湖南省邵东县第一中学2021届高三数学第五次月考试题2
高三数学上学期第五次月考试题(普通班)

邵东三中届高三第五次月考数学(普通班)试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A=1|ln x y x ⎧⎫=⎨⎬⎩⎭,B={}2|x y x x =-+,则()U C A B =( )A. {}0B. {}0,1C. ∅D. ()0,1 2.下列说法中正确的是( )A. “若0a b ⋅=,则a b ⊥”的否命题是“若0a b ⋅≠,则a b ⊥”B.命题“x R ∀∈,恒有210x +>”的否定是“0x R ∃∈,使得2010x +<”C.m R ∃∈,使函数2()()f x x mx x R =+∈是奇函数D.设,p q 是简单命题,若p q ∧是真命题,则()p q ⌝∨也是真命题 3.“x a >”是“1x >-”成立的充分不必要条件( ) A.a 的值可以是12-B. a 的值可以是1-C. a 的值可以是2-D. a 的值可以是3-4.若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为A. 4B. 3C. 2D. 1 5.已知0,0,ln 3ln 9ln 3xyx y >>+=,则21x y+的最小值是( ) A. 6 B. 6+4+6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .457.已知等比数列{}n a 的前10项的积为32,则下列命题为真命题的是( ) A. 数列{}n a 的各项均为正数 B. 数列{}n a 的项C. 数列{}n a 的公比必是正数D. 数列{}n a 中的首项和公比中必有一个大于1 8.若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减, 则ω=( )A. 3B. 2C. 32D.239.由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为( )A.103 B .4 C .163 D .6 10. 如果执行如图的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的p 等于( )A .C m -1n B .A m -1nC .C m nD .A mn 11.数列}{n a 的通项公式sin12n n a n π=⋅+,前n 项和为n S ,则S 2015=( )A.504B.1006C. 1007D. 100812. 已知()f x 是定义在[]2,2-上的奇函数,当(]0,2x ∈时,()21xf x =-,函数2()2g x x x m =-+,如果对于任意[]12,2x ∈-,存在[]22,2x ∈-,使得21()()g x f x =,则实数m 的取值范围是( )A.(),2-∞-B.()5,2--C.[]5,2--D.(],2-∞- 二.填空题:本大题共4小题,每小题5分,共20分.13.设复数满足(i 是虚数单位),则||=_________ 14.已知向量a ⃗ =(2,-1),b ⃗ =(-1,m ),c =(-1,2),若(a ⃗ +b ⃗ )∥c ,则m =15.某三棱锥的三视图如右图所示,则该三棱锥的 表面积是16.直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .三.解答题:本大题共6小题,17、18、19、20、21每小题12分,22题10分,共70分.解z i z i 23)1(+-=+z答应写出文字说明,证明过程或演算步骤.17.在ΔABC 中,a b c 、、分别为内角A B C 、、的对边,且A B C 、、成等差数列.(1)若b =,3a =,求c 的值; (2)设sin sin t A C =⋅,求t 的最大值.18.某同学参加3门课程的考试,假设该同学第一门课程取得优秀的概率为45,第二、第三门课程取得优秀成绩的概率分别为p 、q (p>q ),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为(1)求该生至少有1门课程取得优秀成绩的概率; (2)求p 、q 的值; (3)求数学期望Eξ.19.已知数列{}n a 是递增的等比数列,满足14a =,且354a 是2a 、4a 的等差中项,数列{}n b 满足11n n b b +=+,其前n 项和为n S ,且264S S a +=. (1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n a 的前n 项和为n T ,若不等式2log (4)73n n n T b n λ+-+≥对一切n N +∈恒成立,求实数λ的取值范围.20.已知椭圆E :22221(0)x y a b a b+=>>,其长轴长与短轴长的和等于6.(1)求椭圆E 的方程;(2)如图,设椭圆E 的上、下顶点分别为1A 、2A ,P 是椭圆上异于1A 、2A 的任意一点,直线1PA 、2PA 分别交x 轴于点N 、M ,若直线OT 与过点M 、N 的圆G 相切,切点为T 。
【数学】湖南省邵阳市邵东县创新实验学校高三第五次月考试题)(解析版)

湖南省邵阳市邵东县创新实验学校高三第五次月考数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】A【解析】写出集合A的所有元素,寻求两个集合公共元素.因为,,所以.故选A.2.已知是虚数单位,化简为()A. B. C. D.【答案】D【解析】分子分母同时乘以,化简可得..故选D.3.三个内角所对的边为,已知且,则角等于()A. B. C. D. 或【答案】A【解析】由正弦定理可得:,则,又,所以,故选A。
4.“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】化简“”,利用充要条件的定义可以判定.化简得,因为时,;而时,不一定得出.所以选A.5.设变量满足约束条件,则的最小值为()A. 14B. 10C. 6D. 4【解析】则过点时,取最小值,,故选D。
6.若两个非零向量满足,则向量与夹角的余弦值为()A. B. C. D.【答案】C【解析】从入手,两边平方可得及,从而可求.因为,平方可得;因为,平方可得;设向量与的夹角为,则.7.函数的零点是和,则()A. B. C. D.【答案】B【解析】先利用对数运算求解出零点,结合两角和的正切公式求解.因为的零点是和,所以是方程的两个根,即有.,故选B.8.定义在上的函数与函数在上具有相同的单调性,则的取值范围是()A. B. [ C. D.【解析】【分析】通过题意可知为减函数,利用导数可以求得的取值范围.【详解】因为,所以为减函数,即在也为减函数;,即在恒成立,所以,故选B.【点睛】本题主要考查利用导数和单调性关系求解参数范围.若函数在区间D上为增函数,则其导数在D上恒成立;若函数在区间D上为减函数,则其导数在D上恒成立.9.函数在的图象大致为()A. B.C. D.【答案】C【解析】,为偶函数,则B、D错误;又当时,,当时,得,则则极值点,故选C。
2023_2024学年湖南省邵阳市邵东市高三上册第二次月考数学试题(附答案)

cos
sin
0
或
cos
sin
1 2
,
由 cos sin 0 平方可得1 sin 2 0 ,即 sin 2 1,
cos sin 1
1 sin 2 1
sin 2 3
由
2 平方可得
4 ,即
4,
因为
(
π 2
, 0)
,所以
2
(π,0)
,
sin
2
0
,
综上, sin 2 1.
故选:C
∴公差 d 0 ,等差数列an是递减数列,A 错误;
n 1012 时, Sn 取得最大值,C 错误;
D 选项, S1013 S1010 a1011 a1012 a1013 S1010 3a1012 S1010 ,D 错误.
2023_2024 学年湖南省邵阳市邵东市高三上册第二次月考数学试题
一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题的四个选项中,只有一个选项
是符合题目要求的.
