x 12-x 22=4(y 1-y 2).从而有02
A B x k =
.
又A 、P 、B 、M 四点共线,且00
1PM y k x +=,由K AB = K PM 可得x 02=2(y 0+1).把001,2
2
x y x y +=
=
代入上式并整理得x 2=4y+12.
小结 动点是直线被圆锥曲线截得的弦中点,只要通过代点作差并以弦的斜率作为过渡,即可获得动点的轨迹方程.事实上这就是中点弦问题的处理方法. 4.参数法
例4 已知点P 在直线x=2上移动,直线l
垂直,通过点A(1,0)及点P 的直线m 和直线l 相交于点Q Q 的轨迹方程.
解 如图1所示,设OP 所在直线的斜率为k ,则点 P 的坐标为(2,2k).
由l O P ⊥,得直线的方程为x+ky=0. ① 易得直线m 的方程为y=2k(x-1). ②
由于点Q(x ,y)是直线l 和直线m 的交点,所以将①②
联立,消去k ,得点Q 的轨迹方程为02222=-+x y x (x 小结 当动点坐标满足的等量关系不容易直接找到时,我们可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即可得动点的轨迹方程,这种求轨迹方程的方法叫参数法.
圆与圆锥曲线的轨迹问题
例5 如图2所示,矩形A B C D 的两条对角线相交于点(20)M ,,A B 边所在直线的方程为360x y --=,点
(11)T -,在A D 边所在的直线上.
(1)求A D 边所在直线的方程. (2)求矩形A B C D 外接圆的方程.
(3)若动圆P 过点(20)N -,,且与矩形A B C D 的外接圆外切,求动圆P 的圆心的轨迹方程.
解 (1)A D 边所在直线的方程为320x y ++=. (2)矩形A B C D 外接圆的方程为2
2
(2)8x y -+=.
(3)因为动圆P过点N,所以
P N是该圆的半径.又动圆P与圆M外切,
所以PM PN
=+
PM PN
-=
故点P的轨迹是以M
N
,为焦点,实轴长为的双曲线的左支.
因为实半轴长a=
半焦距2
c=,所以虚半轴长b==从而动圆P的圆心的轨迹方程为
22
1(
22
x y
x
-=≤.
小结根据题设条件,分析矩形图形的有关性质,通过解由两个直线方程组成的方程组求得圆心坐标,再利用两点间的距离公式求出半径,从而得出“矩形ABCD的外接圆”的标准方程.本题的第(1)问和第(2)问,将平面几何中的一个重要而基本的图形——矩形与圆结合起来,难度不大,但考查的基础知识却不少.
立体几何与解析几何的轨迹问题
1.轨迹为椭圆
例6如图3所示,AB是平面a的斜线段,A
在平面a内运动,使得△ABP的面积为定值,则动点P
A.圆
B.椭圆
C.一条直线
D.两条平行直线
解根据△ABP的面积为定值,线段AB是定值,则动点P到线
段AB的距离也是定值,设此定值为d,所以点P在平面a的轨迹是一个以d为半径且与线段AB垂直的圆在平面a上的投影,即为椭圆.选B.
小结涉及面积、点到直线的距离等多个知识点的综合,实质利用投影,考查对椭圆图像的理解.
2.轨迹为抛物线
例7如图4所示,在正方体ABCD—A
1
B
1
C
1
D
1
中,
P是侧面BB
1
C
1
C内一个动点,若P到直线BC与直线C
1
D
1
的距离相等,则动点P的轨迹所在的曲线是
A.直线
B.圆
C.双曲线
D.抛物线
解由C
1
D
1
⊥平面BB
1
C
1
C,得PC
1
⊥C
1
D
1
,所以PC
1
就是点P到直线C
1
D
1
的距离.因此已知条件转化为点P
到BC的距离等于点P到点C
1
的距离.根据抛物线的定
义,可知点P的轨迹所在的曲线是抛物线.选D.
小结例6和例7均巧妙地利用了题中某些定值定量条件,从而转化为定义法来判定动点轨迹.这其实也是解析几何中求轨迹问题常用的方法之一.
3.轨迹为双曲线
例8已知α
α∉
e,,过点P引与直线e成45°角的直线交平面α于Q,则Q点
⊂p
的轨迹是
A.两个点
B.双曲线
C.椭圆
D.抛物线
解如图5所示,过点P作PO⊥α于O点,
以过O点与e平行的直线为y轴,以OP为z轴,
建立空间直角坐标系.过点Q作OA⊥x轴于A.设Q
点的坐标为(x,y,0),则A点的坐标为(x,0,0).
由于P点固定,我们不妨设P(0,0,h),由OA=PA,
可知y2=x2+h2.故Q点的轨迹是双曲线.选B.
小结解答本题时,首先建立空间直角坐标系,然后把立体几何与解析几何知识直接联
系起来,根据圆锥曲线的定义作出判断.。

相关文档
最新文档