数码舵机和模拟舵机

合集下载

舵机基础知识单选题100道及答案解析

舵机基础知识单选题100道及答案解析

舵机基础知识单选题100道及答案解析1. 舵机主要用于()A. 控制速度B. 改变方向C. 增加动力D. 稳定平衡答案:B解析:舵机的主要作用是改变方向。

2. 舵机通常由()驱动。

A. 直流电机B. 步进电机C. 伺服电机D. 交流电机答案:C解析:舵机通常由伺服电机驱动。

3. 舵机的控制信号一般是()A. 模拟信号B. 数字信号C. 脉冲信号D. 正弦信号答案:C解析:舵机的控制信号一般是脉冲信号。

4. 舵机的转动角度取决于()A. 电压大小B. 电流大小C. 脉冲宽度D. 脉冲频率答案:C解析:舵机的转动角度取决于脉冲宽度。

5. 常见的舵机旋转角度范围是()A. 0 - 90 度B. 0 - 180 度C. 0 - 270 度D. 0 - 360 度答案:B解析:常见舵机的旋转角度范围是0 - 180 度。

6. 舵机的精度主要取决于()A. 电机性能B. 齿轮精度C. 控制电路D. 以上都是答案:D解析:舵机的精度受到电机性能、齿轮精度和控制电路等多方面因素的影响。

7. 以下哪种不是舵机的应用场景()A. 机器人关节B. 无人机姿态控制C. 汽车发动机D. 模型飞机方向控制答案:C解析:汽车发动机不是舵机的应用场景。

8. 舵机的响应速度主要与()有关。

A. 电机转速B. 齿轮比C. 控制算法D. 以上都是答案:D解析:舵机的响应速度与电机转速、齿轮比和控制算法等都有关系。

9. 为了提高舵机的扭矩,可以()A. 增加电压B. 减小齿轮比C. 使用更大功率的电机D. 以上都是答案:D解析:增加电压、减小齿轮比、使用更大功率的电机都可以提高舵机的扭矩。

10. 舵机在工作时发热的主要原因是()A. 电流过大B. 摩擦损耗C. 电机效率低D. 以上都是答案:D解析:电流过大、摩擦损耗、电机效率低等都会导致舵机工作时发热。