A
1.已知集合
x x2 3x 0
, B 1, 2,3, 4,则 ðR A B (
)
A.4
B.3, 4
C.2,3, 4
tan
x
1
”的必要不充分条件,B
正确;
C 选项,根据存在量词命题的否定是全称量词命题,
对于命题 p: x R ,使得 x2 x 1 0 ,则 p 是: x R ,均有 x2 x 1 0 ,C 正确; D 选项,设 x2 3x a 0 的两根分别为 x1, x2 ,
由于 x1 x2 3 0 ,故要想 x2 3x a 0 有正实数根,
02/25
(全优试卷)湖南省邵阳市高三数学上学期第五次月考试题(实验班)

邵东三中高一年级第三次月考数学试卷(实验班)内容:必修1+必修2+必修4第一章的1-4节 总分:150分一、选择题(本题共12小题,每小题5分,共60分)1. 已知1317cos sin =+αα,则ααcos sin ⋅的值为( ) A .16960 B .16960- C .19660 D .19660-2.已知tan α=34,α∈⎝⎛⎭⎪⎫π,32π,则cos α的值是( ) A .±45 B.45 C .-45 D.353.设α,β为不重合的平面,m ,n 为不重合的直线,则下列命题正确的是( )A .若α⊥β,α∩β=n ,m ⊥n ,则m ⊥αB .若m ⊂α,n ⊂β,m ∥n ,则α∥βC .若m ∥α,n ∥β,m ⊥n ,则α⊥βD .若n ⊥α,n ⊥β,m ⊥β,则m ⊥α 4.函数()sin f x x a =-在],3[ππ∈x 上有2个零点,则实数a 的取值范围( )A . [2B .[0,2C .(,1)2D .,1)2 5. 若函数()(01)(,),xxf x ka a a a -=->≠-∞+∞且在上既是奇函数又是增函数则g()log ()a x x k =+ 的图像是( )6. 已知直线1:20l ax y a -+=,2:(21)0l a x ay a -++=互相垂直,则a 的值是( )A.0B.1C.0或1D.0或1- 7.设P ),(y x 是圆4)3(22=+-y x 上任一点,则xy的最小值是( ) A 0 B 552-C 55- D 1- 8.当点P 在122=+y x 圆上变动时,它与定点Q (3,0)相连,线段PQ 的中点M 的轨迹方程是( )A 4)3(22=++y x B 1)3(22=+-y xC 14)32(22=+-y xD 14)32(22=++y x9(3)4k x =-+有两个不同的解时,实数k 的取值范围是( )10. 一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(2,0,2),(2,2,0) ,(0,2,2),(1,0,0),画该四面体三视图中的主视图时,以zOx 平面为投影面,则得到主视图可以为 ( )11.若圆2244100x y x y +---=上至少有三个不同的点,到直线:l y x b =+的距离为,则b 取值范围为( )A .(2,2)-B .[2,2]-C .[0,2]D .[2,2)-12. 设函数()f x 的定义域为D ,如果存在正实数k ,使对任意x ∈D ,都有x +k ∈D ,且()()f x k f x +>恒成立,则称函数()f x 为D 上的“k 型增函数”.已知()f x 是定义在R上的奇函数,且当x>0时,()||2f x x a a =--,若()f x 为R 上的“2 015型增函数”,则实数a 的取值范围是( ) A.2015,4⎛⎫-∞ ⎪⎝⎭ B.2015,4⎛⎫+∞ ⎪⎝⎭ C.2015,6⎛⎫-∞ ⎪⎝⎭ D.2015,6⎛⎫+∞ ⎪⎝⎭二.填空题(本题共4道小题,每小题5分,共20分)13.已知tan α=2,则sin αcos α+2sin 2α的值是________. 14.已知)(x f 是R 上的奇函数,当0>x 时,)1()(x x x f -=,则0<x 时,)(x f 的解析式为 15.一个几何体的三视图如右图所示,则该几何体的表面积= __ ___16.已知()(2)(3),()22xf x m x m x mg x =-++=-.若对任意x R ∈,都有()0f x < 或()0g x <,则m 的取值范围是_________.三.解答题(共70分,要求要有必要的文字说明和解题过程)17.(本题满分10分)化简:+⋅-⋅--+⋅-⋅-cos()sin(3)cos()23tan()cos()sin()22ππππππx x x x x x18.(本题满分12分)已知cos()(1)6a a +=≤πθ,函数2()sin()33f x x π=-, (1)求()f θ 的值 (2)求()f x 在[,]2x ∈ππ上的最大值及取最大值时x 的取值(3)求()f x 的单调增区间19. (本题满分12分)(1)由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为,A B ,60APB ∠= ,求动点P 的轨迹方程(2)已知圆2280x y x y m +--+=与直线260x y +-=相交于P 、Q 两点,定点(1,1)R ,若PR QR ⊥,求m 的值。
湖南省邵东县第一中学2020届高三数学上学期第二次月考题

湖南省邵东县第一中学2020届高三数学上学期第二次月考题一、选择题:本大题共12小题,每小题5分,共60分。
??????????RU=A1B?0?,B?x|3x?Cx?A?x|log x?2 ,1. 设全集集合则U2????????3?0?x|xx??1或0,3?10,3??,D . B. C.A.)a?i(1?2i)(a?a为实数,则设)(的实部与虚部相等,其中2.2 C.2 D.3 3 B.-A.-20?R,x?1p:?x?p?)设命题3.,则为(2201,x???0B.?x?R?A.?x?R,x10000220?1?.?x?R,x1C.?x?R,x??0D00aSnaaS=( 6项和,且,则=34.若数列{) }为等差数列,-为其前nn942A.25 B.27 C.50D.545.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是农民,乙是知识分子,丙是工人AB?AC3?AB的最大值为的圆上三点,若 C6.设A、B、是半径为1,则33333+3+B. D. A.C. 2π???x)(gx)f(x?sin()x??sin3的图象,(7.函数)的图象如图所示,为了得到<2f(x)的图象只需将ππ个单位长度个单位长度A.向右平移 B.向左平移44ππ个单位长度C.向右平移 D.向左平移个单位长度1212中国古代近似计算方法源远流长,早在八世纪,我国著名数学家张遂在编制《大衍历》中8.)(xy?f处的函数)(x<x<xxx=,发明了一种二次不等距插值算法:若函数x=x,在x=x322311可以用二次函数来近似f(x)]x,,则在区间)=y)f(x=,)=y值分别为f(xy,f(x[x上31122313- 1 -y?yy?yk?k32121,k?,k?k?)xx)(x-(xf()?y?k(x-x)?kx-。
湖南省邵东县创新实验学校高三第五次月考试题理(数学)

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的)1.已知集合2{|230}A x x x =+-<,{|21}xB x =≥,则A B =I ( ) A .(,3]-∞- B .(,1]-∞C .(3,0]-D .[0,1) 2. i 是虚数单位,R 是实数集,a R ∈,若12a iR i+∈-,则a =( ) A .12 B .12- C .2 D .-2 3. e 是自然对数的底数,若1(,1)x e -∈,ln a x =,1()2x b =,x c e =,则( ) A .b c a >> B .a b c >> C. c b a >> D .c a b >> 4.已知数列}{n a 是公差为21的等差数列,n S 为数列}{n a 的前n 项和.若1462,,a a a 成等比数列,则=5S ( )A .225B .35C .235D .255.若||1a =r ,||2b =r ,()(2)1a b a b +-=-r r r rg,则向量a r 与b r 的夹角为( ) A .3π-B .6π- C. 3π D .6π6.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:①//m n ,//m α ⇒ //n α ②//αβ,//m n , m α⊥⇒ n β⊥ ③m n ⊥,m α⊥⇒ //n α,或n α⊂ ④αβ⊥,//m α ⇒ m β⊥ 其中,正确命题的个数是( )A .1B .2 C.3 D .47.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A .(kπ-4π,0)(k∈Z) B .(2k π-4π,0)(k∈Z)C .(kπ-8π,0)(k∈Z)D .(2k π-8π,0)(k∈Z)8. 若0,0x y >>,且24log 3log 81x y +=,则11x y+的最小值为 ( )A . . C .32+ D .3+9.对于数列{}n a ,定义1122...2n nn a a a H n-+++=为{}n a 的“优值”,现已知某数列的“优值”2nn H =,记数列{}n a 的前n 项和为n S,则20192019S =( ) A .2022 B .1011 C .2020D .101010.如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体最长的棱的长度为( )A .4B .3 C. 23.2 11.在数列{}n a 中,1n n 1a 0,a a 52(n 2)(n N ,n 2)*-=-+=+∈≥,若数列{}n b 满足n n n 18b n a 1()11+=+,则数列{}n b 的最大项为( )A.第5项B.第6项C.第7项D.第8项12.设m R ∈,函数22()()()xf x x m e m =-+-(e 是自然对数的底数),若存在0x 使得01()2f x ≤,则m =( ) A .14 B .13 C. 12D .1二、填空题(本大题共4小题,每小题5分,共20分,把答案填写在答题卷中对应题号后的横线上) 13.已知sin 3sin 3παα⎛⎫=+⎪⎝⎭,则tan 6πα⎛⎫+= ⎪⎝⎭______________. 14.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x z x y =-的取值范围是__________.15、1,0,()1,0,x f x x ≥⎧⎪=⎨-<⎪⎩则不等式(2)(2)5x x f x ++⋅+≤的解集是 .16.已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,,CD BC ⊥,4==CD BC,32==AD AB 则三棱锥A BCD -的外接球的表面积为__________.三、解答题(70分=10分+12分+12分+12分+12分+12分) 17. (本小题满分10分)己知函数xe xf =)(,bx ax xg +=2)(+1.(1)若0a ≠,曲线y =f (x )与()y g x =在x =0处有相同的切线,求b ; (2)若0,01b a =<<,求函数()()y f x g x =的单调递增区间;18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列1n n a ⎧⎫+⎨⎬⎩⎭的前n 项和为n T ,求n T 以及n T 的最小值.19.(本小题满分12分)已知向量2,1,cos ,cos 444x x x m n ⎫⎛⎫==⎪ ⎪⎭⎝⎭u r r ,记()f x m n =u r r g .(1)若()1f x =,求cos 3x π⎛⎫+ ⎪⎝⎭的值;(2)在锐角ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足()2cos cos a c B b C -=,求()2f A 的取值范围。
