高三数学(3月份)月考试题(文)答案
2024学年黑龙江省虎林市高三3月月考(数学试题文)

2024学年黑龙江省虎林市高三3月月考(数学试题文)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )A .1213B .1314C .2129D .14152.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A .16B .12C .8D .63.已知抛物线C :()220y px p =>,直线()02p y k x k ⎛⎫=-> ⎪⎝⎭与C 分别相交于点A ,M 与C 的准线相交于点N ,若AM MN =,则k =( )A .3B 22C .2D .134.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l 丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A .10000立方尺B .11000立方尺C .12000立方尺D .13000立方尺5.已知抛物线2:2(0)C y px p =>的焦点为F ,对称轴与准线的交点为T ,P 为C 上任意一点,若2PT PF =,则PTF ∠=( )A .30°B .45°C .60°D .75°6.在101()2x x-的展开式中,4x 的系数为( ) A .-120B .120C .-15D .157.将函数f (x )=sin 3x -3cos 3x +1的图象向左平移6π个单位长度,得到函数g (x )的图象,给出下列关于g (x )的结论: ①它的图象关于直线x =59π对称; ②它的最小正周期为23π; ③它的图象关于点(1118π,1)对称;④它在[51939ππ,]上单调递增. 其中所有正确结论的编号是( ) A .①②B .②③C .①②④D .②③④8.一艘海轮从A 处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .62海里B .3C .2海里D .39.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+D .,a b R ∃∈,a b a b -≥+10.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由6个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设A F F A 2'''=,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )A .1313 B .413C 27D .4711.已知函数()()1xf x k xe =-,若对任意x ∈R ,都有()1f x <成立,则实数k 的取值范围是( )A .(),1e -∞-B .()1,e -+∞C .(],0e -D .(]1,1e -12.设不等式组030x y x +≥⎧⎪⎨≤⎪⎩表示的平面区域为Ω,若从圆C :224x y +=的内部随机选取一点P ,则P 取自Ω的概率为( ) A .524B .724C .1124D .1724二、填空题:本题共4小题,每小题5分,共20分。
高三数学3月月考试题及答案

高三数学3月月考试题及答案 数 学(文科) 段泽文 录入本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时刻120分钟。
第Ⅰ卷(选择题,共60分)一、选择题:(本大题12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)。
1.设集合{}4,3,2,1=P ,{}R x x x Q ∈>=,2,全集R U =,则集合=)(Q CP U( )A .{1,2} B. {3,4} C. {1} D. {2,1,0,1,2}--2.已知532sin=θ,则θcos 的值为( ) A. 725- B. 725C. 45D. 45-3.双曲线1322=-y x 的渐进线方程为( ) A.3y x =± B.3y x =± C.13y x =±D. 33y x =±4.“p 或q 是假命题”是“非p 为真命题”的( )A. 充分而不必要条件B.必要而不充分条件C. 充要条件D. 既不充分也不必要条件 5.在等比数列{}n a 中,5a ,4a ,6a 成等差数列,则公比q 等于( ) A. 1或2B. 1-或2- C. 1或2- D. 1-或26.函数)01(12≤≤--=x x y 的反函数是( ) A.21(01)y x x =-≤≤ B. 21(01)y x x =--≤≤C. 21(21)y x x =---≤≤- D. 21(10)y x x =---≤≤7.室内有一根直尺,不管如何样放置,在地面上总有如此的直线,它与直尺所在的直线( ) A. 异面 B. 相交 C. 垂直 D. 平行8.函数3()45f x x x =++的图象在1x =处的切线与圆2250x y +=的位置关系为( )A. 相切B. 相交但只是圆心C. 过圆心D. 相离9. 函数()sin cos f x x x =⋅图解沿x 轴向左平移4π个单位,再将各点横坐标压缩为原先的12,则所得函数是( )A. 周期为2π的奇函数B. 周期为2π的偶函数C. 周期为2π的奇函数 D. 周期为2π的偶函数 10.已知三条不同的直线,,,m n l 两个不同的平面,αβ。
2021年山东省临沂市沂水县第三中学高三数学文月考试题含解析

2021年山东省临沂市沂水县第三中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设是等差数列{}的前n项和,若a3=5,a7=11,S9=A.72 B.86 C.108D.144参考答案:A略2. 在等差数列{a n}中,若,则()A. 6B. 9C. 12D. 18参考答案:C【分析】由得,然后再根据等差数列项的下标和的性质得到所求.【详解】设等差数列的公差为,则由得,整理得,所以.故选C.【点睛】本题考查等差数列的基本运算和下标和的性质,运用下标和性质解题可简化运算,提高解题的效率,属于基础题.3. 在△中,若,则△是( )A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形参考答案:D因为,所以,即,所以三角形为直角三角形,选D. 4. 设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为 ( ).A. B. C. D.参考答案:B略5. 已知抛物线上存在关于直线对称的相异两点,则等于()A. 3B.4C.D.参考答案:C略6. 如图给出的是计算的值的一个程序框图,则判断框内应填人的条件是()A .B .C .D .参考答案:C7. 已知向量和满足条件:且.若对于任意实数t ,恒有,则在、、、这四个向量中,一定具有垂直关系的两个向量是( ) 与与C与D与B分析:把已知不等式平方可得对于任意实数t ,不等式(t+1)≥2恒成立,故有=0,即 ?()=0,可得 与一定垂直,从而得出结论. 解答:解:把已知不等式平方可得 a 2﹣2t+t 2?≥+﹣2,化简可得 (t 2﹣1)≥2(t ﹣1),即 (t+1)≥2.由题意可得,对于任意实数t ,(t+1)≥2恒成立,故有=0,即 ?()=0, ∴ 与一定垂直,故选B .点评: 本题主要考查两个向量的数量积公式,求向量的模,两个向量垂直的条件,属于中档题.8. 设直线与圆相切,则(A). (B). (C). (D).参考答案:A 略9. 函数y=lg (x ﹣1)的定义域为( )A .{x|x <0}B .{x|x >1}C .{x|0<x <1}D .{x|x <0或或x >1}参考答案:B【考点】函数的定义域及其求法. 【专题】函数的性质及应用.【分析】根据函数成立的条件即可求函数的定义域. 【解答】解:要使函数有意义,则x ﹣1>0,即x >1,则函数的定义域为{x|x >1}, 故选:B .【点评】本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.10. 已知,且则集合的个数是( )A .1B .2C .3D .4参考答案:D二、 填空题:本大题共7小题,每小题4分,共28分 11. 在中, ,AB=2,AC=1,D 是边BC 的中点,则参考答案:略12. 15.若满足约束条件,则的最小值为 .参考答案: 13. 已知集合,则的子集个数为 ___▲____.参考答案:4 集合,,则, 则的子集是:,,,,共4个.故答案为: 4.14. 对任意两个实数,定义若,,则的最小值为 .参考答案:因为,所以时,解得或。
2024-2025学年湖南省长沙市雅礼中学高三上学期月考(三)数学试题(含答案)

2024-2025学年湖南省长沙市雅礼中学高三上学期月考(三)数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“存在x∈Z,x2+2x+m≤0”的否定是( )A. 存在x∈Z,x2+2x+m>0B. 不存在x∈Z,x2+2x+m>0C. 任意x∈Z,x2+2x+m≤0D. 任意x∈Z,x2+2x+m>02.已知集合A={ i , i2 , i3 ,i4 }(i是虚数单位),B={ 1 , −1 },则A∩B=( )A. { −1 }B. { 1 }C. { 1 , −1 }D. ⌀3.已知奇函数f(x)=(2x+m⋅2−x)cos x,则m=( )A. −1B. 0C. 1D. 124.已知m,l是两条不同的直线,α,β是两个不同的平面,则下列可以推出α⊥β的是( )A. m⊥l,m⊂β,l⊥αB. m⊥l,α∩β=l,m⊂αC. m//l,m⊥α,l⊥βD. l⊥α,m//l,m//β5.已知函数f(x)=4cos(ωx+φ)(ω>0)图象的一个最高点与相邻的对称中心之间的距离为5,则f(−6φπ)=( )A. 0B. 2φC. 4D. φ26.已知M是圆C:x2+y2=1上一个动点,且直线l1:mx−ny−3m+n=0与直线l2:nx+my−3m−n=0(m,n∈R,m2+n2≠0)相交于点P,则|PM|的取值范围是( )A. [3−1,23+1]B. [2−1,32+1]C. [2−1,22+1]D. [2−1,33+1]7.P是椭圆C:x2a2+y2b2=1(a>b>0)上一点,F1、F2是C的两个焦点,PF1⋅PF2=0;点Q在∠F1PF2的平分线上,O为原点,OQ//PF1,且|OQ|=b.则C的离心率为( )A. 12B. 33C. 63D. 328.设集合A={(x1,x2,x3,x4,x5)|x i∈{−1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+ |x4|+|x5|≤3”的元素个数为( )A. 60B. 90C. 120D. 130二、多选题:本题共3小题,共18分。
山西省大同市第一中学2020届高三下学期3月月考数学(文)试题 Word版含解析

故选: .
【点睛】本题考查了线面夹角,意在考查学生 计算能力和空间想象能力.