11. 以下哪种舵机的精度较高()A. 塑料齿轮舵机B. 金属齿轮舵机C. 数字舵机D. 模拟舵机答案:C解析:数字舵机的精度通常较高。

舵机工作原理与控制方法

舵机工作原理与控制方法

舵机工作原理与控制方法舵机是一种用于控制机械装置的电机,它可以通过控制信号进行位置或角度的精确控制。

在舵机的工作原理和控制方法中,主要涉及到电机、反馈、控制电路和控制信号四个方面。

一、舵机的工作原理舵机的核心部件是一种称为可变电容的设备,它可以根据控制信号的波形来改变电容的值。

舵机可分为模拟式和数字式两种类型。

以下是模拟式舵机的工作原理:1.内部结构:模拟式舵机由电机、测速电路、可变电容和驱动电路组成。

2.基准电压:舵机工作时,系统会提供一个用于参考的基准电压。

3.控制信号:通过控制信号的波形的上升沿和下降沿来确定舵机的角度。

4.反馈:舵机内部的测速电路用于检测当前位置,从而实现位置的精确控制。

5.驱动电路:根据测速电路的反馈信号来控制电机的转动方向和速度,从而实现角度的调整。

二、舵机的控制方法舵机的控制方法一般采用脉冲宽度调制(PWM)信号来实现位置或角度的控制。

以下是舵机的两种常见控制方法:1.脉宽控制(PWM):舵机的控制信号是通过控制信号的脉冲宽度来实现的。

通常情况下,舵机的控制信号由一系列周期为20毫秒(ms)的脉冲组成,脉冲的高电平部分的宽度决定了舵机的位置或角度。

典型的舵机控制信号范围是1ms到2ms,其中1ms对应一个极限位置,2ms对应另一个极限位置,1.5ms对应中立位置。

2.串行总线(如I2C或串行通信):一些舵机还支持通过串行总线进行控制,这些舵机通常具有内置的电路来解码接收到的串行信号,并驱动电机转动到相应的位置。

这种控制方法可以实现多个舵机的同时控制,并且可以在不同的控制器之间进行通信。

三、舵机的控制电路与控制信号1.控制电路:舵机的控制电路通常由微控制器(如Arduino)、驱动电路和电源组成。

微控制器用于生成控制信号,驱动电路用于放大和处理控制信号,电源则为舵机提供所需的电能。

2.控制信号的生成:控制信号可以通过软件或硬件生成。

用于舵机的软件库通常提供一个函数来方便地生成适当的控制信号。

舵机的控制方式和工作原理介绍

舵机的控制方式和工作原理介绍

舵机的控制方式和工作原理介绍舵机是一种常见的电动执行元件,广泛应用于机器人、遥控车辆、模型飞机等领域。

它通过电信号控制来改变输出轴的角度,实现精准的位置控制。

本文将介绍舵机的控制方式和工作原理。

一、舵机的结构和工作原理舵机的基本结构包括电机、减速装置、控制电路以及输出轴和舵盘。

电机驱动输出轴,减速装置减速并转动输出轴,而控制电路则根据输入信号来控制电机的转动或停止。

舵机的主要工作原理是通过PWM(脉宽调制)信号来控制。

PWM信号是一种周期性的方波信号,通过调整占空比即高电平的时间来控制舵机的位置。

通常情况下,舵机所需的控制信号频率为50Hz,即每秒50个周期,而高电平的脉宽则决定了输出轴的角度。

二、舵机的控制方式舵机的控制方式主要有模拟控制和数字控制两种。

1. 模拟控制模拟控制是指通过改变输入信号电压的大小,来控制舵机输出的角度。

传统的舵机多采用模拟控制方式。

在模拟控制中,通常将输入信号电压的范围设置在0V至5V之间,其中2.5V对应于舵机的中立位置(通常为90度)。

通过改变输入信号电压的大小,可以使舵机在90度以内左右摆动。

2. 数字控制数字控制是指通过数字信号(如脉宽调制信号)来控制舵机的位置。

数字控制方式多用于微控制器等数字系统中。

在数字控制中,舵机通过接收来自微控制器的PWM信号来转动到相应位置。

微控制器根据需要生成脉宽在0.5ms至2.5ms之间变化的PWM信号,通过改变脉宽的占空比,舵机可以在0度至180度的范围内进行精确的位置控制。

三、舵机的工作原理舵机的工作原理是利用直流电机的转动来驱动输出轴的运动。

当舵机接收到控制信号后,控制电路将信号转换为电机驱动所需的功率。

电机驱动输出轴旋转至对应的角度,实现精准的位置控制。

在舵机工作过程中,减速装置的作用非常重要。

减速装置可以将电机产生的高速旋转转换为较低速度的输出轴旋转,提供更大的扭矩输出。

这样可以保证舵机的运动平稳且具有较大的力量。

四、舵机的应用领域舵机以其精准的位置控制和力矩输出,广泛应用于各种领域。

舵机控制方法

舵机控制方法

舵机控制方法舵机是机械系统中重要的组成部分,它是用来控制机械系统运动方向或者改变机械系统状态的装置。

由于舵机多种不同的用途,所以控制方法形式也有不同。

舵机控制方法主要分为两类:模拟信号控制和数字信号控制。

模拟信号控制的原理是把舵机的运动方向和运动速度表示为模拟信号,以及把模拟信号作为舵机输入控制舵机的运动方向和运动速度。

模拟信号控制的优点是控制方法简单,控制精度高,灵敏度强。

但是模拟信号控制系统存在受限于传感器精度,需要把握控制环境变化等缺陷。

数字信号控制系统是采用数字信号来控制舵机的位置和运动方向以及运动速度,它可以分辨出每一个舵角。

数字信号控制首先把模拟量转换为数字信号,然后把这些数字信号作为舵机输入,再把舵机输出传送出去,从而控制舵机的运动方向和运动速度。

数字信号控制也可以根据实际需要实时修改控制精度,调节控制参数,并能够实现自动调节与控制。

随着舵机控制方法的发展,舵机控制方向和运动速度的精度和准确性不断提升。

借助新的技术,舵机控制已成为机械系统中重要的一部分,对于机械系统的控制起到了至关重要的作用。

只有合理的舵机控制方法,才能达到所需要的机械系统控制效果。

因此,舵机控制方法的研究集中在控制精度、系统可靠性、运动可靠性、操纵可靠性等方面。

通过功率电路,控制电路和传感器等系统设计和多种控制算法,可以提高舵机控制的性能。

目前,人们已经研究出了多种控制方法,如状态反馈控制、模糊控制、神经网络控制等,他们都能够提升机械系统的精度和运动可靠性。

以上就是关于舵机控制方法的介绍,舵机控制装置在很多方面都发挥着重要作用,其重要性不言而喻。

在未来,舵机控制系统必将得到更广泛的应用,搭建更先进、更安全、更可靠的机械系统。

舵机结构原理(一)