高考数学复习基础知识专题讲解与练习04 函数的性质综合应用(解析版)

高考数学复习基础知识专题讲解与练习专题04函数的性质综合应用一、单选题1.(2021·黑龙江·牡丹江市第三高级中学高三月考(文))已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为() A .(-1,0) B .(-2,0) C .(0,1)D .1,02⎛⎫- ⎪⎝⎭【答案】C 【分析】由题设函数的定义域,应用换元法求出()f t 的定义域,进而求(21)f x -的定义域即可. 【详解】由题设,若1t x =+,则(1,1)t ∈-,∴对于(21)f x -有21(1,1)x -∈-,故其定义域为(0,1). 故选:C.2.(2021·湖南·高三月考)已知函数()f x 满足22()()326f x f x x x +-=++,则() A .()f x 的最小值为2B .x R ∃∈,22432()x x f x ++>C .()f x 的最大值为2D .x R ∀∈,22452()x x f x ++>【答案】D 【分析】先求得()f x ,然后结合二次函数的性质确定正确选项.【详解】因为22()()326f x f x x x +-=++(i ),所以用x -代换x 得22()()326f x f x x x -+=-+(ii ). (i )×2-(ii )得23()366f x x x =++, 即22()22(1)1f x x x x =++=++,从而()f x 只有最小值,没有最大值,且最小值为1.()2222222221243243122()222222x x x x x x f x x x x x x x ++-++++===-<++++++, ()2222222221245245122()222222x x x x x x f x x x x x x x +++++++===+>++++++. 故选:D.3.(2021·河南·孟津县第一高级中学高三月考(理))若函数()2021x x f x x ππ-=-+,则不等式(1)(24)0f x f x ++-≥的解集为() A .[1,)+∞ B .(,1]-∞ C .(0,1] D .[1,1]-【答案】A 【分析】判断出函数的奇偶性和单调性,再利用其性质解不等式即可 【详解】()f x 的定义域为R ,因为()2021(2021)()x x x x f x x x f x ππππ---=-=--+=--, 所以()f x 是奇函数,所以不等式(1)(24)0f x f x ++-≥可化为(1)(42)f x f x +≥-, 因为,,2021x x y y y x ππ-==-=在R 上均为增函数, 所以()f x 在R 上为增函数, 所以142x x +≥-,解得1x ≥, 故选:A.4.(2022·全国·高三专题练习)已知函数f (x 2+1)=x 4,则函数y =f (x )的解析式是( )A .()()21,0f x x x =-≥B .()()21,1f x x x =-≥C .()()21,0f x x x =+≥D .()()21,1f x x x =+≥【答案】B 【分析】利用凑配法求得()f x 解析式. 【详解】()()()2242211211f x x x x +==+-++,且211x +≥,所以()()22211,1f x x x x x =-+=-≥. 故选:B.5.(2021·湖南省邵东市第一中学高三月考)已知函数()f x 满足()()()222f a b f a f b +=+对,a b ∈R 恒成立,且(1)0f ≠,则(2021)f =() A .1010 B .20212C .1011D .20232【答案】B 【分析】利用赋值法找出规律,从而得出正确答案. 【详解】令0a b ==,则()()()()20020,00f f f f =+=,令0,1a b ==,则()()()()()221021,121f f f f f =+=,由于()10f ≠,所以()112f =.令1a b ==,则()()()221211f f f =+=, 令2,1a b ==,则()()()2133221122f f f =+=+=,令3,1a b ==,则()()()23144321222f f f =+=+=,以此类推,可得()202120212f =.故选:B.6.(2021·安徽·六安二中高三月考)设()f x 为奇函数,且当0x ≥时,()21x f x =-,则当0x <时,()f x =() A .21x -- B .21x -+C .21x ---D .21x --+【答案】D 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x --=-,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x --=-,又由()f x 为奇函数,则()()21x f x f x ---=-+=,故选:D.7.(2021·河南·高三月考(理))||||2()x x x e f x e-=的最大值与最小值之差为()A .4-B .4eC .44e-D .0【答案】B 【分析】利用函数为奇函数,且其图像的对称性,利用导数可得函数的单调性和最值. 【详解】22()1xx xx e x f x ee-==-,设2()xx g x e=,则()()1g x f x =+则()g x 为奇函数,图像关于原点对称,其最大值与最小值是互为相反数,max max ()()1g x f x =+min ()()1min g x f x =+ max min ()()0g x g x +=max min max min max min max ()()(()1)(()1)()()2()f x f x g x g x g x g x g x ∴-=---=-=即()f x 的最大值与最小值之差为max 2()g x , 当0x >时2()xxg x e =,222(1)()x x x x g x e e --'==, 故2()xxg x e =的单调递增区间为(0,1),单调递减区间为(1,)+∞, 所以max 2()(1)g x g e==,所以()f x 的最大值与最小值之差为4e故选:B.8.(2021·黑龙江·牡丹江市第三高级中学高三月考(理))已知减函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为() A .(),3-∞ B .()3,+∞ C .(),3-∞- D .()3,-+∞【答案】C 【分析】根据函数奇偶性和单调性,列出不等式即可求出范围. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<,得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C.9.(2021·陕西·西安中学高三期中)已知函数()(1ln 31xx a x f x x a +=++++-(0a >,1a ≠),且()5f π=,则()f π-=() A .5- B .2 C .1D .1-【答案】C 【分析】令()()3g x f x =-,由()()0g x g x -+=,可得()g x 为奇函数,利用奇函数的性质即可求解. 【详解】解:令()()(1ln 13x x a x g x f x x a +++=--+=,因为()()((11ln ln 011xxx x a a g x x x x x x aa g --++-++-++++=---+=,所以()g x 为奇函数,所以()()0g g ππ-+=,即()()330f f ππ--+-=, 又()5f π=, 所以()1f π-=, 故选:C.10.(2021·北京通州·高三期中)已知函数()f x 的定义域为R ,()54f =,()3f x +是偶函数,[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,则()A .()04f <B .()14f =C .()24f >D .()30f <【答案】B 【分析】根据条件可得()f x 关于直线3x =对称,()f x 在[)3,+∞上单调递增,结合()54f =可判断出答案. 【详解】由()3f x +是偶函数可得()f x 关于直线3x =对称 因为[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,所以()f x 在[)3,+∞上单调递增因为()54f =,所以()()064f f =>,()()154f f ==,()()244f f =< 无法比较()3f 与0的大小 故选:B.11.(2021·北京朝阳·高三期中)若函数()()221x f x a a R =-∈+为奇函数,则实数a =().A .2-B .1-C .0D .1【答案】D【分析】由奇函数的性质()00f =求解即可 【详解】因为函数()()221x f x a a R =-∈+为奇函数,定义域为R ,所以()00f =,即02021a -=+,解得1a =,经检验符合题意,故选:D.12.(2022·上海·高三专题练习)函数()2020sin 2f x x x =+,若满足()2(1)0f x x f t ++-≥恒成立,则实数t 的取值范围为() A .[2,)+∞ B .[1,)+∞C .3,4⎛⎤-∞ ⎥⎝⎦D .(,1]-∞【答案】C 【详解】∵()2020sin 2()f x x x f x -=--=-,且()20202cos20f x x '=+>, ∴函数()f x 为单调递增的奇函数.于是,()2(1)0f x x f t ++-≥可以变为()2(1)(1)f x x f t f t +--=-,即21x x t +≥-,∴21t x x ≤++,而221331244x x x ⎛⎫++=++≥ ⎪⎝⎭,可知实数34t ≤, 故实数t 的取值范围为3,4⎛⎤-∞ ⎥⎝⎦.故选:C.13.(2021·江苏·海安高级中学高三月考)已知定义在R 上的可导函数()f x ,对任意的实数x ,都有()()4f x f x x --=,且当()0,x ∈+∞时,()2f x '>恒成立,若不等式()()()1221f a f a a --≥-恒成立,则实数a 的取值范围是() A .1,02⎛⎫- ⎪⎝⎭ B .10,2⎡⎤⎢⎥⎣⎦C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭ 【答案】D 【分析】由题意可得()()()f x x f x x -=---,令()()2F x f x x =-,根据奇偶性的定义,可得()F x 为偶函数,利用导数可得()F x 的单调性,将题干条件化简可得()2(1)2(1)f a a f a a -≥---,即()(1)F a F a ≥-,根据()F x 的单调性和奇偶性,计算求解,即可得答案.