《物理场论》时变电磁场

合集下载

《电磁场与电磁波》课程教学大纲

《电磁场与电磁波》课程教学大纲

《电磁场与电磁波》课程教学大纲一、课程基本信息课程编码:07S2117B中文名称:电磁场与电磁波英文名称:E1ectromagneticFie1dandE1ectromagneticWave课程类别:专业核心课总学时:48总学分:3适用专业:电子科学与技术专业先修课程:高等数学、大学物理、场论、数学物理方程二、课程性质及目标教学性质:电磁场与电磁波是电子科学与技术专业学生的一门专业核心课程。

通过本课程的学习,要求学生系统地理解电磁场与电磁波的基本概念、基本性质和基本规律,掌握求解电磁场问题的基本方法,为进一步学习其他课程特别是专业课打下基础。

课程目标:1.通过本课程知识的学习,使学生了解电磁场论的发展历程,掌握电磁场论的基本概念、基本性质和基本规律,掌握求解电磁场问题的基本方法,为后续专业课程奠定基础。

引导学生学习科技发展史,树立科技强国意识,感受中国在电子领域的先进成果,激励学生自觉融入到实现中华民族伟大复兴的中国梦进程中。

2.通过本课程知识的学习,使学生掌握电磁场论计算理论的基本方法,并能在具体电子科学与技术专业的具体问题中加以应用。

培养学生解决问题方法的多样性,提高学生数学分析的能力。

3.通过本课程知识的学习,使学生掌握电磁场论分析问题的基本方法,并能在复杂的实际情况中加以应用。

培养学生逻辑思维和创新能力,提高学生设计、开发系统的能力。

不同介质和边界条件对应的场方程形式不同,引导学生用发展的眼光看问题,终身学习,与时俱进,始终拥有先进的理念和较高的职业素养。

I.采用启发式、案例式教学,激发学生主动学习的兴趣,培养学生独立思考、分析问题和解决问题的能力。

2.结合科研生产中的实际例子对课程进行讲解,通过课堂讲解,加强学生对基础知识及基本理论的理解。

3.教学以课堂讲授为主,多媒体辅助教学,提高课堂教学信息量,增强教学的直观性、形象性。

4.通过课内讨论与课外答疑、线下辅导与线上交流相结合的方式,调动学生学习的主观能动性,培养学生的自学能力。

期中考试电动力学概念复习题

期中考试电动力学概念复习题
期中考试电动力学概念复习题
一 判断
静电场是有源无旋场。 ( √ ) 静电场的电场线是闭合的。 ( × ) 电流的磁场是无源有旋场。 ( √ ) 稳恒电流的磁场线是闭合的。 ( √ ) 由麦克斯韦方程组可知,电场是有源无旋场。 由麦克斯韦方程组可知,磁场是有源无旋场。 感应电场是有旋场。 位移电流的实质是电场的变化率。
二 填空题(每题 4 分,共 5 小题,合计 20 分)
绪论 1 电动力学是通过对 电磁场 及它和带电物质之间的相互作用的研究,阐述电磁现象的普遍规律及其应用的学 科。 电动力学是通过对电磁场的基本属性、 它的运动规律 的研究, 阐述电磁现象的普遍规律及其应用的学科。 矢量分析和场论 1 基本公式 矢量场论的高斯公式为 A dS
线的垂直距离为 R)的电势为 3 静电场的能量 线性介质中静电场的总能量为 W
1 2 -
V
( x ) x dV ;电偶极矩 p 在均匀介质中产生的电势=


R ln 2 0 R0



。 E DdV (用 E和D 表示)
1 2
已知电荷分布 及其所产生的电势 ,则该电荷所产生电场的总能量 W 电量为 Q,半径为 a 的导体球所产生静电场的总能量为 W 4 点电荷密度公式 格林公式
( A) - 2 A

0


g ( f ) - f ( g )
3 算符运算公式
算符公式中作用于关于 r 或 r 的公式 算符作用于关于 r 或 r 的公式有 r 。 0 算符作用于关于 r 或 r 的公式有 ( a ) r a 。 算符作用于关于 r 或 r 的公式有 [ E0 sin( k r )] k E 0 cos( k r ) 算符作用于关于 r 或 r 的公式有 ( a r ) a 。

电磁场与电磁波试卷及复习提纲.