10.“勾股定理”在西方被称为“毕达哥拉斯定理”,国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明 如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形 若直角三角形中较小的锐角 ,现在向该大止方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是
18.如图,在四棱锥 中, 为平行四边形, , 平面 ,且 ,点 是 的中点.
(1)求证: 平面 ;
(2)求 到平面 的距离.
【答案】(1)证明见解析;(2)
【解析】
【分析】
(1)连接 交 于 点,连接 ,在 中, ,得到证明.
(2)计算 ,根据等体积法得到 ,计算得到答案.
【详解】(1)连接 交 于 点,连接 ,
【详解】 ,故 ,则 ,
故 .
故选:B.
【点睛】本题考查了回归方程的中心点,意在考查学生的计算能力和应用能力.
5.已知角 的顶点与坐标原点重合,始边与 轴的非负半轴重合.若点 是角 终边上一点,则 ( )
A. -2B. C. D. 2
【答案】B
【解析】
【分析】
由题意利用任意角的三角函数的定义求得 的值,再利用两角差的正切公式,求得 的值.
一、选择题:本大题共12小题,每小題5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集 ,集合 ,则 ( )
A. B. C. D.
【答案】A
【解析】
【分析】
计算 , ,再计算交集得到答案.
【详解】 , ,
故 .
故选: .
【点睛】本题考查了交集运算,意在考查学生的计算能力.
湖南省长沙市2024-2025学年高三上学期月考(三)数学试题含答案

2025届高三月考试卷(三)数学(答案在最后)命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在x ∈Z ,220x x m ++”的否定是A.存在x ∈Z ,220x x m ++>B.不存在x ∈Z ,220x x m ++>C.任意x ∈Z ,220x x m ++D.任意x ∈Z ,220x x m ++>2.若集合{}2341,i ,i ,i A =(i 是虚数单位),{}1,1B =-,则A B ⋂等于A.{}1- B.{}1 C.{}1,1- D.∅3.已知奇函数()()22cos x x f x m x -=+⋅,则m =A.-1B.0C.1D.124.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是A.m l ⊥,m β⊂,l α⊥ B.m l ⊥,l αβ⋂=,m α⊂C.m l ,m α⊥,l β⊥ D.l α⊥,m l ,m β5.已知函数()()4cos (0)f x x ωϕω=+>图象的一个最高点与相邻的对称中心之间的距离为5,则6f ϕπ⎛⎫-= ⎪⎝⎭A.0B.2ϕC.4D.2ϕ6.已知M 是圆22:1C x y +=上一个动点,且直线1:30l mx ny m n --+=与直线2:30l nx my m n +--=(m ,n ∈R ,220m n +≠)相交于点P ,则PM 的取值范围为A.1,1⎤-+⎦ B.1⎤-⎦C.1,1⎤-⎦D.1⎤⎦7.P 是椭圆2222:1(0)x y C a b a b+=>>上一点,1F ,2F 是C 的两个焦点,120PF PF ⋅= ,点Q 在12F PF ∠的角平分线上,O 为原点,1OQ PF ,且OQ b =.则C 的离心率为 A.12B.33C.63D.328.设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ++++”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数()f x 满足()()22f x f x ππ+=-,()()0f x f x ππ++-=,并且当()0,x π∈时,()cos f x x =,则下列关于函数()f x 说法正确的是A.302f π⎛⎫=⎪⎝⎭B.最小正周期2T π=C.()f x 的图象关于直线x π=对称D.()f x 的图象关于(),0π-对称11.若双曲线22:145x y C -=,1F ,2F 分别为左、右焦点,设点P 是在双曲线上且在第一象限的动点,点I 为12PF F △的内心,()0,4A ,则下列说法不正确的是A.双曲线C 的渐近线方程为045x y±=B.点I 的运动轨迹为双曲线的一部分C.若122PF PF =,12PI xPF yPF =+ ,则29y x -=D.不存在点P ,使得1PA PF +取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为________.13.ABC △各角的对应边分别为a ,b ,c ,满足1b ca c a b+++,则角A 的取值范围为________.14.对任意的*n ∈N ,不等式11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪⎪+⎝⎭⎝⎭(其中e 是自然对数的底)恒成立,则a 的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设n S 为正项等比数列{}n a 的前n 项和,21332S a a =+,416a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足11b =,1222log log n nn n b a b a ++=,求数列{}n b 的前n 项和n T .16.(本小题满分15分)如图,在四棱锥P ABCD -,BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2DE PE ==.(1)若F 为线段PE 的中点,求证:BF平面PCD ;(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 所成夹角的余弦值.17.(本小题满分15分)已知函数()21ln 2f x x x ax =+-有两个极值点为1x ,()212x x x <,a ∈R .(1)当52a =时,求()()21f x f x -的值;(2)若21e x x (e 为自然对数的底数),求()()21f x f x -的最大值.18.(本小题满分17分)已知抛物线2:2(0)E x py p =>的焦点为F ,H 为E 上任意一点,且HF 的最小值为1.(1)求抛物线E 的方程;(2)已知P 为平面上一动点,且过P 能向E 作两条切线,切点为M ,N ,记直线PM ,PN ,PF 的斜率分别为1k ,2k ,3k ,且满足123112k k k +=.①求点P 的轨迹方程;②试探究:是否存在一个圆心为()0,(0)Q λλ>,半径为1的圆,使得过P 可以作圆Q 的两条切线1l ,2l ,切线1l ,2l 分别交抛物线E 于不同的两点()11,A s t ,()22,B s t 和点()33,C s t ,()44,D s t ,且1234s s s s 为定值?若存在,求圆Q 的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量1a ,2a ,3a ,…,n a(N n ∈且3n ),令123n n S a a a a =++++ ,如果存在{}()1,2,3,,p a p n ∈,使得pn p a S a - ,那么称p a是该向量组的“长向量”.(1)设(),2n a n x n =+,n ∈N 且0n >,若3a是向量组1a,2a,3a的“长向量”,求实数x 的取值范围;(2)若sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭,n ∈N 且0n >,向量组1a ,2a ,3a ,…,7a 是否存在“长向量”?给出你的结论并说明理由;(3)已知1a ,2a ,3a 均是向量组1a ,2a ,3a 的“长向量”,其中()1sin ,cos a x x = ,()22cos ,2sin a x x =.设在平面直角坐标系中有一点列1P ,2P ,3P ,…,n P ,满足1P 为坐标原点,2P 为3a的位置向量的终点,且21k P +与2k P 关于点1P 对称,22k P +与21k P +(k ∈N 且0k >)关于点2P 对称,求10151016P P 的最小值.参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C【解析】集合{}i,1,1,i A =--,{}1,1B =-,{}1,1A B ⋂=-.故选C.3.A 【解析】()f x 是奇函数,()()22cos xxf x m x -=+⋅,()()()2222xx x x f x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =,()()122cos 0x x m x -∴++=,10m ∴+=,1m =-.故选A.4.D【解析】有可能出现α,β平行这种情况,故A 错误;会出现平面α,β相交但不垂直的情况,故B 错误;m l ,m α⊥,l βαβ⊥⇒ ,故C 错误;l α⊥,m l m α⇒⊥ ,又由m βαβ⇒⊥ ,故D 正确.故选D.5.C【解析】设()f x 的最小正周期为T ,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有224254T ⎛⎫+= ⎪⎝⎭,得12T =,则有212πω=,解得6πω=,所以()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭,所以664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭.故选C.6.B 【解析】依题意,直线()()1:310l m x n y ---=恒过定点()3,1A ,直线()()2:130l n x m y -+-=恒过定点()1,3B ,显然直线12l l ⊥,因此,直线1l 与2l 交点P 的轨迹是以线段AB 为直径的圆,其方程为:22(2)(2)2x y -+-=,圆心()2,2N ,半径2r =,而圆C 的圆心()0,0C ,半径11r =,如图:12NC r r =>+,两圆外离,由圆的几何性质得:12min1PM NC r r =--=,12max1PMNC r r =++=,所以PM 的取值范围为1⎤-⎦.故选B.7.C【解析】如图,设1PF m =,2PF n =,延长OQ 交2PF 于点A,由题意知1OQ PF ,O 为12F F 的中点,故A 为2PF 中点,又120PF PF ⋅= ,即12PF PF ⊥,则2QAP π∠=,又由点Q 在12F PF ∠的角平分线上得4QPA π∠=,则AQP △是等腰直角三角形,故有2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩化简得2,2,m n b m n a -=⎧⎨+=⎩即,,m a b n a b =+⎧⎨=-⎩代入2224m n c +=得222()()4a b a b c ++-=,即2222a b c +=,又222b ac =-,所以2223a c =,所以223e =,63e =.故选C.8.D 【解析】因为0i x =或1i x =,所以若1234513x x x x x ++++,则在()1,2,3,4,5i x i =中至少有一个1i x =,且不多于3个.