【详解】由()()4f x f x x --=,得()2()2()f x x f x x -=---, 记()()2F x f x x =-,则有()()F x F x =-,即()F x 为偶函数, 又当(0,)x ∈+∞时,()()20F x f x ''=->恒成立, 所以()F x 在(0,)+∞上单调递增,所以由()()()1221f a f a a --≥-,得()2(1)2(1)f a a f a a -≥---, 即()(1)F a F a ≥-(||)(|1|)F a F a ⇔-,所以|||1|a a -,即2212a a a ≥+-,解得12a ,故选:D.14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为() A .1个 B .2个C .3个D .0个【答案】B【分析】由已知函数()f x 的解析式作出图象,把函数()1y f x =-的零点转化为函数()f x 与1y =的交点得答案. 【详解】由函数解析式222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩由图可知,函数()1y f x =-的零点的个数为2个. 故选:B .15.(2020·广东·梅州市梅江区嘉应中学高三月考)已知函数()f x 是定义在R 上的奇函数,满足1(2)()f x f x +=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+,则()2021f 等于() A .4 B .2C .2-D .2log 7【答案】C 【分析】求得()f x 是周期为4的周期函数,从而求得()2021f . 【详解】因为函数()f x 是定义在R 上的奇函数,()11(4)(2)2()1(2)()f x f x f x f x f x +=++===+, 其最小正周期为4,所以()()2021450511)()1(f f f f ⨯+===--.因为31,02⎛⎫-∈- ⎪⎝⎭,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+, 所以()2()log 13)1(12f -=--+=⨯,所以()202112()f f =--=-. 故选:C.16.(2021·江西·九江市柴桑区第一中学高三月考(文))已知函数()f x 是定义在[3,2]a --上的奇函数,且在[3,0]-上单调递增,则满足()()0f m f m a +->的m 的取值范围是()A .5,82⎛⎤ ⎥⎝⎦B .5,32⎛⎤⎥⎝⎦C .[]2,3D .[]3,3-【答案】B 【分析】根据奇函数的定义可知定义域关于原点对称可得320a -+-=,即可解出a ,由奇函数的性质可得函数()f x 在[]3,3-上递增,再将()()0f m f m a +->等价变形为()()f m f a m >-,然后根据单调性即可解出. 【详解】依题意可得320a -+-=,解得5a =,而函数f x ()在[3,0]-上单调递增,所以函数()f x 在[0,3]上单调递增,又函数()f x 连续,故函数()f x 在[]3,3-上递增,不等式()()0f m f m a +->即为()()5f m f m >-,所以333535m m m m-≤≤⎧⎪-≤-≤⎨⎪>-⎩,解得532m <≤.故选:B .17.(2021·浙江·高三期中)已知0a >,0b >,则“2ln 39b a a b>-”是“a b >”成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B 【分析】构造函数,利用函数的单调性,结合充分性、必要性的定义进行判断即可. 【详解】解:由()22ln ln 2ln 33b a a a b b=->-,得()2ln 23ln 3a b a b +>+,令()ln 3x f x x =+,()f x 在()0,∞+上单调递增,又()()2f a f b >,则2a b >.即当0a >,0b >时,2ln 392b a a a b b>-⇔>.显然,2a b a b >⇒>,但由2a b >不能得到a b >. 故选:B .18.(2021·重庆市实验中学高三月考)已知函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩,若函数()f x 在R 上为减函数,则实数a 的取值范围为()A .1,13⎡⎫⎪⎢⎣⎭B .11,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】B 【分析】利用二次函数、指数函数的单调性以及函数单调性的定义,建立关于a 的不等式组,解不等式组即可得答案. 【详解】解:因为函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩在R 上为减函数,所以()213112011312a a a a +⎧≥⎪⎪<<⎨⎪-++≥⎪⎩,解得1132a ≤≤,所以实数a 的取值范围为11,32⎡⎤⎢⎥⎣⎦, 故选:B.19.(2021·全国·高三期中)已知()2f x +是偶函数,当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫= ⎪⎝⎭,()3b f =,()4c f =,则a 、b 、c 的大小关系为() A .b a c << B .c b a << C .b c a << D .a b c <<【答案】A 【分析】分析可知函数()f x 在()2,+∞为增函数,由已知条件可得1722a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合函数()f x 的单调性可得出a 、b 、c 的大小关系. 【详解】当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,则()()12f x f x <, 所以()f x 在()2,+∞为增函数.又因为()2f x +是偶函数,所以,()()22f x f x -+=+,即1722a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以()()7342f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:A.20.(2021·宁夏·海原县第一中学高三月考(文))已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+,若()13f =,则()()()()1232022f f f f ++++=()A .2022B .0C .3D .2022-【答案】C 【分析】由条件可得()f x 是周期为4的周期函数,然后利用()()()()()()()()()()1232022505123412f f f f f f f f f f ++++=+++++⎡⎤⎣⎦算出答案即可.【详解】因为()f x 是定义域为()-∞+∞,的奇函数,所以()()f x f x -=-,()00f = 因为()()11f x f x -=+,所以()()()2f x f x f x -=+=-所以()()()42f x f x f x +=-+=,所以()f x 是周期为4的周期函数 因为()13f =,()()200f f ==,()()()3113f f f =-=-=-,()()400f f == 所以()()()()()()()()()()12320225051234123f f f f f f f f f f ++++=+++++=⎡⎤⎣⎦故选:C.21.(2021·河北·高三月考)已知函数()3()21sin f x x x x =+++,则()(32)4f x f x -+-<的解集为() A .(,1)-∞ B .(1,)+∞C .(,2)-∞D .(2,)+∞【答案】A 【分析】设3()()222sin g x f x x x x =-=++,然后可得函数()g x 为奇函数,函数()g x 在R 上单调递增,然后不等式()(32)4f x f x -+-<可化为()(32)g x g x -<-+,然后可解出答案. 【详解】设3()()222sin g x f x x x x =-=++,可得函数()g x 为奇函数,2()62cos 0g x x x '=++>,所以函数()g x 在R 上单调递增,()(32)4()2(32)2()f x f x f x f x g x -+-<⇒--<--+⇒-(32)()(32)g x g x g x <--⇒-<-+,所以321x x x -<-+⇒<. 故选:A.22.(2021·河南·高三月考(文))已知函数()()12x x f x e e -=+,记12a fπ⎛⎫⎪ ⎪⎝⎭=,1log 2b f π⎛⎫ ⎪⎝⎭=,()c f π=,则a ,b ,c 的大小关系为()A .a <b <cB .c <b <aC .b <a <cD .b <c <a【答案】C 【分析】先判断函数的奇偶性,然后根据导函数的符号求出函数的单调区间,利用函数的单调性即可得出答案. 【详解】解:因为()()()12x x f x e e f x --=+=,所以函数()f x 为偶函数,()()12x xf x e e -'=-, 当0x >时,()0f x '>,所以函数()f x 在()0,∞+上递增,则()1log log 22b f f ππ⎛⎫== ⎪⎝⎭,所以10log 212πππ<<<<, 所以b a c <<. 故选:C .23.(2021·安徽·高三月考(文))已知定义在R 上的函数()f x 满足:(1)f x -关于(1,0)中心对称,(1)f x +是偶函数,且312f ⎛⎫-= ⎪⎝⎭,则92f ⎛⎫ ⎪⎝⎭的值为() A .0 B .-1 C .1 D .无法确定【答案】B 【分析】由于(1)f x -关于(1,0)中心对称,又将函数(1)f x -向左平移1个单位后为()f x ,所以()f x 关于(0,0)中心对称,即()f x 是奇函数;又(1)f x +是偶函数,又将函数(1)f x +向右平移1个单位后为()f x ,所以()f x 关于直线1x =对称,可得函数()f x 的周期4T =, 由此即可求出结果. 【详解】由于(1)f x -关于(1,0)中心对称,又将函数(1)f x -向左平移1个单位后为()f x ,所以()f x 关于(0,0)中心对称,即()f x 是奇函数;又(1)f x +是偶函数,又将函数(1)f x +向右平移1个单位后为()f x ,所以()f x 关于直线1x =对称,即()(2)f x f x =-; 所以()(2)f x f x =--,所以(+2)()f x f x =-,所以(4)(2)()f x f x f x +=-+=, 所以函数()f x 的周期4T =,911334211222222f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-==--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.故选:B.24.