拉伸试验的作用及试样的形状及尺寸-推荐下载
金属拉伸试验标准试样类型及尺寸

金属拉伸试验标准试样类型及尺寸标准试样的类型及尺寸见图2-1及表2-1。
表2-1标准试样的尺寸单位:mm序号厚度a宽度b过渡半径r原始标距L0=kS0平行长度L c=L0+2b总长度L t= L c+2h1+2hB h1h10.720≥2021.1461.1419030≥13.235020.7520≥2021.8861.8819030≥13.235030.820≥2022.6062.6019030≥13.235040.8520≥2023.3063.3019030≥13.235050.920≥2023.9763.9719530≥13.235060.9520≥2024.6364.6319530≥13.23507 1.020≥2025.2765.2719530≥13.23508 1.220≥2027.6867.6819530≥13.50对于厚度0.1mm~3.0mm薄板和薄带:1.优先采用比例系数k=5.65的比例试样,若比例标距小于15mm,建议采用非比例试样,或按双方约定的L0值。
2.头部宽度应至少20mm,但不超过40mm。
3.平行长度应不少于L0+b/2,仲裁试验,平行长度应为L0+2b,除非材料尺寸不足够。
4.原始横截面积(S0=AB)的测定应准确到±2%5.应用小标记、细划线或细黑线标记原始标距(L0),但不得引起过早断裂的缺口做标记机加工试样的尺寸公差和形状公差应符合下表要求表2-2标准试样的尺寸公差单位:mm。
GBT228.1-2010-金属材料室温拉伸试验方法细节

1)称重法测定试样原始横截面积
• 试样应平直,两端面垂直于试样轴线。测量试样长度Lt,准 确到±0.5%;
• 称试样质量m,准确到±0.5%;
• 测出或查出材料密度ρ ,准确到三位有效数字。按下式计
算原始截面积:
S0
m
Lt
1000
• 注:称重方法仅适用于具有恒定横截面的试样。
应变
二.拉伸试样
一)试样的形状和尺寸
• 试样的形状与尺寸取决于要金属产品的形状与尺寸。 • 需要加工制样:压制坯、铸锭、无恒定截面的产品 • 不需加工制样:有恒定横截面的型材、棒材、线材
铸造试样(铸铁和铸造非铁合金) • 横截面的形状:圆形、矩形、多边形、环形,其他形状
经过机加工的试样
经过拉伸试验的试样
拉伸曲线
拉伸试验时测量的量是伸长和力,由这两个变量构成的关系
曲线(F-△L曲线)称为拉伸图,即拉伸曲线。
力—伸长曲线 F—ΔL曲线
应力—应变曲线 R—e曲线
拉伸曲线各变形阶段
应力
c bd a
0
e f
• 比例变形阶段(oa); • 弹性变形阶段(ob); • 微塑性应变阶段(bc); • 屈服塑性变形阶段(cd); • 应变硬化阶段(de); • 局部缩颈变形断裂阶段(ef)。
5
两端平齐 GB50204
低碳钢热轧圆盘条的取样要求
序号 1
检验项目 重量偏差
取样数 量
5个/批
取样方法 两端平齐
试验方法 GB50204
2
力学
1个/批 GB 2975 GB/T 228
3
弯曲
2个/批
不同根盘条 GB/T2975
金属拉伸试验标准试样类型及尺寸

2、金属拉伸试验标准试样类型及尺寸
表2-1标准试样的尺寸单位:mm
对于厚度0.1mm~3.0mm薄板和薄带:
1 •优先采用比例系数k=5.65的比例试样,若比例标距小于15mm,建议采用非比例试样, 或
按双方约定的L o值。
2. 头部宽度应至少20mm,但不超过40mm。
3. 平行长度应不少于L°+b/2,仲裁试验,平行长度应为L°+2b,除非材料尺寸不足够。
4. 原始横截面积(S0=AB )的测定应准确到土2%
5. 应用小标记、细划线或细黑线标记原始标距(L0),但不得引起过早断裂的缺口做标记
6. 机加工试样的尺寸公差和形状公差应符合下表要求
表2-2标准试样的尺寸公差单位:mm。
拉伸实验报告

拉伸实验报告篇一:拉伸试验报告ABANER拉伸试验报告[键入文档副标题][键入作者姓名][选取日期][在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
在此处键入文档的摘要。
摘要通常是对文档内容的简短总结。
]拉伸试验报告一、试验目的1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能2、测定低碳钢的应变硬化指数和应变硬化系数二、试验要求:按照相关国标标准(GB/T228-XX:金属材料室温拉伸试验方法)要求完成试验测量工作。
三、引言低碳钢在不同的热处理状态下的力学性能是不同的。
为了测定不同热处理状态的低碳钢的力学性能,需要进行拉伸试验。
拉伸试验是材料力学性能测试中最常见试验方法之一。
试验中的弹性变形、塑性变形、断裂等各阶段真实反映了材料抵抗外力作用的全过程。
它具有简单易行、试样制备方便等特点。
拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能,并根据应力-应变曲线,确定应变硬化指数和系数。
用这些数据来进行表征低碳钢的力学性能,并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。
拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试验的操作步骤等试验条件。
四、试验准备内容具体包括以下几个方面。
1、试验材料与试样(1)试验材料的形状和尺寸的一般要求试样的形状和尺寸取决于被试验金属产品的形状与尺寸。
通过从产品、压制坯或铸件切取样坯经机加工制成样品。
但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试样可以不经机加工而进行试验。
试样横截面可以为圆形、矩形、多边形、环形,特殊情况下可以为某些其他形状。
原始标距与横截面积有L?kS0关系的试样称为比例试样。
国际上使用的比例系数k的值为5.65。
金属材料拉伸试验标准试样类型及尺寸

金属材料拉伸试验标准试样类型及尺寸The pony was revised in January 2021金属材料拉伸试验标准试样类型及尺寸编制:审核:批准:生效日期:受控标识处:分发号:发布日期:2016年9月27日实施日期:2016年9月27日制/修订记录目的本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。
范围适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。
规范性应用文件下列文件对于本文件的作用是必不可少的。
凡是注日期的应用文件,仅注日期的版本适用于本文件。
凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 2975 钢及钢产品力学性能试验取样位置和试样制备GB/T 8170 数值修约规则与极限数值的表示和判定GB/T 10623 金属材料力学性能试验术语术语和定义试件/试样test piece/specimen通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。
标距gauge length用于测量试样尺寸变化部分的长度。
原始标距original gauge length在施加试验力之前的标距长度。
断后标距final gauge length after fracture试样断裂后的标距长度。
平行长度parallel length试样两头部或加持部分(不带头试样)之间平行部分的长度。
断面收缩率percentage reduction of area断裂后试样横截面积的最大缩减量(S 0-S u )与原始横截面积(S 0)之比的百分率。
0U 00S -S =100%Z X S 符号和说明与试样相关的符号及说明如下:表1 符合和说明试样形状和尺寸一般要求试样的形状与尺寸取决于要被试验的金属产品的形状和尺寸。
通常从产品,压制坯或铸件切取样坯经机械加工制成试样。
但具有恒定横截面的产品(型材,棒材,线材等)和铸造试样(铸铁和铸造非铁合金)可以不经机加工而进行试验。
金属材料 拉伸试验 标准试样类型及尺寸

金属材料拉伸试验标准试样类型及尺寸编制:审核:批准:生效日期:受控标识处:分发号:发布日期:2016年9月27日实施日期:2016年9月27日制/修订记录1.0 目的本文件规定了常温下金属材料拉伸试验标准试样的类型,形状及其尺寸测量。
2.0 范围适用于本公司常温下金属材料的拉伸试验所需的比例试样制备。
3.0 规范性应用文件下列文件对于本文件的作用是必不可少的。
凡是注日期的应用文件,仅注日期的版本适用于本文件。
凡是不注日期的应用文件,其最新版本(包括所有的修改单)适用于本文件。
3.1 GB/T 2975 钢及钢产品 力学性能试验取样位置和试样制备 3.2 GB/T 8170 数值修约规则与极限数值的表示和判定 3.3 GB/T 10623 金属材料 力学性能试验术语4.0 术语和定义4.1 试件/试样test piece/specimen通常按照一定形状和尺寸加工制备的用于试样的材料或部分材料。
4.2 标距gauge length用于测量试样尺寸变化部分的长度。
4.3 原始标距original gauge length在施加试验力之前的标距长度。
4.4 断后标距final gauge length after fracture试样断裂后的标距长度。
4.5 平行长度parallel length试样两头部或加持部分(不带头试样)之间平行部分的长度。
4.6 断面收缩率percentage reduction of area断裂后试样横截面积的最大缩减量(S 0-S u )与原始横截面积(S 0)之比的百分率。
