向量和向量范数

合集下载

向量范数3-1,3-2,3-3

向量范数3-1,3-2,3-3
X
A
X AX


X x1 , x2 , , xn R n
T
试证上述函数是向量范数,称为向量的加权范数或椭圆范数。 证明 因为A是正定对称矩阵,故存在可逆矩阵P,使得
P T AP I
从而
A P
X
A

1 2 A
T 1
P P
T T 1 2
1

1 T
1 2
P 1 B T B
证明 易验证条件(i)和(ii)成立,现验证条件(iii)也 成立。 下面用到了Chauchy-Schwarz不等式。
x y
2 2
x y , x y ( x, x ) ( x, y ) ( y , x ) ( y , y )
x
2 2
2 x
2y2源自 y2 2定理对 x ( x , x ,, x )T C n C n R 分别定义三个函数 1 2 n
x
x
1

x
i 1
n i 1
n
i
1 2
1-范数,
)
2
( xi
2
2-范数(或Euclid范数)
x

max xi
1 i n
∞-范数(或最大值范数)。
它们均构成范数。 说明:在同一个向量空间,可以定义多种向量范数,而对 于同一个向量,不同定义的范数,其大小可能不同。

AX

AX H A X H A X
即矩阵范数与向量范数相容
算子范数
定义 设

即由向量范数构造矩阵范数



分别是 C m 和 C n

向量的范数

向量的范数
1.常数项b的扰动对方程组解的影响
设 Ax = b为一线性方程组 , A 为非奇异矩阵 , x为其精确解
若常数项 b存在误差 δ b , 则解也应存在误差 δ x
即有
A( x + δ x ) = b + δ b
Aδx = δb
δ x = A −1δ b
所以 又因为
δx = A −1δb ≤ A −1 ⋅ δb
A2=
显然
λ max ( A A )
T
=
ρ ( AT A )
设 ⋅ 是 R n × n 上的一种算子范数 , A ∈ R n × n , 定理1.
若 A满足 A < 1 , 则 I + A非奇异 , 且
( I + A)
−1
1 < 1− A
三、误差分析
对于线性方程组 Ax = b , 如果系数矩阵 A或 常数项 b的元素的微小变化 , 就会引起方程组解的 巨大变化 , 则称该方程组是 " 病态 "的 , A为" 病态 " 矩 阵.否则称为 "良态 "的.

2 − 范数
( 3) Ax A 2 = max x≠0
2
= λmax ( AT A) x 2
λmax ( AT A)为AT A的特征值的绝对值的最 大值
例2. 求矩阵A的各种常用范数
1 2 A = − 1 2 0 1
n
0 − 1 1
1≤ j ≤ n
δA
A
定义4.
设 A 为非奇异矩阵 , 称
cond ( A ) = A ⋅ A −1
为 A 的条件数 , 其中 ⋅ 为某种算子范数 .

1-3范数

1-3范数

解:取
1 1 2 1 0 0 A 0 0 , B , AB 0 1 0 0 那么, 0 0 0 则可得出
0 0 0 0 , 0 0
f A f B 1 , f AB 2, f AB f A f B


其中 x k x1 , x2 , , xn
k
,
T
x x1 , x2 ,
, xn 。
T
向量收敛 分量收敛
范数收敛
1.3.3 矩阵范数
矩阵可以看做是一个向量
向量范数的概念直接推广到矩阵上? 推广应考虑到矩阵的乘法运算
定义1.2
定义在Cm×n上的一个非负实值函数,记为
矩阵范数与向量范数不相容的例子:

1 则有 A 1 , 1 1 x x , A , 1 0 0 1
Ax 2 A 1 x

1,

故矩阵的 与向量的 不相容。
1
对于酉矩阵 U H U UU H I ,我们可有如下的结论:

x1 x2 x3
4
4
4
,
例:求向量 x 1, 2, 4 的1,2和∞-范数。
T
解:
x 1 1 2 4 7 ;
2 x 2 1 22 42 21
x max 1, 2, 4 4 。
1.3.2 向量范数的等价性
在 C n上可以定义各种向量范数,其数值大小一般不同。 但是在各种向量范数之间存在下述重要的关系
4 4
√4.
2 答: 1.中取 x1 0, x3 2 x2 2.中取 x1 0, x3 x2 5 故,1.和2.不满足非负性条件。