(2021·江西·赣州市赣县第三中学高三期中(理))函数()y f x =对任意x ∈R 都有(2)()f x f x +=-成立,且函数(1)y f x =-的图象关于点()1,0对称,(1)4f =,则(2020)(2021)(2022)f f f ++=()A .1B .2C .3D .4【答案】D 【分析】根据函数(1)y f x =-的图象关于点()1,0对称,得到函数是奇函数,然后结合(2)()f x f x +=-,得到函数的周期为4T =求解. 【详解】因为函数(1)y f x =-的图象关于点()1,0对称, 所以函数()y f x =的图象关于点()0,0对称, 即()()f x f x -=-, 又因为(2)()f x f x +=-,所以(2)()f x f x +=-,即(4)()f x f x +=, 所以函数的周期为4T =, 又(1)4f =,所以(2020)(2021)(2022)(0)(1)(0)4f f f f f f ++=++=. 故选:D.25.(2021·江西·高三月考(文))若定义在R 上的奇函数()f x 在区间(0,)+∞上单调递增,且()30f =,则满足0()2f x x -≤的x 的取值范围为()A .(][),15,-∞-+∞B .[][]3,05,-+∞C .[][]1,02,5-D .(][),10,5-∞-【答案】C 【分析】根据函数的单调性、奇偶性、函数图象变换,结合图象求得正确答案. 【详解】依题意()f x 是R 上的奇函数,且在(0,)+∞递增,且()30f =,所以()f x 在(),0-∞递增,且()30f -=.()2f x -的图象是由()f x 的图象向右平移2个单位得到,画出()2f x -的大致图象如下图所示,由图可知,满足0()2f x x -≤的x 的取值范围为[][]1,02,5-.故选:C.26.(2022·全国·高三专题练习)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有() A .f 3()2<f 1()4-<f 1()4B .f 1()4<f 1()4-<f 3()2C .f 3()2<f 1()4<f 1()4-D .f 1()4-<f 3()2-<f 1()4【答案】C 【分析】首先判断函数的周期,以及对称性,画出函数的草图,即可判断选项. 【详解】因为f (x +2)=-f (x ),所以f (x +2+2)=-f (x +2)=f (x ),所以函数的周期为4,并且()()()2f x f x f x +=-=-,所以函数()f x 关于1x =对称,作出f (x )的草图(如图),由图可知3()2f <1()4f <1()4f -,故选:C.27.(2022·全国·高三专题练习)函数()342221x x f x x x⎧-≤⎪=⎨->⎪-⎩,,则不等式()1f x ≥的解集是( )A .()513⎡⎫-∞⋃+∞⎪⎢⎣⎭,,B .(]5133⎡⎤-∞⋃⎢⎥⎣⎦,,C .513⎡⎤⎢⎥⎣⎦,D .533⎡⎤⎢⎥⎣⎦,【答案】B【分析】将()f x 表示为分段函数的形式,由此求得不等式()1f x ≥的解集. 【详解】()342221x x f x x x ⎧-≤⎪=⎨->⎪-⎩,,443,3434,232,21x x x x x x ⎧-<⎪⎪⎪=-≤≤⎨⎪⎪>⎪-⎩, 当43x <时,431,11x x x -≥≤⇒≤,当423x ≤≤时,55341,233x x x -≥≥⇒≤≤,当2x >时,10x ->,则21,21,3231x x x x ≥≥-≤⇒<≤-,综上所述,不等式()1f x ≥的解集为(]5,1,33⎡⎤-∞⋃⎢⎥⎣⎦.故选:B.28.(2021·安徽省亳州市第一中学高三月考(文))函数()f x 满足()()4f x f x =-+,若()23f =,则()2022f =()A .3B .-3C .6D .2022【答案】B 【分析】根据函数()f x 满足()()4f x f x =-+,变形得到函数()f x 是周期函数求解. 【详解】因为函数()f x 满足()()4f x f x =-+,即()()4f x f x +=-, 则()()()84f x f x f x +=-+=,所以函数()f x 是周期函数,周期为8,所以()()()()202225286623f f f f =⨯+==-=-.故选:B .29.(2021·贵州·贵阳一中高三月考(理))函数2()ln(231)f x x x =-+的单调递减区间为()A .3,4⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .3,4⎛⎫+∞ ⎪⎝⎭D .(1,)+∞【答案】B【分析】先求出函数()f x 的定义域,再求出函数2231u x x =-+在所求定义域上的单调区间并结合复合函数单调性即可作答.【详解】在函数2()ln(231)f x x x =-+中,由22310x x -+>得12x <或1x >,则()f x 的定义域为1(,)(1,)2-∞+∞, 函数2231u x x =-+在1(,)2-∞上单调递减,在(1,)+∞上单调递增,又ln y u =在(0,)u ∈+∞上单调递增,于是得()f x 在1(,)2-∞上单调递减,在(1,)+∞上单调递增, 所以函数()f x 的单调递减区间为1(,)2-∞. 故选:B.30.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为()A .404B .804C .806D .402【答案】A【分析】 根据两个偶函数得()f x 的对称轴,由此得函数的周期,10是其一个周期,由周期性可得零点个数.【详解】因为(2)y f x =+与(7)y f x =+都为偶函数,所以(2)(2)f x f x +=-+,(7)(7)f x f x +=-+,所以()f x 图象关于2x =,7x =轴对称,所以()f x 为周期函数,且2(72)10T =⋅-=,所以将[0,2013]划分为[0,10)[10,20)[2000,2010][2010,2013]⋅⋅⋅.而[0,10)[10,20)[2000,2010]⋅⋅⋅共201组,所以2012402N =⨯=,在[2010,2013]中,含有零点(2011)(1)0f f ==,(2013)(3)0f f ==共2个,所以一共有404个零点.故选:A.31.(2021·安徽·池州市江南中学高三月考(理))已知定义域为R 的函数f (x )满足f (-x )=-f (x +4),且函数f (x )在区间(2,+∞)上单调递增,如果x 1<2<x 2,且x 1+x 2>4,则f (x 1)+f (x 2)的值()A .可正可负B .恒大于0C .可能为0D .恒小于0【答案】B【分析】首先根据条件()(4)f x f x -=-+转化为(4)()f x f x -=-,再根据函数()f x 在区间(2,)+∞上单调递增,将1x 转换为14x -,从而14x -,2x 都在(2,)+∞的单调区间内,由单调性得到它们的函数值的大小,再由条件即可判断12()()f x f x +的值的符号.【详解】解:定义域为R 的函数()f x 满足()(4)f x f x -=-+,将x 换为x -,有(4)()f x f x -=-,122x x <<,且124x x +>,2142x x ∴>->,函数()f x 在区间(2,)+∞上单调递增,21()(4)f x f x ∴>-,(4)()f x f x -=-,11(4)()f x f x ∴-=-,即21()()f x f x >-,12()()0f x f x ∴+>,故选:B .32.(2021·河南·模拟预测(文))已知非常数函数()f x 满足()()1f x f x -=()x R ∈,则下列函数中,不是奇函数的为()A .()()11f x f x -+ B .()()11f x f x +- C .()()1f x f x - D .()()1f x f x + 【答案】D【分析】根据奇函数的定义判断.【详解】因为()()1f x f x -=()x R ∈,所以()1()()1f x g x f x -=+,则11()11()()()()1()11()1()f x f x f xg x g x f x f x f x -----====--+++,()g x 是奇函数, 同理()()1()1f x h x f x +=-也是奇函数,1()()()()()p x f x f x f x f x =-=--,则()()()()p x f x f x p x -=--=-,是奇函数, 1()()()()()q x f x f x f x f x =+=+-,()()()()q x f x f x q x -=-+=为偶函数, 故选:D .33.(2021·四川郫都·高三月考(文))已知奇函数()f x 定义域为R ,()()1f x f x -=,当10,2x ⎛⎤∈ ⎥⎝⎦时,()21log 2f x x ⎛⎫=+ ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭() A .2log 3B .1C .1-D .0【答案】D【分析】 根据函数的奇偶性和(1)()f x f x -=可得函数的周期是2,利用周期性进行转化求解即可.【详解】 解:奇函数满足(1)()f x f x -=,()(1)(1)f x f x f x ∴=-=--,即(1)()f x f x +=-,则(2)(1)()f x f x f x +=-+=,所以()f x 是以2为周期的周期函数, 所以225111()()log ()log 102222f f ==+==. 故选:D.34.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且满足()()()()2f x y f x y f x f y ++-=,且12f ⎛⎫= ⎪⎝⎭,()00f ≠,则()2021f =().A .2021B .1C .0D .1-【答案】C【分析】 分别令0x y ==,令12x y ==得到()()110f x f x ++-=,进而推得函数()f x 是周期函数求解. 【详解】令0x y ==,则()()()()00200f f f f +=,故()()()20010f f -=,故()01f =,(()00f =舍) 令12x y ==,则()()1110222f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故()10f =.∴()()()()11210f x f x f x f ++-==,即()()()()()()1124f x f x f x f x f x f x +=--⇒+=-⇒+=,故()f x 的周期为4,即()f x 是周期函数.∴()()202110f f ==.故选:C .二、多选题35.(2021·全国·高三月考)()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2f x f x +=-,当[]0,1x ∈时,()()2log 2f x x =-,则下列结论正确的是()A .函数()f x 的一个周期为4B .()20221f =C .当[]2,3x ∈时,()()2log 4f x x =--D .函数()f x 在[]0,2021内有1010个零点【答案】AC【分析】 由()()2 x f f x +=-可判断A ,()()()2022450()5220f f f f =⨯+==-,可判断B ,当[]2,3x ∈时,[]20,1x -∈,结合条件可判断C ,易知()()()()()1 35201920210f f f f f ===⋯===,可判断D.