舵机结构原理(一)

舵机结构原理(一)舵机结构原理什么是舵机?先给大家解释一下,什么是舵机。

舵机是一种能够控制转角的电机。

和普通电机相比,它能够精准控制转动的角度。

因此,在机器人,航模,机械手臂等系统中广泛应用。

舵机的构成舵机由电机、电子控制电路、减速齿轮、伺服控制电路、反馈电路和输出轴等组成。

电机舵机采用的电机为直流无刷电机。

电子控制电路舵机的电子控制电路主要包括芯片、晶振、陶瓷电容、电阻等元件。

减速齿轮普通直流电机旋转速度快而力量小,而舵机需要得到较大的扭矩。

因此,舵机装有减速齿轮箱将电机的速度降低,提高舵机的扭矩。

反馈电路舵机的反馈电路通常由电位器和反馈电路板组成。

电位器可以精确测量输出轴的位置和角度。

伺服控制电路伺服控制电路是舵机最核心的部件,它控制电机的旋转方向和旋转速度。

伺服控制电路的中心是一个小电机,也被称为伺服马达,它通过机械方式与输出轴相连。

舵机的工作原理舵机的工作原理是将电信号转化为机械运动。

舵机的输出轴可以旋转到特定的角度,角度的范围通常在0~180度之间。

当接收到驱动舵机的信号时,电子电路首先控制伺服控制电路旋转到指定位置,然后通过反馈电路检测输出轴的实际位置,去调整伺服电机使其旋转到指定的角度。

结语以上就是舵机的结构原理和工作原理的介绍。

在我们的日常生活以及工业制造中,舵机都扮演着非常重要的角色,对于我们的生活和工作都有着深远的影响。

舵机的分类按照舵机控制方式的不同,常见的舵机可以分为模拟舵机和数字舵机两种。

模拟舵机模拟舵机是在控制信号的基础上,通过调节正负脉宽信号的宽度和相位来控制输出轴的旋转角度。

模拟舵机在控制信号变化范围内能够达到连续性和流畅性较好的效果。

但是,由于信号的受干扰和干扰信号的存在,模拟舵机易受到环境影响,稳定性较差。

数字舵机数字舵机是采用数字信号进行控制的,能够直接控制输出轴的转角。

由于数字信号的稳定性好,能够有效防止干扰以及干扰信号的干扰,因此数字舵机的稳定性和精度更高。

摇杆电位器与舵机电位器的原理,以及数码舵机 VS 模拟舵机

摇杆电位器与舵机电位器的原理,以及数码舵机 VS 模拟舵机

摇杆电位器与舵机电位器的原理,以及数码舵机VS 模拟舵机一、舵机的原理标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。

以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。

3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。

该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。

该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。

当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。

舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。

有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。

原理是这样的:收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。

当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。

因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。

超过EMF判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。

这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近)一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。

注意,给舵机供电电源应能提供足够的功率。

控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。

当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。

某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

数字舵机与模拟舵机各种问题祥解

数字舵机与模拟舵机各种问题祥解

数字舵机与模拟舵机_控制方法与性能比较之一(我觉得你应该看看)一、舵机的原理标准的舵机有3条导线,分别是:电源线、地线、控制线,以日本FUTABA-S3003型舵机为例,3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。

该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。

该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。

当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。

舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。

有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。

原理是这样的:收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。

当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。

因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。

超过EMF判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。

这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近)一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。

注意,给舵机供电电源应能提供足够的功率。

控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。

当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。

某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

二、数码舵机VS 模拟舵机数码舵机比传统的模拟舵机,在工作方式上有一些优点,但是这些优点也同时带来了一些缺点。

数字舵机原理

数字舵机原理

dark课堂:舵机的原理,以及数码舵机 VS 模拟舵机一、舵机的原理标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。

以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。

3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。

该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。

该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。

当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。

舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。

有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。

原理是这样的:收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。

当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。

因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。

超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。

这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近)一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。