向量范数

向量范数

向量范数定义1. 设,满足1. 正定性:║x║≥0,║x║=0 iff x=02. 齐次性:║cx║=│c│║x║,3. 三角不等式:║x+y║≤║x║+║y║则称Cn中定义了向量范数,║x║为向量x的范数.可见向量范数是向量的一种具有特殊性质的实值函数.常用向量范数有,令x=( x1,x2,…,xn)T1-范数:║x║1=│x1│+│x2│+…+│xn│2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)^1/2∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│)易得║x║∞≤║x║2≤║x║1≤n1/2║x║2≤n║x║∞定理中任意两种向量范数║x║α,║x║β是等价的,即有m,M>0使m║x║α≤║x║β≤M║x║可根据范数的连续性来证明它.由定理1可得定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则║x(k)-x║→0(k→∞) iff xj(k)-xj→0,j=1,2,…,n(k→∞)其中xj(k)是x(k)的第j个分量,xj是x的第j个分量.此时称{x(k)}收敛于x,记作x(k) →x(k→∞),或 .三、矩阵范数定义2. 设,满足1. 正定性:║X║≥0,║X║=0 iff X=02. 齐次性:║cX║=│c│║X║,3. 三角不等式:║X+Y║≤║X║+║Y║4. 相容性: ║XY║≤║X║║Y║则称Cn×n中定义了矩阵范数,║X║为矩阵X的范数.注意, 矩阵X可视为n2维向量,故有前三条性质.因此定理1,2中向量的等价性和向量序列收敛的概念与性质等也适合于矩阵.第四条,是考虑到矩阵乘法关系而设.更有矩阵向量乘使我们定义矩阵范数向量范数的相容性:║Ax║≤║A║║x║所谓由向量范数诱导出的矩阵范数与该向量范数就是相容的.定理3. 设A是n×n矩阵,║?║是n维向量范数则║A║=max{║Ax║:║x║=1}= max{║Ax║/║x║: x≠0}是一种矩阵范数,称为由该向量范数诱导出的矩阵范数或算子范数,它们具有相容性或者说是相容的.单位矩阵的算子范数为1可以证明任一种矩阵范数总有与之相容的向量范数.例如定义:║x║=║X║,X=(xx…x)常用的三种向量范数诱导出的矩阵范数是1-范数:║A║1= max{║Ax║1:║x║1=1}=2-范数:║A║2=max{║Ax║2:║x║2=1}= ,λ1是AHA的最大特征值.∞-范数:║A║∞=max{║Ax║∞:║x║∞=1}=此外还有Frobenius范数: .它与向量2-范数相容.但非向量范数诱导出的矩阵范数.四、矩阵谱半径定义3.设A是n×n矩阵,λi是其特征值,i=1,2,…,n.称为A的谱半径.谱半径是矩阵的函数,但非矩阵范数.对任一矩阵范数有如下关系:ρ(A)≤║A║因为任一特征对λ,x,Ax=λx,令X=(xx…x),可得AX=λX.两边取范数,由矩阵范数的相容性和齐次性就导出结果.定理 3.矩阵序列I,A,A2,…Ak,…收敛于零的充分必要条件是ρ(A)。

范数的运算方法

范数的运算方法

范数的运算方法在数学领域中,范数是衡量向量大小的一种工具,广泛应用于线性代数、数值分析等领域。

范数的运算方法不仅涉及基础的数学理论,还与实际应用紧密相关。

本文将详细介绍几种常见的范数运算方法。

一、向量范数的定义设向量( mathbf{a} = (a_1, a_2, ..., a_n) ),其范数定义为:1.向量的1-范数(Manhattan范数):[ ||mathbf{a}||_1 = sum_{i=1}^{n} |a_i| ]2.向量的2-范数(Euclidean范数,即欧几里得范数):[ ||mathbf{a}||_2 = sqrt{sum_{i=1}^{n} a_i^2} ]3.向量的∞-范数(最大范数):[ ||mathbf{a}||_{infty} = max_{1leq ileq n} |a_i| ]二、范数的运算方法1.范数的加法:对于向量( mathbf{a} ) 和( mathbf{b} ),其1-范数、2-范数和∞-范数的加法满足以下性质:[ ||mathbf{a} + mathbf{b}||_1 leq ||mathbf{a}||_1 + ||mathbf{b}||_1 ] [ ||mathbf{a} + mathbf{b}||_2 leq ||mathbf{a}||_2 + ||mathbf{b}||_2 ] [ ||mathbf{a} + mathbf{b}||_{infty} leq ||mathbf{a}||_{infty} +||mathbf{b}||_{infty} ]2.范数的乘法:对于向量( mathbf{a} ) 和标量( alpha ),其1-范数、2-范数和∞-范数的乘法满足以下性质:[ ||alpha mathbf{a}||_1 = |alpha| ||mathbf{a}||_1 ][ ||alpha mathbf{a}||_2 = |alpha| ||mathbf{a}||_2 ][ ||alpha mathbf{a}||_{infty} = |alpha| ||mathbf{a}||_{infty} ]3.范数的三角不等式:对于向量( mathbf{a} ) 和( mathbf{b} ),其1-范数、2-范数和∞-范数满足以下三角不等式:[ ||mathbf{a} + mathbf{b}||_1 leq ||mathbf{a}||_1 + ||mathbf{b}||_1 ] [ ||mathbf{a} + mathbf{b}||_2 leq ||mathbf{a}||_2 + ||mathbf{b}||_2 ] [ ||mathbf{a} + mathbf{b}||_{infty} leq ||mathbf{a}||_{infty} +||mathbf{b}||_{infty} ]三、总结范数的运算方法在实际应用中具有重要作用,如优化问题、数值分析等领域。