电磁场与电磁波试卷及复习提纲.

《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。

2、通量的定义;散度的定义及作用。

3、环量的定义;旋度的定义及作用;旋度的两个重要性质。

4、场论的两个重要定理:高斯散度定理和斯托克斯定理。

第二章静电场1、电场强度的定义和电力线的概念。

2、点电荷的场强公式及场强叠加原理;场强的计算实例。

3、静电场的高斯定理;用高斯定理求场强方法与实例。

4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。

5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。

6、静电场环路定理的积分形式和微分形式,静电场的基本性质。

7、电位梯度的概念;电位梯度和电场强度的关系。

8、导体静电平衡条件;处于静电平衡的导体的性质。

9、电偶极子的概念。

10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。

11、介质中静电场的基本方程;介质中静电场的性质。

12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。

13、静电场的能量分布,和能量密度的概念。

第三章电流场和恒定电场1、传导电流和运流电流的概念。

2、电流强度和电流密度的概念;电流强度和电流密度的关系。

3、欧姆定律的微分形式和积分形式。

4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。

5、电动势的定义。

6、恒定电场的基本方程及其性质。

第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。

2、电流元与电流元之间磁相互作用的规律-安培定律。

3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。

4、洛仑兹力及其计算公式。

5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。

计算磁场的方法和实例。

6、磁通的定义和单位。

7、磁通连续性原理的微分形式、积分形式和它们的意义。

8、通量源和旋涡源的定义。

9、安培环路定律的积分形式和微分形式。

电磁场复习提纲(大连海事大学)

电磁场复习提纲(大连海事大学)
③r1>r2,反射系数Γ> 0,透射系数1 < T < 2。分界面反射波与入射波的电场同相,透射波电场振幅大于入射波电场振幅。
五.均匀平面波对导体平面的垂直入射
①入、反射波都是行波,合成波为纯驻波,振幅与位置有关。
②z=0和z为0.5 整数倍处是合成波电场波节、磁场波腹;z为0.25 奇数倍处是合成波电场波腹、磁场波节。合成波磁场与电场存在90°相差。
2.远区场
远区电场与磁场相位相同、相互垂直,复数波印亭矢量无虚部;
平均波印亭矢量不为零,电流元能量转换成电磁波向四周扩散。
瞬时玻印亭矢量的值始终不小于零,说明电磁能量一直向外辐射,因此远区场又称为辐射场。
电基本振子远区场的电气特性:
非均匀球面波横电磁波
E面:电场矢量所在的平面。
H面:磁场矢量所在的平面。
电场强度矢量指向电位Ф减小的方向,即由正电荷指向负电荷的方向,而电位梯度方向是电位Ф增大的方向。
电场能量密度
静电位能
镜像电荷:两个导板夹角为180°/n (n必须为整数)条件下镜像电荷数为2n−1。
电流元的镜像:电流元视为等量异号电荷构成的电偶极子。电流元电流正方向由负电荷指向正电荷。
两个带等量异号电荷导体的电容:
第4章恒定电场与恒定磁场
一.恒定电场【有源场,无旋场】
恒定电场基本方程
恒定电场边界条件
电流密度法向分量在边界上连续
恒定电场切向分量在边界上连续
电流线与 很大的媒质表面垂直。
电导率均匀,体电荷密度为0。换言之,各向同性线性均匀媒质不存在体电荷(媒质内没有净余电荷)。
通常导电媒质分界面上存在面电荷。除非 。
(2)导电媒质均匀平面波是TEM波, 仍成立。

