九年级数学圆的认识测试题

合集下载

双龙初三年数学.圆的认识测试题

双龙初三年数学.圆的认识测试题

初三年数学《圆的认识》测试题一、选择题(15分)1、下列命题中,正确的是( )①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③90的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等A .①②③B .③④⑤C .①②⑤D .②④⑤2、 如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( ) A. 3≤OM ≤5 B. 4≤OM ≤5 C. 3<OM <5 D. 4<OM <53、已知,△ABC 内接于⊙O ,AB 为直径,AC=8, BC=6,CD 平分∠ACB ,则AD=( )A 、5B 、52C 、53D 、62.(2007四川宜宾) 已知:如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧CD ⌒上不同于点C的任意一点,则∠BPC 的度数是( )A .45°B .60°C .75°D .90°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°1、 如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=____________度。

6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.A8.(2008南京)如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2, 则等边三角形ABC 的边长为()ABC . D15.(2007山东济宁)如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走。

按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α的度数是 .(第8题)10.(2007山东枣庄)如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为 ⊙O 的直径,AD =6,则BC = 。

初中九年级数学圆测试题及答案

初中九年级数学圆测试题及答案

初中九年级数学圆测试题及答案与圆有关的位置关系圆与点的位置关系有三种:点在圆外、点在圆上、点在圆内。

对应的点到圆心的距离d和半径r之间的数量关系分别为:d。

r、d = r、d < r。

直线与圆的位置关系有三种:相交、相切、相离。

对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:d。

r。

圆与圆的位置关系有五种:内含、相内切、相交、相外切、外离。

两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:d。

R+r。

圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线。

从圆外一点可以向圆引两条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

与圆有关的计算圆的周长为2πr,1°的圆心角所对的弧长为πr/180,n°的圆心角所对的弧长为nπr/180,弧长公式为l=nπr。

圆的面积为πr^2,1°的圆心角所在的扇形面积为πr^2/360,n°的圆心角所在的扇形面积为S=nπr^2/360(n为圆心角的度数,R为圆的半径)。

圆锥的侧面积公式:S=πrl(其中r为底面的半径,l为母线的长)。

圆锥的侧面积与底面积之和称为圆锥的全面积。

圆柱的侧面积公式:S=2πrl(其中r为底面圆的半径,l为圆柱的高)。

4.已知∠BOC为130°,O是△XXX的内心,求∠A的度数。

解析:由内心的性质可知,∠BOC=2∠A,所以∠A=65°,选项B。

5.已知∠A=100°,∠C=30°,求∠DFE的度数。

解析:由内切圆的性质可知,∠DFE=90°-1/2(∠A+∠C)=55°,选项A。

6.将羊拴在使草地上活动区域面积最大的位置,即正方形的对角线中点处,选项B。

7.两圆心距离等于半径之差的情况为内含,等于半径之和的情况为外切,大于半径之和小于半径之差的情况为相交,两圆心距离为3,所以为相交,选项C。

圆的认识同步训练及测试题

圆的认识同步训练及测试题

数学学科 九年级 编辑 叶子圆的认识同步训练圆的基本元素同步训练 一:判断正误⑴弦的垂直平分线必过圆心; ⑵平分弦的直径垂直于弦; ⑶直径相等的两圆是等圆; ⑷长度相等的两条弧是等弧;⑸ 圆中最大的弦是通过圆心的弦;⑹一条弦把圆分为两条弧,这两条弧不可能相等; ⑺ 半径是弦,弦是半径; ⑻ 相等的弦所对的弧相等; 二:选择若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A 、2a b +B 、 2a b -C 、 2a b +或2a b -D 、 a +b 或a -b三:解答题1 .用一根长为a 米的绳子,围成一个圆或正三角形或正方形,所围成的图形哪一个面积最大?2.已知☉O 的半径是5,AB 是弦,P 是直线AB 上的一点,PB=3,AB=8求tan ∠OPA 圆的基本元素同步训练答案一:判断正误 分析: 准确判断的前提是建立在对概念的正确理解上。