第1章2范数

第1章2范数
Axx T xx T
Axx T xx T
T
消去非0数
xx
||xxT||,即 得证明。
24
T
Axx
A xx
T
方阵谱半径与范数关系
定理:对任意的正数ε>0,存在某个矩阵范数||A|| 使得
A ( A)
定理:对任何一种矩阵范数||A||都有
k 1k
lim A
1
绝对值不等式
根据向量范数定义容易导出类似于绝对值不等式:
a b a b a b x y x y x y
定义不同的向量范数就可以得到不同的不等式!
2
Minkowski不等式
向量范数定义为:
x
p
n p xi i 1
1 p
p 1
如果下式成立则向量x,y相互正交。 0向量与任 何向量与此 正交!
4
( x, y ) 0
一些常用的向量范数
在向量空间Rn可以定义很多向量范数,其中有一些常用的:
2范数: x
2
2 x1ቤተ መጻሕፍቲ ባይዱ x2
2 xn
xT x
x1 x2 x x T x x1 xn
m x

x

M x

11
范数的等价性
定理:同一个向量空间中任意两个不同范数 ||*||α、||*||β都相互等价。
定义向量范数的目的就是为了研究向量序列的 收敛性问题!
12
向量序列的收敛性定义
利用向量范数可以简化向量序列的收敛性定义,给 向量序列的研究带来方便,特别是讲到多元方程组的 迭代法收敛性时,常常要考虑向量序列。 定义:对向量空间Rn中的向量序列

线性方程组解法 第2节 向量范数等价性证明

线性方程组解法 第2节 向量范数等价性证明

1 2 n 0.
为A对T 称A矩阵,设
为 的u相1,应u于2 ,(5.9), un A
的特征向量且
,又设 为任一非零向量,
(ui , u j ) ij
xRn
于是有
n
x ciui , i 1
(5.9)
12
其中 为c组i 合系数,则
n
Ax 2 2 x2
( AT Ax, x) ( x, x)
向量范数
1. 向量范数的定义
函数 (((123N定)))义正齐三x9定次角(性 性 不向等量x式范,数若)xx满x足0对 ,:yxx于,向其 0量 x中x yRx,nR或 (x或 0,x或 y记 CRCn为n)的;或某 ;个C实n值。非负
称N
(
x)
||
x
||
是R
n

或C n
一个向量范数或模。

x (x1, x2 , , xn )T , y ( y1, y2 , , yn )T R(n 或 )C.n
将实数
(或复数 称为向量
n
(x, y) yT x xi yi i 1
( x, y) )y H x n xi yi i1
的x数, 量y 积.
18
将非负实数
1
x
2
1
(x, x) 2
aij x j
j1
max i
aij
j1
xj
n
t max i
j1
aij .
10
这说明对任何非零 , x R n 有
Ax
.
x
(5.8)
接下来说明有一向量 ,
x0 0
使
Ax0 .
x0