《电磁场》复习题A

《电磁场》复习题A

《电磁场》复习题A一、填空题1、描述电场对于电荷作用力的物理量叫做______________。

2、E线和等位面之间的关系是______________,和电场强度关系是______________。

3、静电场中的折射定律是______________。

4、静电场边界条件中的自然边界条件是______________。

5、静电场中,虚位移法求静电力的两个公式是______________、______________。

6、恒定磁场中的分界面衔接条件是______________、______________。

7、恒定磁场的泊松方程为______________。

8.材料能够安全承受的最大电场强度称为___________。

9.平板电容器的板面积增大时,电容量___________。

10.在均匀媒质中,电位函数满足的偏微分方程称为___________。

11.深埋于地下的球形导体接地体,其半径越大,接地电阻越___________。

12.多匝线圈交链磁通的总和,称为___________。

13.恒定磁场中的库仑规范就是选定矢量磁位A的散度为___________。

14.磁通连续性定理的微分形式是磁感应强度B的散度等于___________。

15.正弦电磁波在单位长度上相角的改变量称为___________。

16.电磁波的传播速度等于___________。

17.电场能量等于电场建立过程中外力所做的___________。

二、选择题1.两点电荷所带电量大小不等,则电量大者所受作用力()A.更大B.更小C.与电量小者相等D.大小不定2.静电场中,场强大处,电位()A.更高B.更低C.接近于零D.高低不定3.A 和B 为两个均匀带电球,S 为与A 同心的球面,B 在S 之外,则S 面的通量与B 的( )A .电量及位置有关B .电量及位置无关C .电量有关、位置无关D .电量无关、位置有关4.一中性导体球壳中放置一同心带电导体球,若用导线将导体球与中性导体球壳相联,则导体球的电位( )A .会降低B .会升高C .保护不变D .变为零5.相同场源条件下,均匀电介质中的电场强度值为真空中电场强度值的() A .ε倍 B .εr 倍C .倍ε1D .倍r1ε6.导电媒质中的恒定电流场是( )A .散度场B .无散场C .旋度场D .无旋场7.在恒定电场中,电流密度的闭合面积分等于( )A .电荷之和B .电流之和C .非零常数D .零8.电流从良导体进入不良导体时,电流密度的切向分量( )A .不变B .不定C .变小D .变大9.磁感应强度B 的单位为( )A .特斯拉B .韦伯C .库仑D .安培10.如果在磁媒介中,M 和H 的关系处处相同,则称这种磁媒质为( )A .线性媒质B .均匀媒质C .各向同性媒质D .各向异性媒质三、名词解释1、非极性分子2、体电流密度3、恒定磁场4、时变场5、动生电动势四、简答题1、什么是唯一性定理?2、什么是传导电流、什么是运流电流,什么是位移电流。

电磁场与电磁波复习重点

电磁场与电磁波复习重点

梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。

2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。

:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。

散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。

斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。

A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。

3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。

关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。

麦克斯韦方程组ppt课件.ppt

麦克斯韦方程组ppt课件.ppt
-1857年法拉第给麦克斯韦的回信
5. 是经典物理 — 近代物理桥梁 创新物理概念(涡旋电场、位移电流) 严密逻辑体系 简洁数学形式(P 337 微分形式)
正确科学推论(两个预言)
麦氏方程不满足伽利略变换 相对论建立
“我曾确信,在磁场中作用于一个运动电荷 的 力不过是一种电场力罢了,正是这种确信或多或 少直接地促使我去研究狭义相对论 .”
导体中自由电子-“电子气”; 电介质分子 - 电偶极子 ; 磁介质分子 -分子电流; 点电荷、均匀带电球面、无限长带电直线、 无限大带电平面…... 无限长载流直线、无限大载流平面、长直螺旋管 ……
四.了解实际应用 静电屏蔽、磁屏蔽 尖端放电 电子感应加速器、涡流 磁聚焦 产生匀强电场、匀强磁场的方法 霍尔效应分辨半导体类型 …...
3. 比较
起源
传导电流 I 0
载流子宏观 定向运动
只在导体中存在
特点
并产生焦耳热
位移电流 I d
变化电场和极化 电荷的微观运动
无焦耳热, 在导体、电介质、真空 中均存在
共同点
都能激发磁场
P334 问题:比较导体、介质中 j0 , 数jD量级
三. 安培环路定理的推广
1. 全电流 I全 I0 ID
三.必须掌握的基本方法:
1)微元分析和叠加原理
dq dE E
dI B
dU U
Pm
Id l F ;
dS e ,m;
dA F dr A;
2)用求通量和环流的方法描述空间矢量场,求解 具有某些对称性的场分布。
用静电场的高斯定理求电场强度; 用稳恒磁场的安培环路定理求磁感应强度; 迁移到引力场……
方程
实验基础
SD
dS

