酶分子定向进化

合集下载

酶定向进化

酶定向进化
天然酶的局限
天然酶的稳定性差,活性低使催化效率很低,还
缺乏有商业价值的催化功能
天然酶的局限性源于酶的自然进化过程.
现代生物工程的要求

能具备长期稳定性和活性 能适用于水及非水相环境 能接受不同的底物甚至是自然界不存在的合成底 物 能够在特殊环境中合成和拆分制作新药物或药物 的原材料 如何利用相对简单的方法以达到对天然酶的改造 或构建新的非天然酶就显得非常有研究意义和应 用前景.
1.平板筛选法
平板筛选法所依据的重组细胞的表型包括细
胞生长情况、颜色变化情况、透明圈情况。 1)依据细胞生长情况筛选突变基因 在提高酶的热稳定性、抗生素耐受性、pH稳 定性和对其他极端环境条件的耐受能力等方 面有广泛应用。
2)依据颜色变化筛选突变基因
片断 (lacZ′)插入到噬菌体DNA的间隔区域中,当它 感染了相应的大肠杆菌宿主细胞时,在含有IPTG和 底物X-gal的平板培养基上可以形成蓝色噬菌斑。 (2)在对磷酸酯酶进行定向进化的过程中,可以在 平板培养基中加入硝基酚磷酸,接种重组细胞培养 一段时间后,有些重组细胞周围出现黄色(硝基 酚)。
二、突变基因的筛选
(一)定向选择环境条件的设定 (1)提高酶的稳定性,高温筛选重组细胞,每一次 突变-筛选的循环中逐步提高重组细胞的培养温 度。 (2)如果定向进化的目的是提高β-内酰胺酶的活 性,从而提高对β-内酰胺酶类抗生素的耐受性, 可以通过在含有一定浓度的β-内酰胺酶类抗生素 的培养基中培养重组细胞,并在每一次突变-筛 选循环中逐步提高抗生素的浓度。 (二)高通量筛选技术P217表8-2
特点 正突变的概率低,突变基因较大,筛选的工作量大,一般适用于较小基因的定 向进化。
实例
枯草杆菌蛋白酶:洗涤剂合成、鞣革和医药领域的重 要工业酶制剂。 Chen 等采用易错PCR 对该酶进行了体外进化研究。 他们通过降低反应体系中dATP 的浓度, 对编码该酶 从第49 位氨基酸到C 端的DNA 片段进行易错PCR , 经筛选得到的几个突变株在高浓度的二甲基甲酰胺 (DMF) 中酶活性明显提高 突变体PC3 在60 %的DMF 中, 酶活力是野生型的 256 倍。将PC3 再进行两个循环的定向进化, 得到的 突变体13M酶活力比PC3 还要高3 倍。

第八章酶分子的定向进化概要

第八章酶分子的定向进化概要
张今等为解决空间结构未知酶的蛋白质工程问题 以天冬氨酸为模型通过控制DNA合成的碱基底物 种类和浓度比例实现碱基对的错配,向目的基因 引入突变同时限制突变减少筛选突变体的工作量, 探索了一种称为酶法体外随机、定向改造酶分子 的途径。
9
三、发展阶段
易错PCR(error-prone PCR)和DNA改组方 法成功开发标志着酶分子定向进化技术的成 熟。 在酶分子的定向进化改造中,易错PCR和 DNA改组技术配合使用通过随机突变和优势 重最早使用的载体系统,在载体本身的设计方面
已经相当成熟。 优点:
插入片段的载容量大,适合于大片段的克隆。 感染效率高、鉴定容易,有较好的质量控制指标。 基因质量高、代表性好,稳定性好,适合长期
▪ 酶分子的定向进化(directed evolution)即属于 蛋白质的非合理设计。
3
三、发展方向
酶催化的精确性和有效性往往并不能满足通常的工业 化要求,天然酶通常缺乏有商业价值的催化功能及其 他性质。因此,对天然酶分子水平上的改造,显得十 分重要。
酶分子仍具有巨大的进化潜力,是酶的体外定向进化 的基本先决条件。
关于外显子在蛋白质进化中的作用有两种观点:
“原生内含子”假说:认为当前所有的蛋白质都 经过外显子改组;
“后生内含子”假说:认为外显子改组仅出现在 真核细胞中,以提高这些生物基因的韧性。
两种假说都承认外显子改组是蛋白质进化的重要 机制,因此人为模拟此自然进化过程定向进化酶 分子将是获得新酶的颇具吸引力的途径。
21
七、突变库的构建及应用(一)构建理想的基因要考虑的因素1.基因的质量
(1)基因的代表性中包含的DNA分子应能完整地反映来源基因
(2)突变基因片段的序列完整性中重组或突变DNA片段应尽可能完整地反映出天然 基因的结构。