【详解】()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2 x f f x +=-,()()4 (2,f x f x f x ∴+=-+=)故函数的周期为4,故选项A 正确;()()()2022452(05201)f f f f =⨯+==-=-,故选项B 错误;当[]2,3x ∈时,[]20,1x -∈,则()()()()222log 2 2log 4f x f x x x ⎡=--=---=-⎤⎦-⎣,故选项C 正确;易知()()()()()1 35201920210f f f f f ===⋯===,于是函数()f x 在[]0,2021内有1011个零点,故选项D 错误,故选:AC .36.(2021·重庆市第十一中学校高三月考)关于函数()321x f x x +=-,正确的说法是() A .()f x 有且仅有一个零点B .()f x 在定义域内单调递减C .()f x 的定义域为{}1x x ≠D .()f x 的图象关于点()1,3对称【答案】ACD【分析】将函数()f x 分离系数可得5()31f x x =+-,数形结合,逐一分析即可; 【详解】 解:323(1)55()3111x x f x x x x +-+===+---,作出函数()f x 图象如图:由图象可知,函数只有一个零点,定义域为{}|1x x ≠,在(),1-∞和()1,+∞上单调递减,图象关于()1,3对称,故B 错误,故选:ACD .37.(2021·福建·三明一中高三月考)下列命题中,错误的命题有()A .函数()f x x =与()2g x =是同一个函数B .命题“[]00,1x ∃∈,2001x x +≥”的否定为“[]0,1x ∀∈,21x x +<”C .函数4sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭的最小值为4 D .设函数22,0()2,0x x x f x x +<⎧⎪=⎨≥⎪⎩,则()f x 在R 上单调递增 【答案】ACD【分析】 求出两函数的定义域,即可判断A ;命题的否定形式判断B ;函数的最值判断C ;分段函数的性质以及单调性判断D ;【详解】解:函数()f x x =定义域为R ,函数2()g x =的定义域为[)0,+∞,所以两个函数的定义域不相同,所以两个函数不是相同函数;所以A 不正确;命题“0[0x ∃∈,1],2001x x +”的否定为“[0x ∀=,1],21x x +<”,满足命题的否定形式,所以B 正确; 函数4sin sin y x x =+(0)2x π<<,因为02x π<<,所以0sin 1x <<,可知4sin 4sin y x x =+>,所以函数没有最小值,所以C 不正确; 设函数22,0,()2,0,x x x f x x +<⎧⎪=⎨⎪⎩两段函数都是增函数,并且0x <时,0x →,()2f x →,0x 时,函数的最小值为1,两段函数在R 上不是单调递增,所以D 不正确;故选:ACD .38.(2021·福建·高三月考)已知()f x 是定义域为R 的函数,满足()()13f x f x +=-,()()13f x f x +=-,当02x ≤≤时,()2f x x x =-,则下列说法正确的是()A .()f x 的最小正周期为4B .()f x 的图象关于直线2x =对称C .当04x ≤≤时,函数()f x 的最大值为2D .当68x ≤≤时,函数()f x 的最小值为12- 【答案】ABC【分析】根据抽象函数关系式,可推导得到周期性和对称性,知AB 正确;根据()f x 在[]0,2上的最大值和最小值,结合对称性和周期性可知C 正确,D 错误.【详解】对于A ,()()13f x f x +=-,()()4f x f x ∴+=,()f x ∴的最小正周期为4,A 正确; 对于B ,()()13f x f x +=-,()()22f x f x ∴+=-,()f x ∴的图象关于直线2x =对称,B 正确;对于C ,当02x ≤≤时,()()max 22f x f ==,()f x 图象关于2x =对称,∴当24x ≤≤时,()()max 22f x f ==; 综上所述:当04x ≤≤时,()()max 22f x f ==,C 正确;对于D ,()f x 的最小正周期为4,()f x ∴在[]6,8上的最小值,即为()f x 在[]2,4上的最小值,当02x ≤≤时,()min 1124f x f ⎛⎫==- ⎪⎝⎭,又()f x 图象关于2x =对称, ∴当24x ≤≤时,()min 711224f x f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,()f x ∴在[]6,8上的最小值为14-,D 错误. 故选:ABC.39.(2022·全国·高三专题练习)设f (x )的定义域为R ,给出下列四个命题其中正确的是()A .若y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称;B .若y =f (x +2)为偶函数,则y =f (x )的图象关于直线x =2对称;C .若f (2+x )=f (2-x ),则y =f (x )的图象关于直线x =2对称;D .若f (2-x )=f (x ),则y =f (x )的图象关于直线x =2对称.【答案】BC【分析】根据偶函数的对称性,结合函数图象变换性质、函数图象关于直线对称的性质进行逐一判断即可.【详解】A :中由y =f (x )关于y 轴对称,得y =f (x +2)的图象关于直线x =-2对称,所以结论错误;B :因为y =f (x +2)为偶函数,所以函数y =f (x +2)的图象关于y 轴对称,因此y =f (x )的图象关于直线x =2对称,所以结论正确;C :因为f (2+x )=f (2-x ),所以y =f (x )的图象关于直线x =2对称,因此结论正确;D :由f (2-x )=f (x ),得f (1+x )=f (1-x ),所以y =f (x )关于直线x =1对称,因此结论错误,故选:BC.40.(2021·广东·湛江二十一中高三月考)已知函数sin ()()x f x e x R =∈,则下列论述正确的是()A .()f x 的最大值为e ,最小值为0B .()f x 是偶函数C .()f x 是周期函数,且最小正周期为2πD .不等式()f x ≥5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【答案】BD【分析】由|sin |[0,1]x ∈,得到函数的值域,可判定A 错误;由函数奇偶性的定义,可判定B 正确; 由函数周期的定义,可得判定C 错误;由()f x ≥,得到1|sin |2x ≥,结合三角函数的性质,可判定D 正确.【详解】由|sin |[0,1]x ∈,可得的sin [1,]x e e ∈,故A 错误; 由sin()|sin |()()x x f x e e f x --===,所以()f x 是偶函数,故B 正确;由|sin()||sin ||sin |(=e )()x x x f x e e f x ππ+-+===,所以π是()f x 的周期,故C 错误; 由()f x ≥,即1sin 2x e e ≥,可得1|sin |2x ≥, 解得x 的取值范围是5,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ,故D 正确. 故选:BD. 41.(2021·全国·模拟预测)已知函数()21x f x x =-,则下列结论正确的是() A .函数()f x 在(),1-∞上是增函数B .函数()f x 的图象关于点()1,2中心对称C .函数()f x 的图象上存在两点A ,B ,使得直线//AB x 轴D .函数()f x 的图象关于直线1x =对称【答案】AC【分析】()2,112,11x x x f x x x x ⎧-<⎪⎪-=⎨⎪>⎪-⎩,然后画出其图象可得答案. 【详解】()2,112,11x x x f x x x x ⎧-<⎪⎪-=⎨⎪>⎪-⎩,其大致图象如下,结合函数图象可得AC 正确,BD 错误.故选:AC.42.(2022·全国·高三专题练习)对于定义在R 上的函数()f x ,下列说法正确的是()A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称【答案】ACD【分析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称,将()f x 的图象向右平移1个单位得()1f x -的图象,故()1f x -的图象关于点(1,0)对称,正确;对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数,不能说明其图象关于直线1x =对称,错误.;对C ,若函数()1f x +的图象关于直线1x =-对称,则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-=,()f x 的图象关于(1,1)对称,正确.故选:ACD.第II 卷(非选择题)三、填空题43.(2021·广东·高三月考)请写出一个函数()f x =__________,使之同时具有如下性质:①图象关于直线2x =对称;②x R ∀∈,(4)()f x f x +=. 【答案】()cos 2f x x π=(答案不唯一). 【分析】根据性质①②可知()f x 是以4为周期且图象关于2x =对称点的函数,即可求解.【详解】解:由题可知,由性质①可知函数()f x 图象关于直线2x =对称;由性质②x R ∀∈,(4)()f x f x +=,可知函数()f x 以4为周期, 写出一个即可,例如:()cos 2f x x π=, 故答案为:()cos 2f x x π=(答案不唯一). 44.(2021·湖南·高三月考)已知偶函数()f x 满足()()416f x f x +-=,且当(]0,1x ∈时,()[]222()f x f x =,则()3f -=___________.【答案】12【分析】利用函数的奇偶性及赋值法,可以解决问题.【详解】由()()416f x f x +-=,令2x =,可得()28f =.因为[]22(2)(1)16f f ==,212(1)02f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦≥,所以()10f ≥,所以()14f =,由()()416f x f x +-=,令1x =,可得()312f =.因为()f x 是偶函数,所以()()3312f f -==.故答案为:12.45.(2021·北京·中国人民大学附属中学丰台学校高三月考)定义在R 上的函数f (x )满足()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+,则23(log 8)2f +=___. 【答案】74【分析】 由条件可得2233(log 8)(log )22f f +=,然后可算出答案. 【详解】因为()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+, 所以23log 222331317(log 8)(log )2224244f f +==+=+= 故答案为:74. 46.