0U00S -S =100%Z X S5.0 符号和说明与试样相关的符号及说明如下:6.0 试样6.1 形状和尺寸6.1.1 一般要求试样的形状与尺寸取决于要被试验的金属产品的形状和尺寸。
通常从产品,压制坯或铸件切取样坯经机械加工制成试样。
但具有恒定横截面的产品(型材,棒材,线材等)和铸造试样(铸铁和铸造非铁合金)可以不经机加工而进行试验。
拉伸试验的作用及试样的形状及尺寸

1.拉伸试验的作用及试样的形状及尺寸答:作用:测定材料的弹性,强度,塑性,应变硬化和韧性等许多重要力学性能指标;形状:光滑圆柱试件,板状试件;尺寸:①圆柱形拉伸试件:试件的标距长度Lo应比Do要大得多,通常Lo>5Do;板状拉伸试件:标距长度Lo应满足下列关系式:Lo﹦5.65Ao或11.3Ao;其中Ao为试件的初始面积。
2.应力状态柔度系数的物理意义及应用?答:应力状态柔度系数:在各种加载条件下,最大切应力τmax与最大正应力σmax之比,记为α,α=τmax/σmax.。
α(拉伸)﹤α(扭转)﹤α(压缩)3.金属材料的弹性不完善性包括那几个方面?答:弹性不完善性是指收到应力作用是,没有立即发生相应的弹性应变去除应力时应变也不是随即消失,包括弹性后效,弹性滞后,包申效应三个方面。
4.金属材料使用过程和生产过程对材料有什么要求?(强度和塑性)答:在进行材料选择时,设计师必须首先考虑强度,导电性或导热性,密度及其他性能。
然后,在考虑材料的加工性能和使用行为(其中材料的可成塑性,机械加工性,电稳定性,化学持久性及辐照行为是重要的。
)以及成本和材料来源。
所谓强度是指金属材料在静载荷作用下,材料抵抗变形和破坏(断裂)的能力成为强度。
根据外力的作用方式,有多种强度指标,如抗拉强度,抗弯强度,抗剪强度等。
一般情况下多以抗拉强度作为判别金属强度高低的招标。
机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。
材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。
材料发生屈服后,到最高点应力达最大值σb。
在这以后,试样产生“缩颈”,迅速伸长,应力明显下降,最后断裂。
试样裂前能够承受的最大应力值σb称为抗拉强度或强度极限。
如果单从保证零件不产生断裂的安全角度考虑,可用作为设计依据,但所取的安全系数应该大一些。
力学性能的测试

拉伸性能的测试
6.影响因素
(1)成型条件:由试样自身的微观缺陷和微观不同性引 起 (2)温度和湿度: (3)拉伸速度:塑料属于粘弹性材料,其应力松弛过程 与变形速率紧密相关,需要一ห้องสมุดไป่ตู้时间过程 (4)预处理:材料在加工过程中,由于加热和冷却的时 间和速度不同,易产生局部应力集中,经过在一定温 度下的热处理或称退火处理,可以消除内应力,提高 强度 (5)材料性质:结晶度、取向、分子量及其分布、交联 度 (6)老化:老化后强度明显下降
拉伸性能的测试
III试样(8字形)的制备和尺寸要求
拉伸性能的测试
IV型(长条形)试样及尺寸
拉伸性能的测试
3.实验速度:
拉伸性能的测试
塑料材料选择试样类型测试速度参考
拉伸性能的测试
4.操作步骤
①试样的状态调节和试验环境按国家标准规定。 ②在试样中间平行部分做标线,示明标距。 ③测量试样中间平行部分的厚度和宽度,精确到0.01mm, II型试样中间平行部分的宽度,精确到0.05mm,测3点,取 算术平均值。 ④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重 合,且松紧适宜。 ⑤选定试验速度,进行试验。 ⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂 在中间平行部分之外时,此试样作
力学性能的测试拉伸性能的测试拉伸性能测试原理及国标试样速度操作步骤数据的处理影响因素拉伸性能的测试原理拉伸试验是对试样延期纵轴方向施加静态拉伸负荷使其破坏通过测量试样的屈服力破坏力和试样标距间的伸长来求得试样的屈服强度拉伸强度和伸长率
力学性能的测试
拉伸性能的测试
拉伸性能测试原理及国标 裁样 试样速度 操作步骤 数据的处理 影响因素
拉伸性能的测试
1.参照标准——国标GB/T 1040-92
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.拉伸试验的作用及试样的形状及尺寸
答:作用:测定材料的弹性,强度,塑性,应变硬化和韧性等许多重要力学性能指标;
形状:光滑圆柱试件,板状试件;
尺寸:①圆柱形拉伸试件:试件的标距长度Lo应比Do要大得多,通常Lo>5Do;
Ao Ao
板状拉伸试件:标距长度Lo应满足下列关系式:Lo﹦5.65或11.3;其中Ao 为试件的初始面积。
2.应力状态柔度系数的物理意义及应用?