机器学习中的数学基础(1)——向量和范数

机器学习中的数学基础(1)——向量和范数

从今天开始,我将开设一个机器学习数学基础的系列。

主要介绍机器学习中经常用到的那些数学知识,方便大家入门。

一说起数学,有人会觉得很难。

其实在这个系列中,我将会以最直白的语言来向你解释这些数学名词,大家不用担心,即使你是零基础,一样可以看得懂。

∙向量我们从向量开始说起,什么是向量?它其实就是用括号括起来的一堆数,只不过这些数都是竖着写的。

比如:它们就分别是1维、2维和3维的向量。

我们一般用小写粗体来表示向量,如x。

如果我们写它代表什么含义呢?“∈”这个符号读作属于,R表示实数集,而n表示维度。

也就是说向量有几个元素,就是几维的向量。

整个式子表示:向量x有n个维度,每个元素的取值都在实数集中。

∙范数范数,又叫做L-p范数。

它是这么定义的:看上去很复杂,其实也容易理解,我们一点点来看。

上面的式子是说,对于给定的一个n维向量w,它的范数就是向量w中的各个元素的绝对值的p次方之和,再开p次的根号(1/p 就相当于开p次根号)。

根据p的取值不同,范数的结果也就不同。

我们常用的p值为12,∞等等。

1. L1范数我们先来看p值为1时的范数,我们称之为L1范数。

把p=1代入上面的式子,得到:可能上面的式子还不够直观,我们再举个例子来看。

假设我们有二维向量w=(x,y),那么w的L1范数就是|x|+|y|。

当范数值固定时,我们还可以画出由所有的点(x,y)构成的图像。

这里不妨假设|x|+|y|=1(当然你可以假设为任意值k,这里假设为1只是为了画图方便),我们大概用手画一下它的图像:图1那么图像为什么是这样子的呢?我们可以研究下公式|x|+|y|=1,其中x和y的正负性是未知的,我们就可以分情况来讨论:① x>0,y>0。

公式化简为x+y=1,它原本的图像是过图1中A、B两点的直线,但现在约束条件是x、y均大于0.所以它最后的图像就是AB线段。

② x>0,y<0。

公式化简为x-y=1,它原本的图像是过图1中A、D两点的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4向量和矩阵范数
3.4.1内积与向量范数
为了研究方程组Ax=b解的误差和迭代法收敛性,需对向量K亡卫"及矩阵止£ R晦的”大小”引进一种度量,就要定义范数,它是向量"长度”概念的直接推广,通常用I 表示n维实向量空间,J '表示n维复向量空间.
定义4.1 丘设(或C ”)补…,心),厂叽…亠),实数苗或〔2)二宀=主氓严=的共馳)
复数,称为向量x与y的数量积也称内积.
Ha" D" ■ (£卅严
非负实数,称为向量x的欧氏范数或2-范数.
定理4.1设心J -二广|设(或匚'-1)则内积有以下性质:
(1)(仏工)。

,当且仅当x=0时等号成立;
⑵,…r 工「_ J 或-
(3)(2 ■ 0闪或Gj)・O M),^yeC";
⑷(1”昜・(兀刃十(兀对庄丁上弋C*;
(5)||(5勺忖個(3.4.1)
称为Cauch-Schwarz不等式.
(6)订m,称为三角不等式.
定义4.2向量-「-的某个实值函数N(x),记作-",若满足下列条件:
(1)I I x||》0当且仅当x=0时等号成立(正定性);
(2)|二 -I ■||」「—R(齐次性);
⑶匸'V1-1 ::-1(三角不等式);
则称-'L-亠I -■是1'.■上的一个向量范数.
于是
I 仗或10昭)3刃十帥I ,由内积性质可知它满足定义 4.2的三个条件,故它是一种向量范数.此外还
(称为i-范数)
但只有p=1,2, «时的三种范数是常用的向量范数
例如给定X -(12・餌 ,则可求岀 Plli=M^ll a =Vi4,||x|L=3
定理4.2 设M ・|| / || 是. "上任一种向量范数,则 N (x )是向量x 的分量罚,鬥,的连续函
(3.4.2)
不等式称为向量范数等价性.
以上两定理证明可见[2],[ 3].
讲解:
在向量丄-亠-得内积(x,y )的性质中,定理 4.1的(5)为Cauch-Schwarz 不等式(3.4.1)是经常 使用的,下面给出证明,显然当 x = 0或y = 0时(3.4.1)成立,现设■■- 7
'■,考察
0 M 仗+為,狀十= fcx )十22仗”y )十/(”刃 若取
■: 有以下几种常用的向量范数 (称为《范数)
对于
容易验证丨y #及丨n ; I
均满足定义4.2的三个条件.更一般的还可定义
定理4.3
设“与1仏是 上任意两种向量范数,则存在常数 ,使
两边开方则得(3.4.1)
利用(3.4.1)直接可证三角不等式,从而可证明向量 2 一范数,满足定义中的三个条件。

是三种最常用的范数。

实际上可以给出很多不同的向量范数,只要证明它们满足定义 4.2中的三个条件,定理4.3表明任意的
两种向量范数II IL及它们都是等价的,对于II II P IIILJI IL的等价性在习题10中给出,可自
己证明。

相关文档
最新文档