所以可根据i x 中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为2315C 2N =⋅,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为3225C 2N =⋅,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为435C 2N =⋅,所以共有23324555C 2C 2C 2130N =⋅+⋅+⋅=种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为422616-=,故A 正确;1070%7⨯=,结合A 选项可知第70百分位数为第7个数和第8个数的平均数,即353836.52+=,故B 不正确;这10年粮食年产量的平均数为()13232302835384239263533.710⨯+++++++++=,故C 正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量的方差,故D 正确.故选ACD.10.AD 【解析】由于()0,x π∈时,()cos f x x =,并且满足()()22f x f x ππ+=-,则函数()f x 的图象关于直线2x π=对称.由于()()0fx f x ππ++-=,所以()()fx f x ππ+=--,故()()()()()22f x f x f x f x ππππ--+=+=--=-,故()()()24f x f x f x ππ=-+=+,故函数的最小正周期为4π,根据()()0fx f x ππ++-=,知函数()f x 的图象关于(),0π对称.由于()0,x π∈时,()cos f x x =,3cos 022222f f ff πππππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=--=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故A 正确,由于函数的最小正周期为4π,故B 错误;由函数()f x 的图象关于(),0π对称,易知()f x 的图象不关于直线x π=对称,故C 错误;根据函数图象关于点(),0π对称,且函数图象关于直线2x π=对称,知函数图象关于点()3,0π对称,又函数的最小正周期为4π,则函数图象一定关于点(),0π-对称,故D 正确.故选AD.11.ABD 【解析】双曲线22:145x y C -=,可知其渐近线方程为02x ±=,A 错误;设1PF m =,2PF n =,12PF F △的内切圆与1PF ,2PF ,12F F 分别切于点S ,K ,T ,可得PS PK =,11F S FT =,22F T F K =,由双曲线的定义可得:2m n a -=,即12122F S F K FT F T a -=-=,又122FT F T c +=,解得2F T c a =-,则点T 的横坐标为a ,由点I 与点T 的横坐标相同,即点I 的横坐标为2a =,故I 在定直线2x =上运动,B 错误;由122PF PF =,且1224PF PF a -==,解得18PF =,24PF =,1226F F c ==,126436167cos 2868PF F ∠+-∴==⨯⨯,则12sin 8PF F ∠==,1215tan 7PF F ∠∴=,同理可得:21tan PF F ∠=,设直线()115:37PF y x =+,直线)2:3PF y x =-,联立方程得(P ,设12PF F △的内切圆的半径为r ,则()12115186846282PF F S r =⨯⨯⨯=⨯++⋅△,解得153r =,即152,3I ⎛⎫⎪ ⎪⎝⎭,2152,3PI ⎛∴=-- ⎝⎭ ,(17,PF =-,(21,PF =- ,由12PI xPF yPF =+,可得27,,3x y -=--⎧⎪⎨-=-⎪⎩解得29x =,49y =,故29y x -=,C 正确;1224PF PF a -== ,12244PA PF PA PF AF ∴+=+++,当且仅当A ,P ,2F 三点共线取等号,易知()1min549PA PF +=+=,故存在P 使得1PA PF +取最小值,D 错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90【解析】523x x ⎛⎫+ ⎪⎝⎭展开式的通项公式为()()521031553C C 3rr r rr r r T xx x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,令1034r -=,解得2r =,所以展开式中4x 的系数为225C 310990⋅=⨯=.13.0,3π⎛⎤ ⎥⎝⎦【解析】从所给条件入手,进行不等式化简()()1b cb a bc a c a c a b+⇒+++++()()222a c a b b c a bc ++⇒++,观察到余弦定理公式特征,进而利用余弦定理表示cos A ,由222b c aac +-可得2221cos 22b c a A bc+-=,可得0,3A π⎛⎤∈ ⎥⎝⎦.14.11ln2-【解析】对任意的*n ∈N ,不等式11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭(其中e 是自然对数的底)恒成立,只需11e n an +⎛⎫+ ⎪⎝⎭恒成立,只需()1ln 11n a n ⎛⎫++ ⎪⎝⎭恒成立,只需11ln 1a n n -⎛⎫+ ⎪⎝⎭恒成立,构造()()11ln 1m x x x=-+,(]0,1x ∈,()()()()()22221ln 11ln 1x x x m x x x x ++-=++',(]0,1x ∈.下证()(]22ln 1,0,11x x x x +<∈+,再构造函数()()22ln 11x h x x x=+-+,(]0,1x ∈,()()()2221ln 12(1)x x x xh x x ++-'-=+,(]0,1x ∈,设()()()221ln 12F x x x x x=++--,()()2ln 12F x x x =+-',(]0,1x ∈,令()()2ln 12G x x x =+-,(]0,1x ∈,()21xG x x=-+',(]0,1x ∈,在(]0,1x ∈时,()0G x '<,()G x 单调递减,()()00G x G <=,即()0F x '<,所以()F x 递减,()()00F x F <=,即()0h x '<,所以()h x 递减,并且()00h =,所以有()22ln 11x x x+<+,(]0,1x ∈,所以()0m x '<,所以()m x 在(]0,1x ∈上递减,所以()m x 的最小值为()111ln2m =-.11ln2a ∴-,即a 的最大值为11ln2-.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为{}n a 是正项等比数列,所以10a >,公比0q >,因为21332S a a =+,所以()121332a a a a +=+,即21112320a q a q a --=,则22320q q --=,解得12q =-(舍去)或2q =,······················································(3分)又因为3411816a a q a ===,所以12a =,所以数列{}n a 的通项公式为2n n a =.··············································································(6分)(2)依题意得1222222log log 2log log 22n n n n n n b a nb a n +++===+,························································(7分)当2n 时,()324123112311234511n n b b b b n b b b b n n n --⨯⋅⋅⋅=⨯⨯⨯⨯=++ ,所以()121n b b n n =+,因为11b =,所以()21n b n n =+,当1n =时,1n b =符合上式,所以数列{}n b 的通项公式为()21n b n n =+.····························(10分)因为()211211n b n n n n ⎛⎫==- ⎪++⎝⎭,所以1111112212221223111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭ .··························(13分)16.【解析】(1)设M 为PD 的中点,连接FM ,CM ,因为F 是PE 中点,所以FMED ,且12FM ED =,因为AD BC ,1AB BC ==,3AD =,2DE PE ==,所以四边形ABCE 为平行四边形,BC ED ,且12BC ED =,所以FM BC ,且FM BC =,即四边形BCMF 为平行四边形,所以BFCM ,因为BF ⊄平面,PCD CM ⊂平面PCD ,所以BF 平面PCD .················(6分)(2)因为AB ⊥平面PAD ,所以CE ⊥平面PAD ,又PE AD ⊥,所以EP ,ED ,EC 相互垂直,································································································································(7分)以E为坐标原点,建立如图所示的空间直角坐标系,则()0,0,2P ,()0,1,0A -,()1,1,0B -,()1,0,0C ,()0,2,0D ,所以()1,0,0AB = ,()0,1,2AP = ,()1,0,2PC =- ,()1,2,0CD =-,····························(9分)设平面PAB 的一个法向量为()111,,m x y z =,则1110,20,m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 取11z =-,则()0,2,1m =- ,·················································(11分)设平面PCD 的一个法向量为()222,,n x y z =,则222220,20,n PC x z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 取21z =,则()2,1,1n = ,···················································(13分)设平面PAB 与平面PCD 所成夹角为θ,则cos 30m nm nθ⋅====⋅ .········(15分)17.【解析】(1)函数()21ln 2f x x x ax =+-的定义域为()0,+∞,则()211x ax f x x a x x -+=+-=',当52a =时,可得,()()2152122x x x x f x x x'⎛⎫---+ ⎪⎝⎭==,············································(2分)当10,2x ⎛⎫∈ ⎪⎝⎭或()2,x ∈+∞时,()0f x '>;当1,22x ⎛⎫∈ ⎪⎝⎭时,()0f x '<;所以()f x 在区间10,2⎛⎫ ⎪⎝⎭,()2,+∞上单调递增,在区间1,22⎛⎫ ⎪⎝⎭上单调递减;·······················(4分)所以12x =和2x =是函数()f x 的两个极值点,又12x x <,所以112x =,22x =;所以()()()211115152ln225ln 2ln222848f x f x f f ⎛⎫⎛⎫-=-=+--+-=- ⎪ ⎪⎝⎭⎝⎭,即当52a =时,()()21152ln28f x f x -=-.