同学们一定要过好概念关!解: ⑴ ⑶ ⑸正确,其他错误 二:选择题C三:解答题 1:圆的面积最大2:分析:本题分两种情况讨论:P 是线段AB 上一点或P 是线段AB 外的一点。

解: ⑴ P 是线段AB 上一点, 如图过点O 作OC ⊥AB ,垂足为C 则OC 垂直平分∴在直角△OAC 中 OC=1625-在直角△POC 中 tan ∠OPA=PCOC= 3⑵P 是线段AB 外的一点, 如图过点O 作OC ⊥AB ,垂足为C 同法解得tan ∠OPA=PC OC =73圆的对称性同步训练一、选择题:1、下列命题中正确的是( )A 、平分弦的直径必垂直于弦,并且平分弦所对的两条弧;(23-1)(23-2)B 、弦所对的两条弧的中点连线垂直平分弦;C 、若两段弧的度数相等,则它们是等弧;D 、弦的垂线平分弦所对的弧。

2、如图,⊙O 中,直径CD =15cm ,弦AB ⊥CD 于点M ,OM ∶MD =3∶2,则AB 的长是( )A 、5cmB 、7cmC 、12cmD 、15cm3、已知⊙O 的半径为10cm ,弦AB ∥CD ,AB =12 cm ,CD =16 cm , 则AB 和CD 的距离是( )A 、2cmB 、14cmC 、2cm 或14cmD 、2cm 或12cm4、若圆中一弦与弦高之和等于直径,弦高长为1,则圆的半径长为( )A 、1B 、23 C 、2 D、25二、填空题:1.已知在⊙O 中弦AB 的长为8cm ,圆心到AB 的距离为3cm ,则⊙O 的半径为 cm 。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析

九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

九年级圆测试题附参考答案一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD<∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

初三数学圆测试题内含答案

初三数学圆测试题内含答案

圆测试题A姓名: 学号: 班别:一、选择题(每小题3分,共33分)1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )A .2b a + B .2ba - C .22b a b a -+或D .b a b a -+或 2.如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( )A .80°B .50°C .40°D .30°7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( ) A .5 B .7 C .8 D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26m B .26m π C .212m D .212m π图24—A —5图24—A —1图24—A —2图24—A —3图24—A —49.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .512 C .2 D .3 11.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( ) A .D 点 B .E 点 C .F 点 D .G 点 二、填空题(每小题3分,共30分) 12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。

(人教版)九年级上册数学《圆》测试题(含答案)

(人教版)九年级上册数学《圆》测试题(含答案)

第二十四章圆整章综合水平测试题一选择题(每小题 3 分,共 30 分)1. 下列命题中,假命题是()A. 两条弧的长度相等,它们是等弧B. 等弧所对的圆周角相等C. 直径所对的圆周角是直角D.一条弧所对的圆心角等于它所对圆周角的 2 倍.2.若圆的一条弦把圆分成度数的比为 1 :3 的两段弧,则劣弧所对的圆周角等于()A .45B。

90C。

135D。

2703.已知正六边形的周长是12a ,则该正六边形的半径是()A 6a B. 4a C. 2a D. 3 a24.如图 1,圆与圆的位置关系是()A. 外离 B 相切 C.相交 D. 内含图1图25.如图 2,A, B, C , D , E的半径都是 1,顺次连结这些圆心得到五边形ABCDE ,则图中的阴影部分面积之和为()A.3C. 25 B. D.226.过O 内一点N的最长弦为6,最短的弦长为4,那么 ON 的长为()A 3 B.2 C. 5 D. 37.若正三角形、正方形、正六边形的周长相等,它们的面积分别是S1 , S2 , S3,则下列关系成立的是()A .S1S2S3,B。