酶工程_酶分子定向进化.

酶工程_酶分子定向进化.

部分DNA Shuffling技术的研究成果
类 型 示 例 蛋 白 绿色荧光蛋白 重组蛋白RecA 抗 体 人源抗体 特 性 荧光强度 重组率 亲和性
生物的自然进化
进化过程:
突变→自然选择→遗传后代
进化结果:
基因多样性:为完成同一功能所表现出的
多个 基因或同一个基因 (同源性) 代谢途径的多样性:同样产物,多条途径 代谢产物的多样性:同一底物,不同产物
生物多样性:整个生态系统中的生物
酶的定向进化
• 酶分子的合理设计(rational design)
提高耐热性
易于观察的菌落表型(如菌落颜色等)
营养缺陷型的辅助筛选
噬菌体展示、细胞表面展示
根据所需要的胞表面)的表现特征进行筛选,获得提高目的底 物亲和力的突变子。减少筛选工作量突变→大的突变子库→小的突变子库→ 单克隆
Nhomakorabea• 酶分子的定向进化(directed evolution)
酶的合理 设计
体外定向进化的意义
• 理论上,蛋白质分子蕴藏着很大的进化潜力, 很多功能有待于开发,这是酶的体外定向进化 的基本先决条件。 • 所谓酶的体外定向进化,又称实验分子进化, 属于蛋白质的非合理设计,它不需事先了解酶 的空间结构和催化机制,通过人为地创造特殊 的条件,模拟自然进化机制(随机突变、重组 和自然选择),在体外改造酶基因,并定向选 择出所需性质的突变酶。 • 酶的体外定向进化技术极大地拓展了蛋白质工 程学的研究和应用范围,特别是能够解决合理 设计所不能解决的问题,为酶的结构与功能研 究开辟了崭新的途径,并且正在工业、农业和 医药等领域逐渐显示其生命力。
What happens after DNA shuffling

酶分子定向进化

酶分子定向进化

3)依据透明圈情况筛选突变基因
依据透明圈情况筛选突变基因是在平板培养 基中加入目的酶的作用底物,然后接种重 组细胞,在一定条件下进行培养,培养一 段时间后,在一些重组细胞的菌落周围会 出现较大的透明圈。
第四节 酶定向进化的应用
一、提高酶的催化效率 二、增加酶的稳定性 三、改变酶的底物特异性
小基因 的定向进化。
二 DNA重排技术
• 概念片断,经过不加引物的多次PCR循 环,使DNA的碱基序列重新排布而引起基 因突变的技术过程。
• 细胞定向进化是在细胞水平上进行定向进 化的过程,以各种细胞为进化对象,目的 是改良细胞的各种特征,主要包括微生物 细胞的定向进化、动物细胞的定向进化、 植物细胞的定向进化等。 • 随机突变方法有全基因组重排技术。 • 基因组重排技术通过把诱变与细胞融合技 术相结合,对细胞进行基因组重排,从而 大幅度增加细胞的正突变频率。
一 平板筛选法
• 平板筛选法所依据的重组细胞的表型包括 细胞生长情况、颜色变化情况、透明圈情 况。 1)依据细胞生长情况筛选突变基因 在提高酶的热稳定性、抗生素耐受性、pH稳 定性和对其他极端环境条件的耐受能力等 方面有广泛应用。
2)依据颜色变化筛选突变基因
片断 (lacZ′)插入到噬菌体DNA的间隔区域中,当 它感染了相应的大肠杆菌宿主细胞时,在含有 IPTG和底物X-gal的平板培养基上可以形成蓝色 噬菌斑。 (2)在对磷酸酯酶进行定向进化的过程中,可以在 平板培养基中加入硝基酚磷酸,接种重组细胞培 养一段时间后,有些重组细胞周围出现黄色(硝 基酚)。
分子定向进化
• 分子定向进化是在分子水平上进行定向进 化的过程。 • 分子定向进化首先要通过从细胞内提取或 者通过PCR等方法获得目标分子的基因,在 体外采用易错PCR 、DNA重排、基因家 族重排等技术进行人工突变,然后进行定 向选择而获得所需突变体。