····································································(6分)(2)易知()()()()22221212111ln2x f x f x x x a x x x -=+---,又()21x ax f x x-+=',所以1x ,2x 是方程210x ax -+=的两个实数根,则2Δ40a =->且120x x a +=>,121x x =,所以2a >,·············································(9分)所以()()()()()()()2222222121212112211111lnln 22x x f x f x x x a x x x x x x x x x x -=+---=+--+-()()222222221212111121121111lnln ln 222x x x x x x x x x x x x x x x x ⎛⎫=--=-⋅-=-- ⎪⎝⎭,···························(11分)设21x t x =,由21e x x ,可得21e x t x =,令()11ln 2g t t t t ⎛⎫=-- ⎪⎝⎭,e t ,··························(13分)则()222111(1)1022t g t t t t -⎛⎫=-+=-< ⎪⎝⎭',所以()g t 在区间[)e,+∞上单调递减,得()()11e 1e 1e 12e 22eg t g ⎛⎫=--=-+ ⎪⎝⎭,故()()21f x f x -的最大值为e 1122e -+.··········(15分)18.【解析】(1)设抛物线E 的准线l 为2py =-,过点H 作1HH ⊥直线l 于点1H ,由抛物线的定义得1HF HH =,所以当点H 与原点O 重合时,1min 12pHH ==,所以2p =,所以抛物线E 的方程为24x y =.···················································································(4分)(2)①设(),P m n ,过点P 且斜率存在的直线():l y k x m n =-+,联立()24,,x y y k x m n ⎧=⎪⎨=-+⎪⎩消去y ,整理得:24440x kx km n -+-=,由题可知()2Δ164440k km n =--=,即20k mk n -+=,所以1k ,2k 是该方程的两个不等实根,由韦达定理可得1212,,k k m k k n +=⎧⎨=⎩··································(6分)又因为()0,1F ,所以31n k m -=,0m ≠,由123112k k k +=,有121232k k k k k +=,所以21m m n n =-,因为0m ≠,12n n -=,1n ∴=-,所以点P 的轨迹方程为()10y x =-≠.②由①知(),1P m -,设()14:1l y k x m =--,()25:1l y k x m =--,1m ≠±且0m ≠,·······(9分)联立()244,1,x y y k x m ⎧=⎪⎨=--⎪⎩消去y ,整理得2444440x k x k m -++=,又()11,A s t ,()22,B s t ,()33,C s t ,()44,D s t ,由韦达定理可得12444s s k m =+,同理可得34544s s k m =+,所以()()()212344515454444161616s s s s k m k m k k m m k k =++=+++,·····························(11分)又因为1l 和以圆心为()0,(0)Q λλ>,半径为1的圆相切,1=,即()()2224412120m k m k λλλ-++++=.同理()()2225512120m k m k λλλ-++++=,所以4k ,5k 是方程()()22212120m k m k λλλ-++++=的两个不等实根,所以由韦达定理可得()452245221,12,1m k k m k k m λλλ⎧++=-⎪⎪-⎨+⎪=⎪-⎩································································(14分)所以()()()22222123445452216161616162221621611m m s s s s k k m m k k m m λλλλ=+++=+--+=-+--,若1234s s s s 为定值,则220λ-=,又因为0λ>,所以λ=,······································(16分)所以圆Q的方程为22(1x y +-=.··········································································(17分)19.【解析】(1)由题意可得:312a a a +40x -.·······································································································································(3分)(2)存在“长向量”,且“长向量”为2a,6a,····························································(5分)理由如下:由题意可得1n a ==,若存在“长向量”p a,只需使1n pS a -,又()()712371010101,01010100,1S a a a a =++++=+-+++--+++-+=-,故只需使71p S a -=== ,即022cos12p π+,即11cos 22p π--,当2p =或6时,符合要求,故存在“长向量”,且“长向量”为2a ,6a.···························(8分)(3)由题意,得123a a a +,22123a a a + ,即()22123a a a +,即222123232a a a a a ++⋅ ,同理222213132a a a a a ++⋅,222312122a a a a a ++⋅,·····················(10分)三式相加并化简,得2221231213230222a a a a a a a a a +++⋅+⋅+⋅,即()21230a a a ++ ,1230a a a ++ ,所以1230a a a ++=,设()3,a u v = ,由1220a a a ++=得sin 2cos ,cos 2sin ,u x x v x x =--⎧⎨=--⎩·················································(12分)设(),n n n P x y ,则依题意得:()()()()()()212111222222222121,2,,,,2,,,k k k k k k k k x y x y x y x y x y x y ++++++⎧=-⎪⎨=-⎪⎩·····························(13分)得()()()()2222221122,2,,,k k k k x y x y x y x y ++⎡⎤=-+⎣⎦,故()()()()2222221122,2,,,k k x y k x y x y x y ++⎡⎤=-+⎣⎦,()()()()2121221122,2,,,k k x y k x y x y x y ++⎡⎤=--+⎣⎦,所以()()()212222212221221112,4,,4k k k k k k P P x x y y k x y x y k PP++++++⎡⎤=--=-=⎣⎦,22212(sin 2cos )(cos 2sin )58sin cos 54sin21PP x x x x x x x =--+--=+=+ ,当且仅当()4x t t ππ=-∈Z 时等号成立,·····································································(16分)故10151016min1014420282P P =⨯= .··············································································(17分)。
2022-2023学年四川省内江市威远中学高三年级下册学期第一次月考数学文试题【含答案】

高三下第一次月考文科数学第I 卷(选择题)一、单选题1.已知全集,集合,则A =( ){62}U x x =-<<∣{}2230A x x x =+-<∣C U A .B .C .D .()6,2-()3,2-()()6,31,2--⋃][()6,31,2--⋃2.已知,则( )()1i 75iz +=+z =A .B .C .D .6i-6i+32i-12i-3.素数对称为孪生素数,将素数17拆分成个互不相等的素数之和,其中任选(,2)p p +n 2个数构成素数对,则为孪生素数的概率为( )A .B .C .D .151314124.《九章算术》是我国古代的数学名著,书中有如下问题:“今有女子善织,日增等尺,三日织9尺,第二日、第四日、第六日所织之和为15尺,则其七日共织尺数为几何?”大致意思是:“有一女子善于织布,每日增加相同的尺数,前三日共织布9尺,第二日、第四日、第六日所织布之和为15尺,问她前七日共织布多少尺?” ( )A .28B .32C .35D .425.设,是两个向量,则“”是“且”的.a b a b = ||a b |=|a b A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知各顶点都在球面上的正四棱锥的高度为,椎体体积为6,则该球的表面积为3( )A .B .C .D .32π16π24π20π7.某程序框图如图所示,则输出的S =( )A .8B .27C .85D .2608.已知直线的斜率为,直线的倾斜角为直线的倾斜角的一1l 2l1l半,则直线的斜率为( )A .. C D .不2l 存在9. 我国著名数学家华罗庚先生曾说,数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,经常用函数的图象研究函数的性质.已知函数的图象可能为sin ()2cos x xf x x =-A.B .C .D .10.函数的图象如图所示,将函数的图象向右平移个()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭()f x π6单位长度,得到函数的图象,则( )()g x A .B .()sin 2g x x=()cos 2g x x=C .D .()2πsin 23g x x ⎛⎫=+ ⎪⎝⎭()2πcos 23g x x ⎛⎫=+ ⎪⎝⎭11.10.设,,,则( )0.302a =.3log 4b =4log 5c =A . B . C .D .a b c <<b a c <<c a b<<a c b <<12.