S1S2S3C.S1S2S3D。

S2S3S18.平行四边形的四个顶点在同一个圆上,则该平行四边形一定是(A. 正方形 B 菱形 C.矩形)D. 等腰梯形9.在半径等于5cm的圆内有长为5 3cm 的弦,则此弦所对的圆周角为()A. 120B30或 120 C. 60 D 60或 12010.已知01、O2、O3两两外切,且半径分别为2cm 、 3cm、 10cm,则O1O2O3的形状是()A 锐角三角形 B. 直角三角形 C 钝角三角形 D.等腰直角三角形.二、填空题(每小题 3 分,共 30 分)11.如图 3,已知 AB 为O 的直径, AB CD ,垂足为E,由图你还能知道哪些正确的结论?请把它们一一写出来._____________.图3图4图512.如图 4,AB 是O 的直径,C为圆上一点, A 60 , OD BC , D为垂足,且OD=10,则 AB=_______,BC=_______.13.如图 5,已知O 中,AB BC ,且 AB : AMC 3: 4 ,则AOC______.14.如图 6,在条件 : ①COA AOD60 ;②AC=AD=OA;③点E分别是AO、CD的中点;④ OA CD ,且ACO 60 中,能推出四边形OCAD是菱形的条件有_______个 .图6图715.为了改善市区人民的生活环境 , 某市建设污水管网工程 , 某圆柱型水管的直径为100cm ,截面如图7 所示 , 若管内的污水的面宽AB 60cm ,则污水的最大深度为______.16.O 的直径为 11cm ,圆心到一直线的距离为 5cm,那么这条直线和圆的位置关系是_______;若圆心到一直线的距离为 5.5cm,那么这条直线和圆的位置关系是_______;17.若两圆相切 ,圆心距为8cm ,其中一个圆的半径为12cm,则另一个圆的半径为 _____.18.正五边形的一个中心角的度数是 ________,19.已知O1和o2的半径分别为 2 和 3,如果它们既不相交又不相切,那么它们的圆心距 d 的取值范围是________.20 已知在同一平面内圆锥两母线在顶点处最大的夹角为60 ,母线长为8,则圆锥的侧面积为 ______.三 .解答题(共60 分)21.( 6 分)如图8,已知ABC 中, C 90 ,AC=3,BC=4,已点C为圆心作 C ,半径为 r .当 r 取什么值时点(1)、B在C外?, A(2)当r取什么值时 ,点 A 在C内,点B在 C 外?图 822.( 6 分)如图9,两个同心圆,作一直线交大圆于A、 B,交小圆于C、 D, AC 与 BD 有何关系?请说明理由.图 923(. 6 分)如图 10,PA、PB 是O的两条切线, A 、B 是切点,AC 是O的直径,BAC35 ,求 P的度数.图 1024.( 8 分)如图11,P 是O 的直径AB上的一点,PC AB ,PC交O 于C,OCP的平分线交O 于D,当点P 在半径OA(不包括O 点和A点)上移动时,试探究AD与 BD的大小关系.图 1125( 8 分) .如图 12,O 的半径OA=5,点C是弦AB上的一点,且 OC AB ,OC=BC.求 AB 的长.图 1226(. 8 分)如图 13,O 的直径AB和弦CD相交于点E,已知AE=1,EB=5,DEB 60 ,求 CD 的长.图 1327.( 8 分)现有边长为a的正方形花布,问怎样剪裁,才能得到一个面积最大的正八边形花布来做一个形状为正八边形的风筝?(10分)如图14,已知一底面半径为r ,母线长为3r的圆锥,在地面圆周上有一蚂蚁位28于 A 点,它从 A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径的长 .图 14.备用题1.如图 1,交于点 E,你认为ABC 中,AB=AC,BD是ABC 的平分线,A、B、D三点的圆与AD=CE 吗?如果不能,请举反例;如果AD=CE ,请说明理由.BC相图1图22.如图 2,在直角梯形 ABCD 中, AB ∥ CD ,以 AD 为直径的圆切 BC 于 E,谅解 OB、OC,试探究 OB 与 OC 有何位置关系?