酶定向进化的原理和步骤

酶定向进化的原理和步骤

酶定向进化的原理和步骤
酶定向进化(enzyme directed evolution)是一种通过人为引
导的、基于自然选择原则的酶改造方法,可以用于提高酶的活性、稳
定性、底物范围等性质,以满足特定需要。

其原理和步骤如下:原理:
1. 酶定向进化是基于自然选择的原理。

通过引入随机突变和筛选操作,筛选出具有所需性质的变体酶,再通过重复这一过程,逐步改进和优
化酶的性能。

步骤:
1. 随机突变:通过诱发突变(例如随机突变、DNA Shuffling等)引
入酶的突变,得到一组具有多样性的突变体酶库。

2. 筛选/选优:通过选择性试剂、高通量筛选系统等手段,筛选
出表现出所需性质的突变体酶。

这一步骤需要对酶的目标特性进行准
确的定量、定性检测。

3. 特异突变体筛选:从筛选中得到的酶变体中,选出表现最佳
的数个突变体。

4. 突变组合:根据选出的突变体酶,通过多种方式(例如DNA Shuffling等)进行突变位点的组合,产生更多的突变体酶。

5. 筛选与优化:通过筛选和优化,选出具有更好性质的突变体酶。

6. 反馈循环:重复上述步骤,逐步优化酶的性质,直到满足所需。

总体来说,酶定向进化是通过不断引入突变和选择操作来改良酶
的性能,然后通过逐步筛选和优化的方式,在突变体酶库中逐渐筛选
出具有所需特性的酶。

第八章酶的定向进化

第八章酶的定向进化
➢ 缺点:正突变基因少,需多次PCR。 定向进化的基本规则是“获取你所筛选的突变体”。
结果对单基因进化得到的突变酶中,对头孢羟羧氧胺的抗性最高的增加了8倍,而用家族同源重组进化的方法使抗性比其中两种微生物 来源的天然酶提高270倍,比段,经过不加引物的多次PCR循环,使DNA的碱因与载体重组,再转入 适宜的细胞或包装成重组λ黏粒载体
➢ 转化 ➢ 噬菌粒载体
➢ 转导
2、突变基因的筛选 (1)定向选择环境条件的设定 (2)高通量筛选技术
定向进化的特点 ➢ 适应面广; ➢ 目的性强; ➢ 效果显著。
定向进化的原理 ➢ 以很低的比率向目的基因中随机引入突变,构建突
变库,凭借定向的选择方法,选出所需性质的优化 酶(或蛋白质),从而排除其他突变体。 ➢ 定向进化的基本规则是“获取你所筛选的突变体”。 ➢ 定向进化=随机突变+定向选择。
2、DNA重排技术为代表的有性进化 DNA重排技术:又称DNA改组技术,有性PCR片段,经过不加引物的 多次PCR循环,使DNA的碱基序列重新排布而引 起基因突变的技术突变频率高,进化速度快。 ➢段,经过不加引物的多次PCR循环,使DNA的碱基序列重新排布而引起 突变,构建突变库,凭借定向的选择方法,选出所需性质的优化酶(或蛋白质),从而排除其他突变 体。
定向进化的基本规则是“获取你所筛选的突变体”。
改变四种底物浓度比等。
2、DNA重排技术为代表的有性进化 定义:将各种不同突变基因与载体重组,再转入适宜的细胞或包装成重组λ噬菌体的技术过程。 1、突变基因的构建 适用:较小基因的定向进化。
属于蛋白质的非合理设计,它不需事先了解酶的空间结构和催化机制。
酶分子的定向进化(directed evolution):模拟自然进化过程(随机突变和自然选择),在体外进行酶基因的人段,经过不加引物的多次PCR循环,使DNA的碱基序列重新排布而引起