已知函数的定义域为R ,且满足,,()f x ()()110f x f x -+-=()()8f x f x +=,,,给出下列结论:()11f =()31f =-()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩①,;②;③当时,的解集为;1a =-3b =-()20231f =[]4,6x ∈-()0f x <()()2,02,4- ④若函数的图象与直线在y 轴右侧有3个交点,则实数m 的取值范围是()f x y mx m =-.其中正确结论的个数为( )111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭A .4B .3C .2D .1第II 卷(非选择题)二、填空题13.若实数、满足,则的取值范围是_________.x y 430x y y x y +≤⎧⎪≤⎨⎪≥⎩23x y +14.已知定点和曲线上的动点,则线段的中点的轨迹方程为(4,2)A -224x y +=B AB P ___________.15.数列满足,其前项和为若恒成立,则{}n a 1,N (21)(23)n a n n n *=∈++n n S n S M <的最小值为________________________M 16.设函数在区间上的导函数为,在区间上的导函数为()y f x =(),a b ()f x '()f x '(),a b,若在区间上恒成立,则称函数在区间上为“凸函数”;已()f x ''(),a b ()0f x ''<()f x (),a b 知在上为“凸函数”,则实数的取值范围是_____43213()1262m f x x x x =--()1,3m 三、解答题(本大题共5小题,共60分.17题-21题各12分,解答应写出文字说明、证明过程或演算步骤)17.中,sin 2A -sin 2B -sin 2C =sin B sin C .ABC (1)求A ;(2)若BC =3,求周长的最大值.ABC 18.热心网友们调查统计了柳州市某网红景点在2022年6月至10月的旅游收入y (单位:万元),得到以下数据:月份x678910旅游收入y1012111220(1)根据表中所给数据,用相关系数r 加以判断,是否可用线性回归模型拟合y 与x 的关系?若可以,求出y 关于x 之间的线性回归方程;若不可以,请说明理由;(2)为调查游客对该景点的评价情况,网友们随机抽查了200名游客,得到如图列联表,请填写2×2列联表,并判断能否有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”喜欢不喜欢总计男100女60总计110,3.162≈注:r 与的计算结果精确到0.001.参考公式:相关系数2K r =线性回归方程:,其中,,ˆˆˆybx a =+()()()121ˆniii nii x x y y bx x ==--=-∑∑ˆˆa y bx =-.22()()()()()n ad bc K a b c d a c b d -=++++临界值表:()20P K k ≥0.0100.0050.0010 k 6.6357.87910.82819.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,,45BAD∠=1,AD AB ==是正三角形,平面平面PBD .PADPAD ⊥(1)求证:;PA BD⊥(2)求三棱锥P -BCD 的体积.20.已知椭圆C 的方程为,右焦点为.22221(0)x y a b a b +=>>F (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线与曲线相切.证明:MN 222(0)x y b x +=>M ,N ,F 三点共线的充要条件是.||MN 21.已知函数.()()21ln 2f x x a x a R =-∈(1)若,求函数在处的切线方程;2a =()f x ()()11f ,(2)若函数在上为增函数,求的取值范围;()f x ()1+∞,a (3)若,讨论方程的解的个数,并说明理由.0a ≠()0f x =四、选考题:共10分.请考生在第22、23题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4—4:坐标系与参数方程]22.在平面直角坐标系中,曲线C 的参数方程为(为参数),以坐xOy 12cos 22sin x y αα=-+⎧⎨=+⎩α标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程是.cos 2sin 40ρθρθ-+=(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)已知,设直线l 和曲线C 交于A ,B 两点,线段的中点为Q ,求的值.(4,0)P -AB ||PQ [选修4—5:不等式选讲]23.已知a ,b ,c 均为正数,且,证明:22243a b c ++=(1);23a b c ++≤(2)若,则.2b c =113a c +≥高2023届第六学期第一次月考试题文科数学参考答案选择题 1-5 DBBCA 6-10 BCCAA 11-12 DC1.D 因为,A=.故选:D.{}}{223031A x x x x x =+-<=-<<∣U ][()6,31,2--⋃2.B 因为,所以.故选:B.()()()()75i 1i 75i 122i6i 1i 1i 1i 2z +-+-====-++-6i z =+3.B 素数,可拆成4个互不相等的素数,在4个互不相等的素数中,任取172357=+++两个的所有情况为共6种,其中为孪生素数的情况有2{}(2,3),(2,5),(2,7),(3,5),(3,7),(5,7)种,分别是,,所以孪生素数的概率为.故选:B .{(3,5)(5,7)}2163=4.C 解:由题知,该女子每日织布的尺数构成等差数列,记为,设其每日增加的尺数{}n a 为,其前项和为,所以,,即,解得,,d n n S 123246915a a a a a a ++=⎧⎨++=⎩113393915a d a d +=⎧⎨+=⎩112d a =⎧⎨=⎩所以,她前七日共织布尺.故选:C71721142135S a d =+=+=5.A 【详解】由“”可推出“且”;但反之不成立.所以“”是“且”a b = ||||a b =a b a b = a b = a b的充分而不必要条件.选.A 6.B 设正四棱锥底面边长为,则()0a a >2136,3a a ⨯⨯==,则,解得,则球的表面积为.r ()2223r r -+=2r =24π16πr =故选:B7.C 由图可知,初始值;第一次循环,,不成2,1S k ==112,3228k S =+==⨯+=23k =>立;第二次循环,,不成立;第三次循环,213,38327k S =+==⨯+=33k =>,成立;退出循环,输出的值为.故选:C.314,327485k S =+==⨯+=43k =>S 858. C 由直线的斜率为,设其倾斜角为,则1l1θ1tan θ=由直线的倾斜角为直线的倾斜角的一半,设直线的倾斜角为,则,2l 1l 2l 2θ212θθ=,,解得212222tan tan tan 21tan θθθθ===-)(221tan 0θθ+=2tan θ=由倾斜角的取值范围为,则故选:C.[)0,p 2tan θ=2l9.A 解:由题意可得,所以函数为偶函数,排()sin()sin ()()2cos()2cos x x x xf x f x x x ---===---()f x 除B 、C 当略大于0时,,,所以,排除D 故选:A.x sin 0x x >2cos 0x ->()0f x >10.A 结合图像,易得,则,所以由得,所以,17πππ41234T =-=πT =2πT ω=2ππω=2ω=又,所以,则,又因为落在上,所以0ω>2ω=()()sin 2f x x ϕ=+7π,112⎛⎫- ⎪⎝⎭()f x ,即,所以,得7πsin 2112ϕ⎛⎫⨯+=- ⎪⎝⎭7πsin 16ϕ⎛⎫+=- ⎪⎝⎭7π3π2π,Z62k k ϕ+=+∈,ππ,Zk k ϕ=+∈23因为,所以当且仅当时,满足要求,所以,π2ϕ<0k =π3ϕ=()πsin 23f x x ⎛⎫=+ ⎪⎝⎭因为将函数的图象向右平移个单位长度,得到函数的图象,()f x π6()g x 所以.故选:A.()ππsin 2sin 263xg x x ⎡⎤⎛⎫-+= ⎪⎢⎥⎣⎦=⎝⎭11.D 因为单调递减,所以,又与均单调递0.2x y =0.3002021..a =<=3log y x =4log y x =增,故,,其中,33log 4log 31b =>=44log 5log 41c =>=3ln 4log 4ln 3b ==,4ln 5log 5ln 4c ==,其中,故,2ln 4ln 5ln 4ln 3ln 5ln 3ln 4ln 3ln 4-⋅-=⋅ln 30,ln 40>>ln 3ln 40⋅>其中,故,2222ln 3ln 5ln15ln16ln 3ln 5ln 4222+⎛⎫⎛⎫⎛⎫⋅<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2ln 4ln 5ln 4ln 3ln 50ln 3ln 4ln 3ln 4-⋅-=>⋅所以,即,故.故选:D ln 4ln 5ln 3ln 4>b c >a c b <<12.C 【详解】因为,所以,所以函数为奇函数,()()110f x f x -+-=()()f x f x -=-()f x .因为,所以的周期为8.又()00f =()()8f x f x +=()f x ,所以,所以,,()()21111f a =-++=10a +=1a =-()3311f b =+-=-所以,故①正确.3b =-因为,,故②错误.()()()()202325381111f f f f =⨯-=-=-=-易知,作出函数在上的图象,()()211,0231,24x x f x x x ⎧--+<≤⎪=⎨--<≤⎪⎩()f x []0,4根据函数为奇函数,及其周期为8,得到函数在R 上的图象,如图所示,()f x ()f x 由的图象知,当时,的解集为,故③正确.()f x []4,6x ∈-()0f x <()()2,02,4- 由题意,知直线恒过点,与函数的图象在y 轴右侧有3个()1y mx m m x =-=-()1,0()f x 交点根据图象可知当时,应有,即,且同时满足,0m >51m m ⨯-<14m <()mx m f x -=无解,即当时,,无解,所[]8,10x ∈[]8,10x ∈()()()108f x x x =--()()108x x mx m--=-以,解得,所以.当时,应有Δ0<1616m -<<+1164m -<<0m <,即,且同时满足,无解,即当时,31m m ⨯->-12m >-()mx m f x -=[]6,8x ∈[]6,8x ∈,()()()68f x xx =--无解,所以,解得,所以()()58x x mx m --=-Δ0<1212m --<<-+综上,或④错误.故选:C.1122m -<<-+1164m -<<1122m -<<-+13.设,作出不等式组所表示的可行域如下图所示:0,11⎡⎤⎣⎦23z x y =+430x y y x y +≤⎧⎪≤⎨⎪≥⎩联立,可得,即点,平移直线,当该直线经过34y x x y =⎧⎨+=⎩13x y =⎧⎨=⎩()1,3A 23z x y =+可行域的顶点时,直线在轴上的截距最大,此时取最大值,A 23z x y =+x z 即,当直线经过原点时,该直线在轴上的截max 213311z =⨯+⨯=23z x y =+x 距最小,此时取最小值,即,因此,的取值范围是.z min 0z =23x y +0,11⎡⎤⎣⎦14.