参考答案一 .1A2A3C4A5B6C7B8C9D10B二 .11.CE=DE,AC AD,BC BD ;12.40, 203;13. 144;14. 4;15. 90;16.相交、相切;17. 4cm或16cm; 18.72 ;19. d5或0 d 1;20.32 .三 .21,r 3 , 3 r 4 ;所以22.AC=BD.AE-CE=BE-DE理由:作 OE,即 AC=BD.AB 于E,(如图1)由垂径定理得AE=BE , CE=DE ,(图1)图 223. 因为BAC35 ,所以 AOB18035 2 110,因为 PA、PB 是O的切线,所以PAO PBO 90 ,所以P360PAO PBOAOB = 70 .24.AD BD.理由如图2,延长CP 交O 于E,延长CO 交O 于F,因为PCD FCD,所以DE DF因为直径AB CE ,所以AE AC因为AOC BOF ,所以AC BF,所以AE BF,所以AE DE BF DF,即AD BD.25. 因为OC AB ,所以AC=BC,又OC=BC ,所以OC=AC=BC设OC=AC=BC=x ,在Rt AOC 中,x2x252解得 x 52 ,所以AB 2 x5 2 . 226.作OF CD 于F,(如图3)则CF=EF,连结DO ,在 Rt OEF 中,OEF DEB60,EOF30OE=OA-AE=1 AB2AE312, EF1 OE2122 1,所以OF OE 2EF 222123所以DF OD 2OF 2323 6 ,所以CD 2DF 2 6 .图 3图 4图 527.如图 4,将正方形花布的四个角各截去一个全等的直角三角形,设DF=GC= x,则 EF2x,因为, EF=FG ,所以2x a 2x,解得x2 2 a2因此,应从正方形花布的四个角各截去一个全等的直角边为22a 的等腰直角三2角形 .28.圆锥的侧面展开图如图 5 所示,则线段AA 的长为最短路径设扇形的圆心角为n ,则2r n 3r,解得 n 120 180作 OC AA,AOC60,AOC 30 ,因为 OA3r , 所以 OC 3r ,由勾股定理求得 AC33r ,22所以 AA 3 3r ,即蚂蚁从 A 点出发沿圆锥面爬行一周后又回到原出发点的最短路径长为 3 3r .备用题 .1.连结 DE ,(如图 6)因为 BD 是ABC 的平分线,所以ABD EBD ,所以因为 AB=AC ,所以ABC C ,因为CDE ABC所以C CDE ,所以CE=DE,所以AD=CE.AD=DE,图6如图72.连结 OE,(如图 7)由切线性质及切线长定理可得:Rt AOB Rt EOB ,R t C O D R t C O所以AOB EOB , COD COE所以BOE1AOD1COE180 90 22即BOC90 ,所以OB OC .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的认识测试题
一、相信你的选择(每小题3分.本题共18分) 1.有4个命题:
①直径相等的两个圆是等圆;②长度相等的两条弧是等弧; ③圆中最大的弧是过圆心的弧;④一条弦把圆分为两条弧,这两条弧不可能是等弧. 其中真命题是………………………………………………………………………( ) (A )①③ (B )①③④ (C )①④ (D )① 2.,⊙O 外接于△ABC ,AD 为⊙O 的直径,∠ABC=30°,则∠CAD=( ).
A .30°
B .40°
C .50°
D .60°
3.如图1,小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1所示,为配到
与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是 ( ) A .第①块 B .第②块 C .第③块 D .第④块
4.下列说法中正确的有:( )个 (1)垂直平分弦的直线经过圆心 (2)平分弦的直径一定垂直与弦
(3)一条直线平分弦,那么这条直线垂直这条弦。