答:应力状态柔度系数:在各种加载条件下,最大切应力τmax与最大正应力σmax之比,记为α,α=τmax/σmax.。
α(拉伸)﹤α(扭转)﹤α(压缩)
3.金属材料的弹性不完善性包括那几个方面?
答:弹性不完善性是指收到应力作用是,没有立即发生相应的弹性应变去除应力时应变也不是随即消失,包括弹性后效,弹性滞后,包申效应三个方面。
4.金属材料使用过程和生产过程对材料有什么要求?(强度和塑性)
答:在进行材料选择时,设计师必须首先考虑强度,导电性或导热性,密度及其他性能。
然后,在考虑材料的加工性能和使用行为(其中材料的可成塑性,机械加工性,电稳定性,化学持久性及辐照行为是重要的。
)以及成本和材料来源。
所谓强度是指金属材料在静载荷作用下,材料抵抗变形和破坏(断裂)的能力成为强度。
根据外力的作用方式,有多种强度指标,如抗拉强度,抗弯强度,抗剪强度等。
一般情况下多以抗拉强度作为判别金属强度高低的招标。
机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。
材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。
材料发生屈服后,到最高点应力达最大值σb。
在这以后,试样产生“缩颈”,迅速伸长,
应力明显下降,最后断裂。
试样裂前能够承受的最大应力值σb称为抗拉强度或强度极限。
如果单从保证零件不产生断裂的安全角度考虑,可用作为设计依据,但所取的安全系数应该大一些。
材料在外力作用下,产生永久残余变形而不被断裂的能力,称为塑性。
塑性指标也主要是通过拉伸试验测得的。
工程上常用延伸率和断面收缩率作为材料的塑性指标。
屈服强度与抗拉强度的比值σs/σb称为屈强比。
屈强小,工程构件的可靠性高,说明即使外载或某些
意义外因素使金属变形,也不至于立即断裂。
但屈强比过小,则材料强度有效利用率太低。
延伸率和断面收缩率的值越大,表示材料的塑性越好。
塑性对材料进行冷塑变形有重要的意义。
此外,工件的偶然过载,可因塑性变形而防止突然断裂,工件的应力集中处,也可因塑性变形使应力松弛,从而使工件不至于过早断裂。
这就是大多数机械零件除要求一定强度指标外,还要求一定塑性指标的道理。
材料的δ和ψ值越大,塑性越好。
两者相比,用ψ表示塑性更接近于材料真实应变。
5.表示脆性材料的力学性能的参量有哪些?
答:弹性模量和脆性断裂强度。
6.工程中测定材料的硬度最常用的方法?
答:测定硬度方法有很多,有压入法,回跳法和刻划法三大类。
最常用的是压入法,根据加载速率的不同分为动载入压入法和静载压入法。
超声波硬度,肖氏硬度和锤击式布氏硬度属于动载实验法。
布氏硬度,洛氏硬度,维氏硬度和显微硬度同于静载压入发。
7.弹性模量的影响因素?材料弹性常数有哪些?