(2021·上海奉贤区致远高级中学高三月考)定义在R 上的函数()f x 满足(6)()f x f x +=,2(2),[3,1)(),[1,3)x x f x x x ⎧-+∈--⎪=⎨∈-⎪⎩,数列{}n a 满足(),n a f n n N =∈*,{}n a 的前n 项和为n S ,则2021S =_________.【答案】337【分析】先判断出周期为6,再求出126a a a ++⋅⋅⋅+的值,最后求出2021S 的值【详解】因为函数()f x 满足(6)()f x f x +=,所以函数()f x 是周期为6的周期函数,()()()()12311,22,331a f a f a f f ======-=-,()()()()()456420,511,00a f f a f f a f ==-===-=-==,()()7711a f f ===,1261210101a a a ++⋅⋅⋅+=+-+-+=,因为202163365=⨯+,所以()2021126125336336112101337S a a a a a a =+⋅⋅⋅+++⋅⋅⋅+=⨯++-+-=故答案为:337.47.(2021·辽宁沈阳·高三月考)若函数()3121x f x m x ⎛⎫=-⋅⎪-⎝⎭为偶函数,则m 的值为________. 【答案】12- 【分析】先根据()()11f f =-求出m 的值,再根据奇偶性的定义证明即可.【详解】解:由已知210x -≠,即0x ≠,故函数定义域为()(),00,-∞⋃+∞,因为函数()3121x f x m x ⎛⎫=-⋅⎪-⎝⎭为偶函数, 则()()11f f =- 即1112121m m -⎛⎫-=-- ⎪--⎝⎭, 解得12m =-, 当12m =-时, ()()()()333331111212221211221x x x x x f x f x x x x x x -⎛⎫⎛⎫--=+⋅--+⋅=⋅--- ⎪ ⎪----⎝⎭⎝⎭3332102121x x x x x x =⋅--=--. 故12m =-时,函数()3121x f x m x ⎛⎫=-⋅ ⎪-⎝⎭为偶函数 故答案为:12-. 48.(2021·全国·高三月考(理))已知函数2()sin f x x x x =-,则不等式(21)(1)f x f x -<+的解集为______.【答案】(0,2)【分析】利用导数可判断函数在(0,)+∞为增函数,再利用函数奇偶性的定义可判断函数为偶函数,从而将(21)(1)f x f x -<+转化为|21||1|x x -<+,进而可求出不等式的解集【详解】定义域为R ,由题意,()2sin cos (2cos )sin f x x x x x x x x '=--=--,当0x >时,()1sin 0f x x x '≥⋅->,故()f x 在(0,)+∞为增函数.因为22()()()sin()sin ()f x x x x x x x f x -=----=-=,所以()f x 为偶函数,故(21)(1)f x f x -<+即(|21|)(|1|)f x f x -<+,则|21||1|x x -<+,故22(21)(1)x x -<+,解得02x <<,故原不等式的解集为(0,2).故答案为:(0,2).49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________. 【答案】2【分析】先利用诱导公式、二倍角公式化简,再将函数零点个数问题转化为两个函数图象的交点个数问题,进而画出图象进行判定.【详解】2π()2sin sin()2f x x x x =+- 222sin cos sin 2x x x x x =-=-,函数f (x )的零点个数可转化为函数1sin 2y x =与22y x =图象的交点个数,在同一坐标系中画出函数1sin 2y x =与22y x =图象的(如图所示):由图可知两函数图象有2个交点,即f (x )的零点个数为2.故答案为:2.50.(2021·河南·高三月考(文))已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359x f x g x x x +=-++,则()()13f g -+=______.【答案】223【分析】先用列方程组法求出()f x 和()g x 的解析式,代入即可求解.【详解】因为()()224359x f x g x x x +=-++……① 所以()()224359x f x g x x x -+-=+++ 因为()f x 为偶函数,()g x 为奇函数,所以()()224359x f x g x x x -=+++……② ①②联立解得:()235f x x =+,()249x g x x =-+, 所以()()()22431331532392f g ⨯-+=-+-=+. 故答案为:223.。
{高中试卷}湖南省2021年上学期邵东县第一中学高三化学第五次月考试题答案[仅供参考]
![{高中试卷}湖南省2021年上学期邵东县第一中学高三化学第五次月考试题答案[仅供参考]](https://img.taocdn.com/s3/m/d987c1cbfc4ffe473268abc4.png)
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:湖南省2021年上学期邵东县第一中学高三化学第五次月考试题答案题号 1 2 3 4 5 6 7 8 9 10 答案 C D B B A B A C A D题号11 12 13 14 15答案 B AB C AD A四、(16分,每空2分)I、(1)BC (2)6c-a-3bII、(1)Y CH3OH - 6 e- + 8 OH-=== CO32- + 6H2O(2)1 AC (3)阳膜 CO+2CH3OH— 2e- ===2H++(CH3O)2CO17、(13分,除说明之外每空2分)(1)KSCN溶液;(1分)(2)蒸发浓缩;(1分)冷却结晶;(1分)(3)FeSO4+2NH4HCO3=FeCO3↓+(NH4)2SO4+H2O+CO2↑避免温度过高碳酸氢铵分解,减少铁离子的水解程度;(4)没有向反应容器中补充适量空气(氧气);(5)溶液中存在水解平衡TiO2++(n+1)H2O⇌TiO2•n H2O+2H+,加入的Na2CO3粉末与H+反应,c(H+)减小,TiO2+水解平衡正向移动18、(16分,除说明之外每空2分)⑴抑制 Cu2+水解(1分)⑵ NaNO2 + NH4Cl===△== NaCl + N2↑+ 2H2O⑶①排出装置中的空气(1分)②浓硫酸③当装置内压力过大时,B 瓶中间的玻璃管中液面上升,使压力稳定⑷硬质玻璃管中蓝绿色固体变黑色,E 中白色固体变蓝,F 中溶液变浑浊⑸ bd ⑹让停留在装置中的气体被充分吸收,减小实验误差 2CuCO3·3Cu(OH)219、(15分,除说明之外每空2分)(1)乙醛(2)加成反应或还原反应(1 分)(3)(CH3)3CCH2CH2CHO(4) +NaCl+H2O (5)12(2 分)(6) CH3COOCH2CH2CH2CH3(4 分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省邵东县第一中学2021届高三数学第五次月考试题考试时间:120分钟 总分:150分一、选择题:(本大题共8小题,每小题5分,共40分,每题只有一项符合题目要求) 1. 复数113i-的虚部是( ) A.310i B. 110-C.110D.3102.“3x >且3y >”是“6x y +>”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件3.函数y =x 2ln|x ||x |的图象大致是( )4.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A. 2B. 3C. 4D. 55.已知非负数,x y 满足21xy y +=,则2x y +的最小值为 ( )A 32B .2C .12D .16. 已知平面向量,,a b c 是单位向量,且0a b =.则a b c +-的取值范围是( ) A .2-12+1⎡⎤⎣⎦, B .21,1⎡⎤⎣⎦, C .12+1⎡⎤⎣⎦, D .23⎡⎤⎣⎦,7. 在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( )π310.A π340.B π11.C π7.D8. 函数()4ln 3f x x ax =-+存在两个不同的零点12,x x ,函数2()2g x x ax =-+存在两个不同的零点34,x x ,且满足3124x x x x <<<,则实数a 的取值范围是( )A .()0,3 B .()C .144e -⎛⎫ ⎪⎝⎭D .143,4e -⎛⎫ ⎪⎝⎭二、多择题:(本大题共4小题,每小题5分,共20分,每题有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分) 9. 已知正项等比数列{}n a 满足14232,2a a a a ==+,若设其公比为q ,前项和为n S ,则( )A .2q =B .2nn a = C .102047S = D .12n n n a a a +++<10. 1()(sin cos )cos 2f x a x x x =+-的图像的一条对称轴为6x π=,则下列结论中正确的是( )A .()f x 是最小正周期为π的奇函数B .点7,012π⎛⎫-⎪⎝⎭是()f x 图像的一个对称中心 C .()f x 在,33ππ⎡⎤-⎢⎥⎣⎦上单调递增 D .先将函数2sin 2y x =图像上各点的纵坐标缩短为原来的12,然后把所得函数图像再向左平移12π个单位长度,即可得到函数()f x 的图像 11. 点M 是正方体1111ABCD A B C D -中侧面11ADD A 上的一个动点,则下面结论正确的是( )A .满足1CM AD ⊥的点M 的轨迹为直线B .若正方体的棱长为1,三棱锥1BC MD -的体积的最大值为 13C .点M 存在无数个位置满足到直线AD 和直线11C D 的距离相等 D .在线段1AD 上存在点M ,使异面直线1B M 与CD 所成的角是30o 12.关于函数()sin xf x e a x =+,(),x π∈-+∞下列说法正确的是( )A .当1a =时,()f x 在()0,(0)f 处的切线方程为210x y -+=B .当1a =时,()f x 存在唯一极小值点0x 且01()0f x -<<C .对任意0a >,()f x 在(),π-+∞上均存在零点D .存在0a <,()f x 在(),π-+∞上有且只有一个零点 三、填空题:(本大题共4小题,每小题5分,共20分)13. 已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____.14.在棱长为a 的正方体1111ABCD A B C D -中,点M 是线段1DC 上的动点,则M 点到直线1AD 距离的最小值为15. 若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是 16.定义函数[]()f x x x ⎡⎤=⎣⎦,其中[]x 表示不超过x 的最大整数,例如[]1.31=,[]1.52-=-,[]22=,当[)0,x n ∈*n N ∈时,()f x 的值域为n A ,记集合n A 中元素的个数为n a ,则234202111111111a a a a ++++----的值为 .四、解答题:(本大题共6小题,共70分。