注意,给舵机供电电源应能提供足够的功率。

控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。

当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。

某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数码舵机常见问题原理分析及解决:
一、
数码舵机与模拟舵机的区别
传统模拟舵机和数字比例舵机(或称之为标准舵机)的电子电路中无MCU微控制器,一般都称之为模拟舵机。

老式模拟舵机由功率运算放大器等接成惠斯登电桥,根据接收到模拟电压控制指令和机械连动位置传感器(电位器)反馈电压之间比较产生的差分电压,驱动有刷直流电机伺服电机正/反运转到指定位置。

数字比例舵机是模拟舵机最好的类型,由直流伺服电机、直流伺服电机控制器集成电路(IC),减速齿轮组和反馈电位器组成,它由直流伺服电机控制芯片直接接收PWM(脉冲方波,一般周期为20ms,脉宽1 ̄2 ms,脉宽1 ms为上限位置,1.5ms为中位,2ms为下限位置)形式的控制驱动信号,迅速驱动电机执行位置输出,直至直流伺服电机控制芯片检测到位置输出连动电位器送来的反馈电压与PWM控制驱动信号的平均有效电压相等,停止电机,完成位置输出。

数码舵机电子电路中带MCU微控制器故俗称为数码舵机,数码舵机凭借比之模拟舵机具有反应速度更快,无反应区范围小,定位精度高,抗干扰能力强等优势已逐渐取代模拟舵机在机器人、航模中得到广泛应用。

数码舵机设计方案一般有两种:一种是MCU+直流伺服电机+直流伺服电机控制器集成电路(IC)+减速齿轮组+反馈电位器的方案,以下称为方案1,另一种是MCU+直流伺服电机+减速齿轮组+反馈电位器的方案,以下称为方案2。

市面上加装数码驱动板把模拟舵机改数码舵机属方案1。

二、
舵机电机调速原理及如何加快电机速度
常见舵机电机一般都为永磁直流电动机,如直流有刷空心杯电机。

直流电动机有线形的转速-转矩特性和转矩-电流特性,可控性好,驱动和控制电路简单,驱动控制有电流控制模式和电压控制两种模式。

舵机电机控制实行的是电压控制模式,即转速与所施加电压成正比,驱动是由四个功率开关组成H桥电路的双极性驱动方式,运用脉冲宽度调制(PWM)技术调节供给直流电动机的电压大小和极性,实现对电动机的速度和旋转方向(正/反转)的控制。

电机的速度取决于施加到在电机平均电压大小,即取决于PWM驱动波形占空比(占空比为脉宽/周期的百分比)的大小,加大占空比,电机加速,减少占空比电机减速。

所以要加快电机速度:1、加大电机工作电压;2、降低电机主回路阻值,加大电流;二者在舵机设计中要实现,均涉及在满足负载转矩要求情况下重新选择舵机电机。

三、
数码舵机的反应速度为何比模拟舵机快
很多模友错误以为:“数码舵机的PWM驱动频率300Hz比模拟舵机的50Hz高6倍,则舵机电机转速快6倍,所以数
码舵机的反应速度就比模拟舵机快6倍” 。

这里请大家注意占空比的概念,脉宽为每周期有效电平时间,占空比为脉宽/周期的百分比,所以大小与频率无关。

占空比决定施加在电机上的电压,在负载转矩不变时,就决定电机转速,与PWM的频率无关。

模拟舵机是直流伺服电机控制器芯片一般只能接收50Hz频率(周期20ms) ̄300Hz左右的PWM外部控制信号,太高的频率就无法正常工作了。

若PWM外部控制信号为50Hz,则直流伺服电机控制器芯片获得位置信息的分辨时间就是20ms,比较PWM控制信号正比的电压与反馈电位器电压得出差值,该差值经脉宽扩展(占空比改变,改变大小正比于差值)后驱动电机动作,也就是说由于受PWM外部控制信号频率限制,最快20ms才能对舵机摇臂位置做新的调整。

数码舵机通过MCU可以接收比50Hz频率(周期20ms)快得多的PWM外部控制信号,就可在更短的时间分辨出PWM外部控制信号的位置信息,计算出PWM信号占空比正比的电压与反馈电位器电压的差值,去驱动电机动作,做舵机摇臂位置最新调整。