设线段中点为,, 则,22(2)(1)1x y -++=AB (,)P x y (,)B m n 42m x +=22ny-+=即,因为点为圆上的点,所以24m x =-22n y =+B 224x y +=224m n +=所以,化简得:故答案为:22(24)(22)4x y -++=22(2)(1)1x y -++=22(2)(1)1x y -++=15.,()()1111212322123n a n n n n ⎛⎫==-⎪++++⎝⎭则,因为恒成立,所以,1112121111111123557233236n S n n n --++ +⎛⎫⎛⎫=-+-++=<⎪ ⎪⎝⎭⎝⎭ n S M <16M ≥即的最小值为 故答案为:M 161616因为,,由题意在上恒成立,即321()332mf x x x x '=--2()3f x x mx ''=--()0f x ''<()1,3在上恒成立,分离参数,而在上的最大值为2,230x mx --≤()1,33m x x ≥-3y x x =-()1,317.(1)由正弦定理可得:,222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,.()0,A π∈ 23A π∴=(2)由余弦定理得:,2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=即.()29AC AB AC AB +-⋅=(当且仅当时取等号),22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭ AC AB =,()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭解得:(当且仅当时取等号),AC AB +≤AC AB =周长周长的最大值为ABC ∴ 3L AC AB BC =++≤+ABC ∴ 3+18.(1)由已知得,,67891085x ++++==1012111220135y ++++==,,,()52110ii x x =-=∑()52164ii y y =-=∑()()5120iiix y y x =-=-∑所以,0.791r ===≈因为,||0.791[0.75,1]r ≈∈说明y 与x 的线性相关关系很强,可用线性回归模型拟合y 与x 的关系,设线性回归方程为,ˆˆˆybx a =+∴,.2020ˆ1b ==ˆˆ13163a y bx =-=-=-则y 关于x 线性回归方程为;23y x =-(2)由题可得2×2列联表,喜欢不喜欢总计男7030100女4060100总计11090200,()222007060403018.18210.82810010011090K ⨯⨯-⨯=≈>⨯⨯⨯∴有99.9%的把握认为“游客是否喜欢该网红景点与性别有关联”.19.(1)证明:取中点,连接,PD E AE 因为是边长为1正三角形,所以,PAD AE PD ⊥又因为平面平面PBD ,平面平面PBD ,所以平面PAD ⊥PD =PAD ⋂⊥AE PBD ,又因为平面PBD ,所以①,又因为在中,,BD ⊂AE BD ⊥ABD △45BAD∠=,所以1,AD AB ==2222cos 451BD AD AB AD AB =+-⋅⋅⋅︒=,所以②,又因为③,由①②③2222BD AD AB +==AD BD ⊥AE AD A ⋂=可得平面,又因为平面,所以;BD ⊥PADPA ⊂PAD PA BD ⊥(2)解:取中点,连接,AD F PF 因为是边长为1正三角形,所以且(1)可知PAD PF AD ⊥PF =平面,BD ⊥PAD 平面,所以,又因,所以平面,即有PF ⊂PAD BD ⊥PF BD AD D Ç=PF ⊥ABCD 平面,所以为三棱锥P -BCD 的高,又因为ABCD 为平行四边形,所以PF ⊥BCD PF,111122BCD ABD S S ==⨯⨯= 所以111332P BCD BCDV S PF -=⋅=20.(1)由题意,椭圆半焦距,所以c=c e a ==a =2221b a c =-=椭圆方程为;2213x y +=(2)由(1)得,曲线为,当直线的斜率不存在时,直线,221(0)x y x +=>MN :1MN x =不合题意;当直线的斜率存在时,设,MN ()()1122,,,M x y N x y 必要性:若M ,N ,F 三点共线,可设直线即,(:MN y k x =0kx y --=由直线与曲线,解得,MN 221(0)x y x +=>11k =±联立可得,所以,(2213y x x y ⎧=±⎪⎨⎪+=⎩2430x -+=121234x x x x +=⋅==所以必要性成立;充分性:设直线即,():,0MN y kx b kb =+<0kx y b -+=由直线与曲线,所以,MN 221(0)x y x +=>1=221b k =+联立可得,2213y kx b x y =+⎧⎪⎨+=⎪⎩()222136330k x kbx b +++-=所以,2121222633,1313kb b x x x x k k -+=-⋅=++==化简得,所以,()22310k -=1k =±所以或,所以直线或,1k b =⎧⎪⎨=⎪⎩1k b=-⎧⎪⎨=⎪⎩:MNy x =y x =-所以直线过点,M ,N ,F 三点共线,充分性成立;MN F 所以M ,N ,F 三点共线的充要条件是||MN =21(1) 时,, , ,2a =()212ln 2f x x x =-()'2f x x x ∴=-()'11k f ∴==-又,函数在处的切线方程为:;()112f =∴()f x ()()11f ,2230x y +-=(2)函数在上为增函数,则 在恒成立,()f x ()1+∞,()'0a f x x x =-≥()1x ∈+∞,即在恒成立,故,经检验,符合题意,2a x ≤()1x ∈+∞,1a ≤;1a ∴≤(3),()'af x x x =-时, 在上恒成立,在是增函数,0a <①()'0f x >()0+∞,()f x \()0+∞,取,,11x =212eax =由, ,()10f >11121121111e e ln e e e 102222a a a aa f a ⎛⎫⎛⎫=-=-=-< ⎪ ⎪⎝⎭⎝⎭所以在时存在唯一零点,即时,方程有唯一解;12e ,1a x ⎛⎫∈ ⎪⎝⎭0a <()0f x =时,,0a >②()'af x x x =-=在递减,在递增,()f x\(0)+∞ ,()min 1()1ln 2fx fa a ∴==- 时,,此时方程无解,0e a <<0f>()0f x = 时, , 时方程存在一个解,e a >()110,02f f =><(x ∴∈()0f x =又 ,()211e e e e e 22a a a a a f a a ⎛⎫=-=- ⎪⎝⎭令 ,即 是增函数,()()'e 1111e ,e 1,e,e 1e 102222a a a p a a p a a =-=->∴->-> ()p x ,即 ,即 时,()()e e 121111e e e e e 1e e 10222p a p --⎛⎫⎛⎫>=-=->-> ⎪ ⎪⎝⎭⎝⎭()e 0a f >)ax ∈方程存在一个解;()0f x =所以: 时,无解,0e a <<()0f x =或 时,有唯一解,0a <e a =()f x时,有个解;e a >()0f x =2综上, 时,无解,或 时,有唯一解, 时,0e a <<()0f x =0a <e a =()f x e a >有个解;()0f x =222.(1)由(为参数),得,故曲线C 的普通方程为12cos ,22sin x y αα=-+⎧⎨=+⎩α22(1)(2)4x y ++-=.由,得,故直线l 的直角坐标方程22(1)(2)4x y ++-=cos 2sin 40ρθρθ-+=240x y -+=为;240x y -+=(2)由题意可知点P 在直线l 上,则直线l 的参数方程为(t 为参数),4,x y ⎧=-⎪⎪⎨⎪=⎪⎩将直线l 的参数方程代入曲线C 的普通方程,整理得,25450t -+=,(245453800∆=-⨯⨯=>设A ,B 对应的参数分别为,则12,t t 12t t+=故122t t PQ +==23.(1)由柯西不等式有,()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦所以,当且仅当时,取等号,所以.23a b c ++≤21a b c ===23a b c ++≤(2)证明:因为,,,,由(1)得,2b c =0a >0b >0c >243a b c a c ++=+≤即,所以,043a c <+≤1143a c ≥+由权方和不等式知,()22212111293444a c a c a c a c ++=+≥=≥++当且仅当,即,时取等号,124a c =1a =12c =所以.113a c +≥所以实数的取值范围是.m [)2,+∞。
天津市南开区南大奥宇学校2022-2023学年高三上学期第三次月考数学试题(含答案解析)

天津市南开区南大奥宇学校2022-2023学年高三上学期第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设全集为R ,集合{13}A x x =∈-<≤Z∣,集合{}1,2B =,则集合A B ⋂=R ð()A .{}0,3B .()(]1,12,3-⋃C .()()(]0,11,22,3⋃⋃D .{}1,0-2.如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x x y x =+D .22sin 1x y x =+3.设x ∈R ,则“2x x >”是“11x<”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.若等差数列{}n a 满足8926a a -=,则它的前13项和为()A .110B .78C .55D .455.已知直线(0)y kx k =>与圆()()22:214C x y -+-=相交于A ,B 两点,且AB =则k =()A .15B .43C .12D .5126.若函数()()22x xf x x -=-,设12a =,41log 3b =,51log 4c =,则下列选项正确的是()A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b <<7.设F 是抛物线21:2(0)C y px p =>的焦点,点A 是抛物线1C 与双曲线222221(0,0x y C a b a b-=>>:)的一条渐近线的一个公共点,且AF x ⊥轴,则双曲线的离心率为()AB C D .28.若函数()||0)f x x a =>没有零点,则a 的取值范围是()A .)+∞B .()2,+∞C .())0,1+∞ D .()()0,12,⋃+∞9.函数()()()sin ,0,0,0πf x A x A ωϕωϕ=+>><<的部分图像如图中实线所示,图中圆C 与()f x 的图像交于M ,N 两点,且M 在y 轴上,有如下说法:①函数()f x 的最小正周期是π②函数()f x 在7ππ,123⎛⎫-- ⎪⎝⎭上单调递减③函数()f x 的图像向左平移π12个单位后关于直线π2x =对称④若圆C 的半径为5π12,则函数()f x 的解析式为()πsin 263f x x ⎛⎫=+ ⎪⎝⎭则其中正确的说法是()A .①③B .②④C .①③④D .