(4)平分弦的直线,必定过圆心。

(5)平分弦的直径,平分这条弦所对的弧 A.1 B.2 C.3 D.4 5. 如图2,EF 是⊙O 的直径,AB 是弦,EF=10cm ,AB=8cm ,
则E 、F 两点到直线AB 的距离之和为 ( ) A. 3cm B. 4cm C. 8cm D. 6cm
6.(08梅州)如图所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB 是( )
A .正方形 B.长方形
C .菱形
D .以上答案都不对
二、试试你的身手:(每小题3分.本题共42分) 7.圆是轴对称图形,它的对称轴是 .
8.圆是中心对称图形,它的对称中心是 .
9.经过A 、B 两点作圆,圆心在
图1
第6题
10.圆内一点到圆的最远距离为11cm ,最近距离为5cm , 则圆的半径为 cm
11.如图,A 、B 表示灯塔,暗礁分布在⊙O 的区域内, ∠ACB 是危险角. ∠ACB 满足 时轮船有触礁的危险。

12.如图, 矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E,
GB=8cm, AG=1cm, DE=2cm, 则EF=___cm .
13.半径为R 的圆中,有一弦恰好等于半径,则弦所对的圆周角为
14.已知AB 、CD 是⊙O 中互相垂直的弦,并且AB 把CD 分成3cm 和7cm 的两部分,则圆心到弦AB 的距离为 cm. 三.挑战自我(本大题共60分)
1.(10分)如图所示,AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.
(1)若52AOD ∠=,求DEB ∠的度数;
(2)若3OC =,5OA =,求AB 的长.
2、(10分)如图4,ABC △内接于⊙O ,30C ∠=,2AB =,求⊙O 的半径
3. (12分)“圆材埋壁”是我国古代著名
数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小从锯锯之,深1寸,锯道长1尺,问径几何?”用数学语言可表述为:“如图2,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE=1寸,AB =10寸,求直径CD 的长为.
E
B D
C A O
第1题图
4. (14分)(云南中考题)如图3,已知:在⊙O 中,OA⊥OB,∠A=35°,求和的度
数.
图3
5. (14分)如图4,已知⊙O 的直径AB 垂直于弦CD ,垂足为G ,F 是CD 延长线上的一点,AF 交⊙O 于点E ,连结CE 。

若CF=10,
5
4
=AF AC ,求CE 的长.
一.相信你的选择
1.A .【点评】长度相等的两弧不一定是等弧,故②不对;当弦是直径时,直径把圆分为两个半圆,它们是等弧,故④不对本题考查等圆、等弧、直线与弦的概念.注意:等弧是能互相重合的两条弧,直径是圆中最大的弦.
2.D
3. B
4. A
5. D
6. C
7. 经过圆心的任意一条直线
8.圆心
9. AB 的中垂线上 10. 8 11. 大于∠ACB 12. 6 13. 300
或 1500
14. 2 三.挑战自我 1.解:(1)
OD AB ⊥, AD 弧=DB 弧
(图4)
G
D
E
O
A
F
C
11
5226
22
DEB AOD ∴∠=∠=⨯=
(2)
OD AB ⊥,AC BC ∴=,AOC △为直角三角形, 3OC =,5OA =,
由勾股定理可得2222534AC OA OC =-=-=
28AB AC ∴==
2.解:当知道圆的一条弦长和该弦所对的圆周角时,常是经过这条弦的一个端点,作出圆的一条直径,然后利用圆周角定理,把所有的已知条件都迁移到刚才所作的直径所对圆周角的直角三角形中,就可以求出圆的半径了。

如图5,过点B 作圆的直径BD ,交圆于点D ,连接AD ,,根据圆周角定理,得: ∠C=∠D=30°,∠DAB=90°所以,在Rt 直角三角形ADB 中,因为, ∠D=30°,AB=2,所以,DB=4,所以,圆的半径为2cm 。

3. 分析:连接半径OA ,令OE=x,则OA=x+1,由垂径定理及其推论构造直角三
角形,得(x+1)2=52+x 2
,解得,x=12。

从而,OC=13,CD=26, 4. 分析:连结OC ,通过求圆心角的度数求解. 解:连结OC ,
在Rt△AOB 中,∠A=35° 图3 ∴∠B=55°,又∵OC=OB,
∴∠COB=180°-2∠B=70°,∴ 的度数为70°,
∠COD=90°-∠COB=90°-70°=20°, ∴
的度数为20°.
5.解:连结AD ;
因为AB 为直径,AB ⊥CD ,
所以AB 平分CD , 所以得到AD=AC 所以∠ACD=∠ADC 又因为∠ADC=∠AEC 所以∠AEC=ACD 因为∠CAE=∠FAC
所以△ACE ∽△AFC 所以
AF AC =CF
CE
因为AF AC =54 所以CF CE =
5
4(图4)
G
D
E
O
A
F
C
因为CF=10 所以CE=8
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档