《电磁场与电磁波》复习纲要(含答案)

《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0

C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
麦克斯韦:1831~1879,英国 物理学家。经典电磁场理论 的奠基人,气体动力理论创 始人之一。1865年,提出了 有旋电场和位移电流的概念, 建立了经典电磁场理论,并 预言了以光速传播的电磁波 的存在。在气体动力理论方 面,他还提出了气体分子按 速率分布的统计规律。
第2节 完备的 Maxwell方程组
说明:Maxwell方程组中7个方程是独立的 , 本构方程中9个方程是独立的,共16个方程,16 个未知数,因此理论上可以求解。
Maxwell方程组的积分形式

B

l E dl S t dS


B

l H dl S (J t ) dS
电磁感应定律应用举例 涡流与电磁炉原理!
有一半径为a、高度为h的圆盘,电导率为。
把圆盘放在磁感应强度为B的磁场中, 其方向垂直
盘面。设磁场随时间变化,且dB/dt=k,k为一常
量。求盘内的感应电流。

r dr
h
a
h
B
r dr
已知
R,
h,
, B , dB
dt

k
求: I

r dr
h
解: 如图取一半径为 r ,宽度 为dr ,高度为h 的圆环。
A


2
A

(

A



)


J
t 2
t
引入附加条件—洛伦兹规范

A



0
t
可得 A 形式的波动方程:
2 2
t 2

2
A


2A


J
t 2
矢量磁位和标量电位
2 2
d dt
B dS
S
B dS S t


i
E dl
C

E dS
S



E


B
t
电磁感应定律的微分形式
感应电动势分为:
动生电动势:导体相对磁场运动引起。 感生电动势:磁场随时间变化引起。
电磁感应定律
B 0, B A,

D t

0
E t

P t


H

J

D t

J

0
E t

P t
位移电流包括极化电流和变化的电场两部分
位移电流密度 揭示磁场可以由脱离电荷以外的电场的变化来 激发; 揭示电磁场可以相互激发和转化,预示电磁波 的存在,计算出真空中电磁波的速度:
c 1 ( 真空中的光速)
极化:在外电场作用下,介质中极化电荷的某 种宏观分布和宏观运动,用极化电荷密度和极化 电流表示。
磁化:在外磁场作用下,介质呈现的磁性,是 由宏观磁化电流引起。
第4节 时变电磁场的位函数 位函数的定义和物理意义
时变场的辅助位函数本身不具有任何物理意义而仅是 数学运算上的辅助量; 由于电磁场的不可分割性,辅助电位函数和辅助磁位 函数之间是互相关联的。 3种辅助函数:
电荷守恒定律
积分形式:I f

S J f

dS


q
t

t
V V dV
微分形式:

S Jf
dS


q



t t
V V dV

V J f dV

V
V
t
dV

V ( J f
V )dV
t
第1节 法拉第电磁感应定律、准静 态场和电荷守恒定律
法拉第(Faraday)电磁感应定律
法 拉 第 ( Michael Faraday, 17911867),伟大的英国物理学家和化学 家。他创造性地提出场的思想,磁场 这一名称是法拉第最早引入的。他是 电磁理论的创始人之一,1831年发现 电磁感应定律,后又相继发现电解定 律,物质的抗磁性和顺磁性,以及光 的偏振面等。
t 2