答:1)纯金属的弹性模量:除了过度族金属除外,一般地讲弹性模量E与原子半径r之间
存在下列关系:E=k/rm,式中K与m均为常数,m>1。
这表明E随原子半径增大而减小,亦即随原子间距离增大而减小。
过度族金属的弹性模量较大,并且d层电子数等于6时弹性模量具有最大值;
2)合金元素的影响:化学成分的重大改变和具有高弹性模量的第二相质点可以使弹性模量发生显著的变化。
3)温度,通常温度升高是原子间距离增大,原子间结合力减弱。
因此弹性模量总是随温度升高而降低。
4)加载速率。
金属的弹性变形速度很快,远远超过一般的加载速率,因此,一般工程技术中的加载速率不会影响金属的弹性模量。
5)冷变形。
冷变形稍稍降低金属的弹性模量。
材料的弹性常数有:正弹性模量E和切变模量G,泊松比υ也是弹性常数,但他与E,G有下列关系E=2(1+υ)G
8.断裂按照断裂机制分为哪几大类?
答:解理断裂,沿晶断裂,微孔聚合型的延性断裂。
9.理论断裂强度的应用范围?
答:晶体结构比较完整的晶体
10.断裂力学主要用来处理哪方面的问题?
答:断裂力学市是研究裂纹体强度与寿命特别是裂纹扩展规律的科学,是固体力学的一门新分支,又称裂纹力学,与损伤力学成为姊妹学科,共成为破坏力学。
研究对象:裂纹体。
研究目标:主要预防控制低应力脆性断裂。
研究内容:裂纹的萌生机制,扩展规律,闭合理论以及动态起始与传播-止裂等。
研究任务:求的各类材料的断裂韧度,建立物体的断裂判据,研究裂纹的扩展规律,研究载荷与腐蚀共同作用下的断裂问题。
11.多晶体金属塑性变形的特点?
答:多晶体金属塑性具有如下一些特点:
1)各晶体变形的不同时性和不均匀性
2)各晶体变形的相互协调性
12.脆性端口和延性端口的特点?
答:脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状;延性断裂的断裂面一般平行于最大切应力并与主应力成45°.用肉眼或放大镜观察时,端口呈纤维状,灰暗色。
13.裂纹体变形的形式?最危险的形式?
答:裂纹体的三种变形模式
1)Ⅰ型或张开型(最危险) 外加拉应力与断裂面垂直,使裂纹张开,即为Ⅰ型或张开型
2)Ⅱ型或滑开型外加应力平行于裂纹面并垂直于裂纹前缘线,即为Ⅱ型或滑开型3)Ⅲ型或撕开型外加应力即平行于裂纹面又垂直于裂纹前缘线,即为Ⅲ型或撕开型14.材料脆性——韧性转变影响因素?
答:1.应力状态及其柔度系数
应力状态可以用切应力和正应力表示,只有切应力引起材料塑性变形,简单的讲切应力促进塑性变形,对塑性变形有利;拉应力促进断裂,不利于塑性和韧性。
且柔度系数越大,应力状态越柔,越易变形而较不易开裂,越处于韧性状态
2.温度和加载速率的影响
温度对屈服强度影响很大,因为温度有助于激活F-R位错运动,使滑移易于进行。
随温度升高,断裂应力σc变化不大,而屈服强度σs变化很大,两者交点为韧脆转变温度,低于此温度为脆断,高于此温度为韧断。
加载速率的提高,而相对变形速率增加,超过某一限度时会限制塑性变形发展,提高形变抗力,增加脆性倾向
3.材料的微观结构影响
a.各晶类型影响面心立方晶格金属,一般不出现韧脆转换而处于韧性状态,没有韧脆转变;体心立方晶格韧脆转变受温度及加载速率影响很大,易发生解理断裂。
b.成分影响含碳质量分数增加,塑性变形抗力增加,不仅冲击韧性降低,而且韧性转变温度明显提高
c.晶粒大小的影响晶粒细,滑移距离短,在障碍前塞积的位错数目少,相应的应力集中较小,需要消耗更多能量;晶界对裂纹扩展有阻碍作用。
晶粒愈细化,愈易处于韧性状态,降低了韧脆转变温度,提高了韧性和塑性。
15.。