要求有演算步骤)17.(10分)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,并且222b c a bc +-=. (1)已知_______________,计算ABC 的面积; 请在①a =2b =,③sin 2sin C B =这三个条件中任选两个,将问题(1)补充完整,并作答,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求cos cos B C +的最大值.18.(12分)已知数列{}n a 的各项均为正数,对任意的*n N ∈,它的前n 项和n S 满足2111623n n n S a a =++,并且249,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)设11(1)n n n n b a a ++=-⋅,n T 为数列{}n b 的前n 项和,求2n T .19. (12分)如图,在四棱锥S ABCD -中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD , AB 垂直于AD 和BC ,M 为棱SB 上的点,2SA AB BC ===,1AD =. (1)若M 为棱SB 的中点,求证:AM //平面SCD ;(2)当2SM MB =时,求平面AMC 与平面SAB 所成的锐二面角的余弦值;(3)在第(2)问条件下,设点N是线段CD上的动点,MN与平面SAB所成的角为θ,求当sinθ取最大值时点N的位置.20.(12分)随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某学校为了解教职员工每日健步走的情况,从该学校正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.(1)求这300名员工日行步数x(单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);Nμσ,(2)由直方图可以认为该学校员工的日行步数ξ(单位:千步)服从正态分布()2,其中μ为样本平均数,标准差σ的近似值为2,求该学校被抽取的300名员工中日行步ξ∈的人数;数(14,18](3)用样本估计总体,将频率视为概率.若工会从该学校员工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200元.求工会慰问奖励金额X(单位:元)的分布列和数学期望.附:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<≤+≈,(22)P μσξμσ-<≤+0.9545≈,(33)0.9973P μσξμσ-<≤+≈.21.(12分)在直角坐标系xOy 中,椭圆C 1:的离心率为,左、右焦点分别是F 1,F 2,P 为椭圆C 1上任意一点,|PF 1|2+|PF 2|2的最小值为8. (1)求椭圆C 1的方程; (2)设椭圆C 2:为椭圆C 2上一点,过点Q 的直线交椭圆C 1于A ,B 两点,且Q 为线段AB 的中点,过O ,Q 两点的直线交椭圆C 1于E ,F 两点.当Q 在椭圆C 2上移动时,四边形AEBF 的面积是否为定值?若是,求出该定值;不是,请说明理由.22.(12分)已知函数21()1()ax f x x ea a R +=+-∈,1()x g x e x -=-(1)讨论函数()f x 的单调性;(2)对(0,1)a ∀∈,是否存在实数λ,[]1,m a a ∀∈-,[]1,n a a ∃∈-使[]2()()0f n g m λ-<成立,若存在,求λ的取值范围;若不存在,请说明理由.答案1. D 2.A 3.D 4.C 5.B 6.A 7.B 8.D 9. ABD ;10.BD 11.BC ;12.ABD13. 4- 15. a ∈[-3,0).16. 140402(1)20212021=-= 四、解答题:(本大题共6小题,共70分。
要求有演算步骤) 17.【解析】(1)若选②2b =,③sin 2sin C B =.sin 2sin C B =,24c b ∴==, 222b c a bc +=+,2221cos 22b c a A bc +-∴==,又(0,)A π∈,3A π∴=.ABC ∆∴的面积11sin 24222S bc A ==⨯⨯⨯=.若选①a =2b =.由222b c a bc +=+可得3c =,222b c a bc +=+,2221cos 22b c a A bc +-∴==,又(0,)A π∈,3A π∴=.ABC ∆∴的面积11sin 2322S bc A ==⨯⨯=.若选①a =sin 2sin C B =sin 2sin C B =,2c b ∴=,又222b c a bc +=+,222472b b b ∴+=+,可得b ,c =ABC ∆∴的面积11sin 223326MBC S bc A ==⨯⨯=. (2)3A π=13cos cos cos cos[()]cos cos()cos cos sin 332B C B B B B B B B πππ∴+=+-+=-+=-+13cos sin sin()26B B B π=+=+203B π<<,5366B πππ∴<+<∴当3B π=时,sin()cos cos 6B B C π+=+有最大值1.18.【答案】(1)*32,n a n n N =-∈;(2)2186n n --【解析】∵对任意*n N ∈,有2111623n n n S a a =++①∴当1a =时,有21111111623S a a a ==++,解得11a =或2.当2n ≥时,有2111111623n n n S a a ---=++②①②并整理得()()1130n n n n a a a a --+--=.而数列{}n a 的各项均为正数,∴13n n a a --=.当11a =时,13(1)32n a n n =+-=-,此时2429a a a =成立;当12a =时,23(1)31n a n n =+-=-,此时2429a a a =,不成立,舍去.∴*32,n a n n N =-∈.(2)212212233445221n n n n T b b b a a a a a a a a a a +=+++=-+-+⋯-.()()()21343522121242666n n n n a a a a a a a a a a a a -+=-+-+⋯+-=---⋯-()2426n a a a =-++⋯+2(462)61862n n n n +-=-⨯=--19.【详解】(1)证明:取线段SC 的中点E ,连接ME ,ED . 在中,ME 为中位线,∴//ME BC 且12ME BC =,∵//AD BC 且12AD BC =,∴//ME AD 且ME AD =,∴四边形AMED 为平行四边形.∴//AM DE .∵DE ⊂平面SCD ,AM ⊄平面SCD ,∴//AM 平面SCD .(2)解:如图所示以点A 为坐标原点,建立分别以AD 、AB 、AS 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,则()A 0,0,0,()B 0,2,0,()C 2,2,0,()D 1,0,0,()S 0,0,2,由条件得M 为线段SB 近B 点的三等分点.于是2142(0,,)3333AM AB AC =+=,即42M 0,,33⎛⎫⎪⎝⎭, 设平面AMC 的一个法向量为(,,)n x y z =,则00AM n AC n ⎧⋅=⎨⋅=⎩,将坐标代入并取1y =,得(1,1,2)n =--.另外易知平面SAB 的一个法向量为m ()1,0,0=, 所以平面AMC 与平面SAB 所成的锐二面角的余弦为m n m n⋅6=. (3)设()N x,2x 2,0-,其中1x 2<<.由于42M 0,,33⎛⎫⎪⎝⎭,所以MN 102x,2x ,33⎛⎫=--⎪⎝⎭. 所以22sin 401041041401553993MN m MN mx x x xθ⋅===-+⋅-⋅+,可知当401153208x 269-=-=,即26x 15=时分母有最小值,此时有最大值,此时,2622N ,,01515⎛⎫⎪⎝⎭,即点N 在线段CD 上且115ND 15=. 20.【答案】(1) 12 (2) 47 (3) 分布列见解析,()=216E X【解析】(1) 由题意有0.005250.005270.04290.29211x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+0.112130.032150.0152170.00521911.6812⨯⨯+⨯⨯+⨯⨯+⨯⨯=≈(千步)(2)由()2,N ξμσ,由(1)得()212,2N ξ∼所以()()()()1141812+2123261810142P P P P ξξξξ<≤=<≤+⨯=<≤-<≤⎡⎤⎣⎦ ()10.99730.68270.15732≈-= 所以300名员工中日行步数(14,18]ξ∈的人数:3000.1573=47⨯.(3)由频率分布直方图可知:每人获得奖金额为0元的概率为:0.00522=0.02⨯⨯. 每人获得奖金额为100元的概率为:()0.04+0.29+0.112=0.88⨯每人获得奖金额为200元的概率为:0.1X 的取值为0,100,200,300,400.()200.02=0.0004P X ==()121000.020.880.0352P X C ==⨯⨯= ()1222000.020.1+0.880.7784P X C ==⨯⨯= ()123000.10.880.176P X C ==⨯⨯=()24000.10.01P X ===所以X 的分布列为:X0 100 200 300 400 P0.00040.03520.77840.1760.01()=00.0004+1000.0352+2000.7784+3000.176+4000.01=216E X ⨯⨯⨯⨯⨯ (元)21.(2)直线EF 的方程为y 0x ﹣x 0y=0,联立直线EF 与椭圆C 1的方程,解得E (,),F (﹣,﹣),联立直线AB 与椭圆C 1的方程,消去y ,得:,x 1+x 2=2x 0,x 1x 2=2﹣4y 02,|AB|=•=•=,设点E ()、F (﹣)到直线AB 的距离分别为d 1,d 2,S AEBF =S △ABE +S △ABF =,==,==,∴S AEBF =•==4.故当Q 在椭圆C 2上移动时,四边形AEBF 的面积为定值4. 解:(1)21()1()ax f x x ea a R +=+-∈的定义域为R ,()1()2ax f x x ax e +'=+①当0a =时,0x >,()0f x '>;0x <,()0f x '<,所以函数()f x 的单调递增区间为()0,+∞,单调递减区间为(),0-∞.②当0a >时,2,x a ⎛⎫∈-∞-⎪⎝⎭,()0f x '>;2,0,x a ⎛⎫∈- ⎪⎝⎭()0f x '<;()0,x ∈+∞,()0f x '>,所以函数()f x 的单调递增区间为2,a ⎛⎫-∞- ⎪⎝⎭,()0,+∞,单调递减区间为2,0a ⎛⎫- ⎪⎝⎭,做题破万卷,下笔如有神天才出于勤奋③当0a <时,(),0x ∈-∞,()0f x '<;20,x a ⎛⎫∈- ⎪⎝⎭,()0f x '>;2,x a ⎛⎫∈-+∞ ⎪⎝⎭,()0f x '<,所以函数()f x 的单调递增区间为20,a ⎛⎫- ⎪⎝⎭,单调递减区间为(),0-∞,2,a ⎛⎫-+∞ ⎪⎝⎭。