酶工程_酶分子定向进化

酶工程_酶分子定向进化

DNA改组和外显子改组
DNA改组(DNA shuffling)又称有性
PCR(sexual PCR),原理。 该策略的目的是创造将亲 本基因群中的突变尽可能组合的机会,导致更大的变 异,最终获取最佳突变组合的酶。通过DNA改组, 不 仅可加速积累有益突变,而且可使酶的2个或更多的 已优化性质合为一体。
• 酶分子的定向进化(directed evolution)
酶的合理 设计
体外定向进化的意义
• 理论上,蛋白质分子蕴藏着很大的进化潜力, 很多功能有待于开发,这是酶的体外定向进化 的基本先决条件。 • 所谓酶的体外定向进化,又称实验分子进化, 属于蛋白质的非合理设计,它不需事先了解酶 的空间结构和催化机制,通过人为地创造特殊 的条件,模拟自然进化机制(随机突变、重组 和自然选择),在体外改造酶基因,并定向选 择出所需性质的突变酶。 • 酶的体外定向进化技术极大地拓展了蛋白质工 程学的研究和应用范围,特别是能够解决合理 设计所不能解决的问题,为酶的结构与功能研 究开辟了崭新的途径,并且正在工业、农业和 医药等领域逐渐显示其生命力。
TLPs 的失活曲线
TLP-ste突变蛋白的三维结 构
酶拓扑结构的变化
蛋白质的耐热机制
• 天然耐热蛋白质特性:
减少内腔体积;引入盐桥束;减少表面积 /体积比; 除去氧化还原活性基;埋藏暴露的疏水基;除去 -支链氨基酸;除去能脱氨基的氨基酸。 所有耐热蛋白质的氨基酸同源性低至36%,最高不 超过75%。
• 分子进化耐热蛋白质特性:
邻-硝基苯酯酶(p-nitrobenzyl esterase)突变 体8g8的了稳定性提高了17C,但突变的氨基酸数 仅有13个,与天然酯酶同源性高达97%。
基因直接进化的步骤

酶定向进化的原理和步骤

酶定向进化的原理和步骤

酶定向进化的原理和步骤酶定向进化(Enzyme Directed Evolution)是一种模仿自然界生物进化机制的方法,用于创造或改良具有特定功能的酶。

这种方法通常涉及到以下几个关键步骤:
原理:
酶定向进化是基于达尔文的自然选择原理,通过迭代的方式筛选和优化酶的活性。

这个过程模拟了自然环境下生物进化的过程,但是速度快很多,可以在实验室条件下完成。

步骤:
1. 目标功能的确定:首先,研究人员需要确定希望改进或获得的酶的目标功能,例如催化特定反应的能力、耐受极端环境的稳定性等。

2. 构建突变库:接着,通过各种手段(如PCR、DNA合成错误、化学转化等)在酶的编码基因中引入随机突变,构建一个含有大量遗传变异的突变库。

3. 筛选和选择:将突变库中的所有突变酶进行表达,并通过高通量筛选技术检验它们的功能。

这可能包括在体外测试它们的催化活性,或者在宿主细胞内评估它们的表达水
平和稳定性。

4. 定向进化循环:挑选出表现最佳的突变酶,再次引入新的突变,然后重复筛选和选择过程。

每一轮的筛选都是针对之前未满足的特性进行的,以期望逐步逼近理想的酶功能。

5. 分析和优化:在定向进化的过程中,可以通过测序、X射线晶体学、核磁共振等技术来分析酶的结构和功能关系,以指导后续的突变策略。

6. 验证和应用:最后,经过多轮优化的酶将被验证其在实际应用中的性能,并可能被进一步开发作为商业产品。

酶定向进化技术已经成功应用于多种酶的改造,包括氨基酸转运蛋白、脂肪酶、淀粉酶等,并且在药物制造、生物燃料生产、食品工业等领域显示出巨大的潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档