2
A


2
A


J
t 2
在时谐场 eit 条件下,方程变为:
2 2


2 A 2A J
此时洛仑兹规范为:

A

i
矢量磁位和标量电位
在洛伦兹规范条件下,对于时谐场无须从达
极化电流:在外电场作用下,电介质发生转向 极化或位移极化,形成极化电荷,其宏观效果等 价于在电介质中形成极化电流。
磁化电流:在外磁场作用下,磁介质产生磁化 现象,磁化的宏观效果等价于形成了磁化电流, 尽管分子内的电子与原子核均未宏观移动。
通常极化电流和磁化电流统称为诱导电流。
感应、极化和磁化 感应:在外电场作用下,介质中自由电荷的某 种宏观分布和宏观运动,用感应电荷和传导电流 表示。
0
电流连续性方程
Jf
V
t
恒定条件下
Jf 0
准静态场
若在在静恒 电定(场磁t), J中场 :J中(t):,A通41常400Vt'V时R' RJd刻Vd'V的' 电荷和电流经过时
间r/c后才影响到P点的 和 A,即有滞后现象。
t t
t
令 E A E A
t
t
代入 E 的散度方程和 H 的旋度方程
矢量磁位和标量电位
代入 E 的散度方程和 H 的旋度方程
E
(

A)

2


(
A)


t
t

H
( 1

A)

位移电流密度 D t
这显然是错误的!
H J,


J



H J 0
t
t
为了对 H J 进行修正,Maxwell发挥天才设 想,引入 D(定义为位移电流密度),得到
t

H

J

D
t

D 0E P

1

A

J


[ (

A)]



t
t
2


(

A)



t

2 A

2A
(

A


)


J
t 2
t
此为达朗贝尔(D’Alembert)方程组。
矢量磁位和标量电位
2


(
A)



t

2
矢量磁位 A 和标量电位 矢量电位和标量磁位 赫兹电位和赫兹磁位
矢量磁位和标量电位
对于只有电流、电荷源而无磁流、磁荷源的情
况,可以利用矢量磁位 A和标量电位 来研究:

根据

B

0
,定义一矢量位
A ,把
B



A

入 E 的旋度方程
E B ( A) (E A) 0
1 k a2h
4
r dr
h
r dr
电荷守恒定律
大量实验表明:孤立系统的电荷
总量保持不变。在任何时刻,系统

中正负电荷的代数和保持不变,称

为电荷守恒定律。
电荷守恒定律意义: 孤立系统中产生或湮没某种符号的电荷,必有 等量异号的电荷伴随产生或湮没。 孤立系统总电荷量增加或减小,必有等量电荷 进入或离开该系统。

E


B
t
E B ( A) t t
(E A) 0 t
令 E A E A
t
t
讨论:电场是由随时间变化的磁场和聚集电
荷产生,对于恒定磁场,A 不随时间变化,则

E


,与前面的讨论一致。
工程实际中,会遇到一种特殊形式的时变电磁 场:诸场量随时间做正弦或余弦形式的变化,即 随时间做简谐变化,这种形式的时变电磁场称为
时谐电磁场,其时间因子为eit ,得到Maxwell
方程组的复数形式:
E i H H J i E D
B 0
J i
《物理场论》第2篇:电磁场
第3章 时变电磁场
张元中
中国石油大学(北京)地球物理与信息工程学院
主要内容
第1节 法拉第电磁感应定律、准静态场和电荷守 恒定律 第2节 完备的Maxwell方程组 第3节 电荷和电流的划分;感应、极化和磁化 第4节 时变电磁场的位函数 第5节 时变电磁场的波动方程 第6节 时变电磁场的坡印亭定理 第7节 平面电磁波的传播
边界条件
在不同介质的分界面处,由于介质参数发生突 变 , Maxwell 方 程 组 的 微 分 形 式 失 去 意 义 , 代 替 它的是以积分形式场方程导出的分界面处电磁场 各分量的连续条件(边界条件)为:
n (E2 E1) 0
(切向
E
连续)

n(H2 H1) JS (切向 H 的不连续量为边界面电流密度)
电磁感应定律
相关文档
最新文档