结论:不管是模拟还是数码舵机,在负载转矩不变时,电机转速取决于驱动信号占空比大小而与频率无关。

数码舵机可接收更高频率的PWM外部控制信号,可在更短的周期时间后获得位置信息,对舵机摇臂位置做最新调整。

所以说数码舵机的反应速度比模拟舵机快,而不是驱动电机转速比模拟舵机快。

四、
数码舵机的无反应区范围为何比模拟舵机小
根据上述对模拟舵机的分析可知模拟舵机约20ms才能做一次新调整。

而数码舵机以更高频率的PWM驱动电
机。

PWM频率的加快使电机的启动/停止,加/减速更柔和,更平滑,更有效的为电机提供启动所需的转矩。

就象是汽车获得了更小的油门控制区间,则启动/停止,加/减速性能更好。

所以数码舵机的无反应区比模拟舵机小。

五、
模拟舵机加装数码舵机驱动板并未提升反应速度
根据以上分析可知,模拟舵机加装数码舵机驱动板,要提升反应速度,PMW外部控制信号(如陀螺仪送来的尾舵机信号)的频率必须加快,如果还是50Hz,那舵机反应速度当然就没提升了。

六、
如何选择舵机电机
舵机电机按直流伺服电机的标准选用,根据电机种类、负载力矩、转速、工作电压等要求。

舵机一般都用空心杯电动机,有用有刷的,也有用无刷无感的。

空心杯电动机属于直流永磁、伺服微特电机,与普通电机的主要区别采用是无铁芯转子,也叫空心杯型转子。

具有以下优势: 
1、最大的能量转换效率(衡量其节能特性的指标):其效率一般在70%以上,部分产品可达到90%以上(普通铁芯电机在15-50%); 
2、激活、制动迅速,响应极快:机械时间常数小于28毫秒,部分产品可以达到10毫秒以内,在推荐运行区域内的高速运转状态下,转速调节灵敏; 
3、可靠的运行稳定性:自适应能力强,自身转速波动能控制在2%以内; 
4、电磁干扰少:采用高品质的电刷、换向器结构,换向火花小,可以免去附加的抗干扰装置; 
5、能量密度大:与同等功率的铁芯电机相比,其重量、体积减轻1/3-1/2;转速-电压、转速-转矩、转矩-电流等对应参数都呈现标准的线性关系。

七、
如何选择舵机反馈电位器
舵机反馈电位器按种类、精度,耐用性的标准选用,导电塑料电位器的精度和耐磨程度大大优于其他如线绕电位器类型。

八、
舵机控制死区、滞环、定位精度、输入信号分辨率、回中性能的认识
每一个闭环控制系统由于信号的振荡等原因,输入信号和反馈信号不可能完全相等,这就涉及到控制死区和滞环的问题,系统无法辨别输入信号和反馈信号的差异范围就是控制死区范围。

舵机自动控制系统由于信号震荡、机械精度等原因造成控制系统在控制死区范围外的小范围老是做调整,为使舵机在小范围内不对震荡做调整,这就需要引入滞环的作用了。

滞环比控制死区大,一般控制死区范围为±0.4%,滞环可设置为±2%,输入信号和反馈信号的差值在滞环内电机不动作,输入信号和反馈信号的差值进入滞环,电机开始制动-停止。

定位精度取决于舵机系统的整体精度:如控制死区、机械精度、反馈电位器精度、输入信号分辨率。

输入信号分辨率指舵机系统对输入信号最小分辨范围,数码舵机输入信号分辨率大大优于模拟舵机。

回中性能取决于滞环和定位精度。

九、
舵机为何会老发出吱吱的响声
舵机老发出吱吱的来回定位调整响声,是由于有的舵机无滞环调节功能,控制死区范围调得小,只要输入信号和反馈信号老是波动,它们的差值超出控制死区,舵机就发出信号驱动电机。

另没有滞环调节功能,如果舵机齿轮组机械精度差,齿虚位大,带动反馈电位器的旋转步,步范围就已超出控制死区范围,那舵机必将调整不
停,吱吱不停。

十、为何有的舵机炸机易烧电路板
有的舵机选用的功率器件电流大同时系统中设计有或芯片自带有过流保护功能,能检测出堵转过流及短路状态迅速停止电机驱动信号。

还有可在电机回路接压敏电阻防止瞬间过压及在功率器件前端设计有吸收电容。

此类舵机炸机堵转不容易烧电路板和电机。

与舵机是金属齿还是塑料齿并无绝对关系。

十一、
舵机为何抖舵
控制死区敏感,输入信号和反馈信号因各种原因波动,差值超出范围,舵臂动,所以抖舵。

相关文档
最新文档