①②④二、填空题10.若复数6i3ia +-(,i a ∈R 为虚数单位)是纯虚数,则实数a 的值为______.11.已知函数()f x 的导函数为()f x ',且满足()()21ln f x xf x +'=,则(1)f '=___.12.己知10,lg 2b a a b =+=,则ab =______.13.设a >0,b >0,a ≤2b ≤2a +b ,则2222aba b +的取值范围为_______.三、双空题14.如图是一个圆台的侧面展开图(扇形的一部分),若两个圆弧 DE 、 AC 所在圆的半径分别是3和9,且120ABC ∠= ,则该圆台的高为______;表面积为______.15.如图在ABC 中,90ABC ∠= ,8BC =,12AB =,F 为AB 中点,E 为CF 上一点.若3CE =,则EA EB ⋅= ______;若()01CE CF λλ=≤≤ ,则EA EB ⋅的最小值为______.四、解答题16.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且3,1,2b c A B ===.(1)求a 的值;(2)求πcos 26A ⎛⎫+ ⎪⎝⎭的值.17.已知在直三棱柱111ABC A B C -中,AB BC ⊥,且1222,,AA AB BC E M ===分别是1CC ,1AB 的中点.(1)证明:EM 平面ABC ;(2)求直线1A E 与平面1AEB 所成角的正弦值;(3)求平面BEM 与平面1B EM 夹角的余弦值.18.已知数列{}n a 的前n 项和()2n S n n λλ=+∈R ,且36a =,正项等比数列{}n b 满足:11b a =,2324.b b a a +=+(1)求数列{}n a 和{}n b 的通项公式;(2)若2022n n c b =-,求数列{}n c 的前n 项和n T ;(3)证明:()2131nii i b b =<-∑.19.已知椭圆()2222:10x y E a b a b+=>>的右焦点为2F ,上顶点为H ,O 为坐标原点,230OHF ∠=︒,点31,2⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)设经过点2F 且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点()2,0P -,()2,0Q .若M ,N 分别为直线AP ,BQ 与y 轴的交点,记MPQ ,NPQ △的面积分别为MPQ S ,NPQ S △,求MPQ NPQS S △△的值.20.已知函数()e xf x =,直线:,l y mx m =∈R .(1)若直线l 为曲线()y f x =的切线,求m 的值;(2)若不等式()()0x k f x x k -++≥对任意的[)0,x ∈+∞恒成立,求实数k 的最大值;(3)若直线l 与曲线()y f x =有两个交点()()1122,,,A x y B x y .求证:212ln x x m <.参考答案:1.A【分析】先求出集合A ,进而求出A B ⋂R ð.【详解】{}{}130,1,2,3A x x =∈-<≤=Z∣.因为{}1,2B =,所以A B ⋂=R ð{}0,3.故选:A 2.A【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C;设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D.故选:A.3.C【分析】先求出2x x >与11x<的关系,然后根据充分条件,必要条件的判定即可得出结论.【详解】由2x x >,可得1x >或0x <,则可以推出11x<;由11x<,可得:1x >或0x <,则可以推出2x x >,所以“2x x >”是“11x<”的充分必要条件,故选:C .4.B【分析】根据等差数列的通项公式及前n 项和公式即可求解.【详解】设等差数列{}n a 的首项为1a ,公差为d ,则因为8926a a -=,所以()()112786a d a d +-+=,即166a d +=.所以()()13111313113136136782S a d a d ⨯-=+=+=⨯=.5.B【分析】圆心()2,1C 到直线(0)y kx k =>的距离为d,则d =而1d ==,所以1d =,解方程即可求出答案.【详解】圆()()22:214C x y -+-=的圆心()2,1C ,2r =所以圆心()2,1C 到直线(0)y kx k =>的距离为d,则d =,而1d ==,所以1d =,解得:43k =.故选:B.6.A【分析】先判定函数()f x 的奇偶性及单调性,比较,,a b c 三者之间的大小关系,带入函数求解.【详解】由题可知()()22x x f x x -=-()x R ∈,故()()22()x xf x x f x --=--=,∴函数()f x 为偶函数;易知,当0x >时,()f x 在(0,)+∞为单调递增函数;又441log log 33b ==-,∴44()(log 3)(log 3)f b f f =-=,同理,5()(log 4)fc f =;又441log 2log 32=<,222524lg 4log 4lg 4lg 4(lg 4)lg 51lg 3log 3lg 5lg 3lg 5lg 3lg 42⎛⎫⋅==≥=>⎪⋅+⎛⎫⎭⎪⎝⎭,故451log 3log 42<<,故()()()f a f b f c <<.故选:A.7.B【分析】联立方程求出点A 的坐标,结合抛物线的定义可得a ,b 的关系,由此可求双曲线【详解】由题意得,02p F ⎛⎫⎪⎝⎭,准线为2P x =-,设双曲线的一条渐近线为b y x a =,则点,22p pb A a ⎛⎫ ⎪⎝⎭,由抛物线的定义得AF 等于点A 到准线的距离,即222pb p p a =+,所以12ba=,所以c e a a a====故选:B.8.D【分析】根据函数()f x 没有零点,等价为函数y =与||y x =的图象没有交点,在同一坐标系中画出它们的图象,即可求出a 的取值范围.【详解】解:令||0x =||x =,令y =22x y a +=||y x =,表示以(为端点的折线,在同一坐标系中画出它们的图象如图,根据图象知,由于两曲线没有公共点,故圆心到折线的距离小于1,a ∴的取值范围为()()0,12,⋃+∞.故选:D .9.C【分析】由M ,N 关于点C 对称,求出π3C x =,判断出最小正周期为πT =.即可判断①;先求出()πsin 23f x A x ⎛⎫=+ ⎪⎝⎭.判断出()f x 在7ππ,123⎛⎫-- ⎪⎝⎭上不单调.即可判断②;求出对称轴直接判断③;利用圆C 的半径为5π12,求出A .【详解】因为圆C 与()f x 的图像交于M ,N 两点,所以M ,N 关于点C 对称.因为2π0,3M N x x ==所以π3C x =.由图像可得:()f x 的半个周期为πππ362⎛⎫--= ⎪⎝⎭,所以最小正周期为πT =.故①正确;因为最小正周期为πT =,所以2ππω=,由0ω>,解得:2ω=.因为06f π⎛⎫-= ⎪⎝⎭,所以由“五点法”可得:π206ϕ⎛⎫⋅-+= ⎪⎝⎭,解得:π3ϕ=.所以()πsin 23f x A x ⎛⎫=+ ⎪⎝⎭.当7ππ,123x ⎛⎫∈-- ⎪⎝⎭时,π5ππ2,363x ⎛⎫+∈-- ⎝⎭.因为sin y t =在5ππ,62⎛⎫-- ⎝⎭上单减,在ππ,23⎛⎫-- ⎪⎝⎭上单增,所以函数()f x 在7ππ,123⎛⎫-- ⎝⎭上不单调.故②错误;函数()f x 的图像向左平移π12个单位后得到函数()ππππsin 2sin 2cos 212326g x f x A x A x A x ⎛⎫⎛⎫⎛⎫=+=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以()g x 的对称轴为2π,Z x k k =∈,即π,Z 2kx k =∈.所以函数()f x 的图像向左平移12π个单位后关于直线π2x =对称.故③正确;若圆C 的半径为5π12=解得:A所以函数解析式为:()π23f x x ⎛⎫=+ ⎪⎝⎭.故④正确.综上所述:①③④正确.故选:C 10.2【分析】由6ii 3ia m +=-,(,,0,i a m m ∈∈≠R R 为虚数单位),利用复数相等列方程即可求解.【详解】因为复数6i3ia +-(,i a ∈R 为虚数单位)是纯虚数,所以6ii 3ia m +=-,(,,0,i a m m ∈∈≠R R 为虚数单位).所以6i 3i a m m +=+,所以,36a m m ==,解得:2,2a m ==.故答案为:2.11.1-【分析】对给定等式两边求导,令1x =,解方程作答.【详解】依题意,对()()21ln f x xf x '=+两边求导得:()()121f x f x''=+,当1x =时,()()1211f f ''=+,解得()11f '=-,所以()11f '=-.故答案为:-112.10【分析】对等式10b a =两边取对数可得lg 1b a =,又lg 2a b +=,所以,lg b a 为方程2210x x -+=的解,即可求得,a b ,即可得解.【详解】由10b a =可得lg 1b a =,又lg 2a b +=,所以,lg b a 为方程2210x x -+=的解,所以1,lg 1b a ==,10a =,所以10ab =,故答案为:1013.4,92⎡⎢⎣⎦;【分析】首先根据不等式的性质,得到122ab≤≤,之后将所求的式子化为关于a b 的关系式,之后借助于对勾函数以及不等式的性质,求得目标式的取值范围.【详解】根据a >0,b >0,由222a b b a b≤⎧⎨≤+⎩求得122ab ≤≤,222222ab a b a b b a=++,令1[,2]2a t b =∈,则29]2t t +∈,所以24[29t t∈+,故答案是4[]92.【点睛】该题考查的是有关代数式的取值范围的问题,涉及到的知识点有不等式的性质,对勾函数的性质,在求解的过程中,注意对式子的正确转化.14.34π【分析】计算出圆台上、下底面的直径,取圆台的轴截面,利用等腰梯形的几何性质可求得该圆台的高;利用圆台的表面积公式可求得该圆台的表面积.【详解】由题意可知,圆台的母线长为936-=,上底面圆的直径为123π32πd ⨯==,下底面圆的直径为229π36πd ⨯==,取该圆台的轴截面MNGH ,如下图所示:易知四边形MNGH 为等腰梯形,分别过点M 、N 分别作MP GH ⊥、NQ GH ⊥,垂足分别为点P 、Q ,由已知,2MN =,6GH MH NG ===,因为MH NG =,MHP NGQ ∠=∠,90MPH NQG ∠=∠= ,所以,Rt Rt MPH NQG △≌△,所以,PH QG =,MP NQ =,因为MP GH ⊥、NQ GH ⊥,则//MP NQ ,则四边形MNQP 为矩形,所以,2PQ MN ==,22GH MN PH QG -===,MP ∴==,该圆台的表面积为()221π1π32π6π634π2S =⨯+⨯++⨯=.故答案为:34π.15.1336-【分析】求得22EA EB EF FB ⋅=- ,计算出CF 、BF 的长,当3CE =时,可求得EA EB ⋅ 的值;计算得出()1EF CF λ=- ,利用平面向量数量积的运算性质以及二次函数的基本性质可求得EA EB ⋅ 的最小值.【详解】因为90ABC ∠= ,162BF AB ==,8BC =,则10CF ==,当3CE =时,7EF =,此时()()()()22227613EA EB EF FA EF FB EF FB EF FB EF FB ⋅=+⋅+=-⋅+=-=-= ;()1EF CF CE CF λ=-=- ,则()222213636EA EB EF FB CF λ⋅=-=--≥- ,当且仅当1λ=时,等号成立,故EA EB ⋅ 的最小值为36-.故答案为:13;36-.16.(1)【分析】(1)由A =2B 得sin A =sin2B ,再利用正弦定理和余弦定理角化边即可求解;(2)利用余弦定理可求cos A ,从而可求sin A 及cos2A 、sin2A ,结合两角和差的余弦公式进行求解即可﹒【详解】(1)由2A B =,知sin sin 22sin cos A B B B ==,由正、余弦定理得22222a c b a b ac+-=⋅.∵3b =,1c =,∴212a =,则a =;(2)由余弦定理得22291121cos 263b c a A bc +-+-===-,∵0πA <<,∴sin 3A ===,故sin 22sin cos 9A A A ==-,27cos 22cos 19A A =-=-,πππcos(2)cos 2cos sin 2sin 666A A A +=-=17.(1)证明见解析3(3)23【分析】(1)根据直三棱柱的特征可得:AB ⊥平面11BCC B ,建立空间直角坐标系,求出所需点的坐标,利用空间向量的方法证明;(2)分别求出直线1A E 的一个方向向量和平面1AEB 的一个法向量,利用向量的夹角公式即可求解;(3)求出平面BEM 的法向量,结合(2)中平面1B EM 的法向量,利用向量的夹角公式求解即可.【详解】(1)在直三棱柱111ABC A B C -中,1BB AB ⊥,1BB BC ⊥,又因为AB BC ⊥,1BC BB B = ,且1,BC BB ⊂平面11BCC B ,所以AB ⊥平面11BCC B .以点B 为原点,BC ,1BB ,BA 分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,则()()()()()()1110,0,0,1,0,0,0,2,0,0,0,1,1,2,0,0,2,1B C B A C A .(1)因为,E M 分别是11,CC AB 的中点,所以()111,1,0,0,1,,1,0,22E M EM ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭ .易知平面ABC 的法向量为()0,2,0m = ,因为0EM m ⋅= ,所以EM m ⊥ .又因为EM ⊄平面ABC ,所以EM 平面ABC .(2)()()()1110,2,1,1,1,0,1,1,1AB EB EA =-=-=- .设()1111,,n x y z = 为面1AEB 的法向量,则11110n AB n EB == ,即111120,0,y z x y -=⎧⎨-+=⎩取11y =,则111,2x z ==,从而()11,1,2n = ,设直线1A E 与平面1AEB 所成角为θ,则111111sin cos<,3EA n EA n EA n θ⋅=>==⋅ ,即直线1A E 与平面1AEB所成角的正弦值为3.(3)()11,1,0,0,1,2BE BM ⎛⎫== ⎪⎝⎭ .设()2222,,n x y z = 为平面BEM 的法向量,则220n BE n BM ⋅=⋅= ,即22220,10,2x y y z +=⎧⎪⎨+=⎪⎩,取22z =,则221,1x y ==-,从而()21,1,2n =- ,由(2)知:平面1B EM 的一个法向量()11,1,2n = ,所以1212122cos ,3n n n n n n ⋅<>==⋅ ,所以平面BEM 与平面1B EM 夹角的余弦值为23.18.(1)2n a n =,2n n b =(2)1112220222,10,22022404422,11.n n n n n T n n ++⎧-++≤=⎨-+-≥⎩(3)证明见解析【分析】(1)利用1n n n a S S -=-求出{}n a 和{}n b 的通项公式;利用公式法求出{}n b 的通项公式;(2)由20222,10,202222022,11,n n n n n c b n ⎧-≤=-=⎨-≥⎩对n 分类讨论:10n ≤和11n ≥分别求和,即可求出n T ;(3)利用裂项相消法求和,即可证明.【详解】(1)当2n ≥时,()221(1)1n n n a S S n n n n λλ-⎡⎤=-=+--+-⎣⎦21,n λ=-+由36a =,得1λ=,即2n S n n =+,当1n =时,112a S ==,当2n ≥时,2n a n =,所以2n a n =.设正项等比数列{}n b 的公比为(0)q q >,则()21123242,212b a b b a a q q ==+=+=+=,所以260q q +-=,解得2q =或3q =-(舍),所以2n n b =.(2)20222,10,202222022,11,n n n n n c b n ⎧-≤=-=⎨-≥⎩所以当10n ≤时,()122022222n n T n =-+++ ()12122022202222,12nn n n +⨯-=-=-+-当11n ≥时,()1102022222n n T n T +=--++1122022224044024n n +=-+-+-+11222022404422n n +=-+-即1112220222,10,22022404422,11.n n n n n T n n ++⎧-++≤=⎨-+-≥⎩(3)当1n =时,()1221223(21)1b b ==<--;当2n ≥时,()()()()22222122121nn nn n n n b b =<----()()111211,21212121n n n n n ---==-----所以()22123141111111122121212121211n i n n i i b b ---=<+-+-++--------∑ 13321n =-<-.19.(1)22143x y +=(2)13【分析】(1)由230OHF ∠=︒,得b =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中,结合222a b c =+可求出,a b ,从而可求出椭圆方程,(2)设直线:1l x my =+,()11,A x y ,()22,B x y ,将直线方程代入椭圆方程消去x ,整理后利用根与系数的关系,可得()121232my y y y =+,表示出直线AP 的斜率1112y k x =+,直线BQ 的斜率2222y k x =-,而121212MPQ NPQ PQ OM S OM k S ON k PQ ON ⋅===⋅△△,代入化简即可【详解】(1)由230OHF ∠=︒,得b =(c 为半焦距),∵点31,2⎛⎫⎪⎝⎭在椭圆E 上,则221914a b +=.又222a b c =+,解得2a =,b =,1c =.∴椭圆E 的方程为22143x y +=.(2)由(1)知()21,0F .设直线:1l x my =+,()11,A x y ,()22,B x y .由221143x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()2234690m y my ++-=.显然()214410m ∆=+>.则122634m y y m -+=+,122934y y m -=+.∴()121232my y y y =+.由()2,0P -,()2,0Q ,得直线AP 的斜率1112y k x =+,直线BQ 的斜率2222y k x =-.又1OMk OP=,2ON k OQ =,2OP OQ ==,∴12OM k ON k =.∴121212MPQNPQPQ OM S OM k S ON k PQ ON ⋅===⋅△△.∵()()()()121211212121212221233y x y my k my y y k x y my y my y y ---==+++()()1211212212313122233933222y y y y y y y y y y +-+===+++.∴13MPQNPQ S S =△△.20.(1)em =(2)2(3)证明见解析【分析】(1)利用导数的几何意义得出切线方程为()000e e x x y x x -=-,然后再根据已知的切线方程即可求解;(2)根据题意,将条件等价转化为()00g '≥,二次求导进而求出k 的最小值即可;(3)利用导数先求出直线l 与曲线()y f x =有两个交点时e m >,然后再根据两个零点的大小关系构造函数()2e 22ln e xx m F x mx m m =--+,利用导数求出其单调性进而得到证明.【详解】(1)因为()e x f x =,所以()e x f x '=,设切点为()00,x y ,则切线斜率0e x k m ==,切线方程为:()000e e x x y x x -=-,因为直线l 过坐标原点(0,0),则有()000e e x x x -=-,解得01x =,所以e m =.(2)设()()()()e x g x x k f x x k x k x k =-++=-++,因为()00g =,所以()0g x ≥的一个必要条件是()00g '≥,又()()1e 1x g x x k -'=++,所以()0110g k =-+≥',则2k ≤,当2k =时,()()2e 2x g x x x =-++,则()()1e 1x g x x '=-+,又因为()e 0x g x x ='≥',所以()g x '单调递增,而()00g '=,则()0g x '≥,所以()g x 在[)0,∞+上单调递增,故()()00g x g ≥=,符合题意,所以实数k 的最大值为2.(3)依题意,方程e 0x mx -=有两个不同的实根12,x x .令()e x h x mx =-,则有()e x h x m'=-①若0m ≤,则()0h x '>在R 上恒成立,所以()h x 在R 单调递增,此时()h x 不可能有两个不同的零点,故舍去;②若0m >,当ln x m <时,()0h x '<;当ln x m >时,()0h x '>,所以()h x 在(),ln m -∞上单调递减,在()ln ,m +∞上单调递增,从而()min ()ln ln 0h x h m m m m ==-<,解得e m >.又()010h =>,故()h x 在(),ln m -∞有一个零点.设正数()20ln 2x m =,则()()()()2202ln 222ln ln22ln20h x m m m m m m m =-=-->->.由于()2ln 2ln m m >,因此()h x 在()ln ,m +∞有一个零点.综上所述,e m >.不妨设12x x <,则120ln ,ln 1x m x m <<>>,令()()()22ln e 22ln e xx m F x h x h m x mx m m =--=--+,则()2e 20e xx m F x m '=+-≥,所以函数()F x 在R 上单调递增,由2ln x m >,可得()()2ln 0F x F m >=,即()()222ln h x h m x >-,又12,x x 是函数()h x 的两个零点,即()()12h x h x =,所以()()122ln h x h m x >-,因为2ln x m >,所以22ln ln m x m -<,又1ln x m <,函数()h x 在(),ln m -∞上单调递减,所以122ln x m x <-,即122ln x x m +<,又12x x +>,所以2ln m <,因此212ln .x x m <【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.。