向量的范数与矩阵的范数1

合集下载

向量范数

向量范数

计算方法
2
常用向量范数
设向量 x = ( x1 , x2 ,..., xn ) || x ||1 = ∑ | xi |
n i =1 n
T
|| x ||2 = ( ∑ | xi | ) = ( x , x ) = ( x T x )
i =1
1 2 2
1 2
1 2
|| x ||∞ = max{| xi |}
定义
设λi(i = 1,2 ,...,n)为矩阵 A的特征值 , 则称
1≤ i ≤ n
ρ ( A) = max{| λi |}
的谱半径。 为矩阵 A的谱半径。 矩阵A的谱半径 ρ ( A)不是A的一种范数 , 但易证
ρ ( A) ≤ A
定义2 定义2

Ax ≤|| A || ⋅ || x || ∀x ∈ R n , ∀A ∈ R n× n
称矩阵范数与向量范数是相容的. 称矩阵范数与向量范数是相容的. 相容的
2 − 1 例4 : 设矩阵 A = − 2 4 , 求 || A ||1 , || A ||2, || A ||∞ 。 解: || A || = max{ 2+ | −2 |, | −1 | +4} = 5 1
1≤ i ≤ n
计算方法
T || || 例3:已知 x = (1, 2, − 3 ) , 求 || x ||1 , x ||2 , x ||∞
解: x
1
= x1 + x2 + x3 = 1+2+3= 6
2 2 x12 + x2 + x 3 = 1 + 4 + 9 = 14
x2=
x

向量和矩阵范数

向量和矩阵范数

|| x ||
|| b ||
➢ 设 精b确,A有误差 ,得到的A 解为
,即 x x
|| A || || A1 || 是关键
( A 的A误的A差状)放态(大数x因(条子件,数称x),)为 b
记为cond (A) ,
A(x x) A(x x) b (A A)x (A A) x b
I A 1 1
1 || A ||

证明: ① 若不然,则
(I A有)x非零0解,即存在非零向量 使得
x0
Ax0 x0
|| Ax0 || 1 || x0 ||
|| A || 1 ✓
② (I A)1 A(I A)1 (I A)(I A)1 I
(I A)1 I mA(I A)1
,即
A(x x) b b
x x
绝对误差放大因子
x A1 b
|| x |||| A1 || || b ||
相对误差放大因子
又 || b || || Ax || || A || || x || 1 || A || || x || || b ||
|| x || || A || || A1 || || b ||
主要性质
性质1:‖-x‖=‖x‖
性质2:|‖x‖-‖y‖|≤‖x-y‖
性质3: 向量范数‖x‖是Rn上向量x的连续函数.
范数等价:设‖·‖A 和‖·‖B是R上任意两种范数,若存在
常数 C1、C2 > 0 使得
,则称
‖·‖A 和‖·‖B 等价。
定理1.4.1 Rn 上一切范数都等价。
定义2:设{xk}是Rn上的向量序列, 令 xk=(xk1,xk2,…,xkn)T, k=1,2,….,
|| A1A |||| A1 || || A || 1 )

矩阵的1范数

矩阵的1范数

矩阵的1范数
求矩阵的1,和2范数
1.向量的范数:
0范数,向量中⾮零元素的个数。

1范数,为绝对值之和。

2范数,就是通常意义上的模。

⾮穷范数,就是取向量的最⾮值。

但是向量的范数和矩阵的范数关系不⾮,百度了好久也没看到狠⾮的东西,下⾮我来总结⾮下:
矩阵的范数:(是矩阵之间距离度量的⾮法)
A=[010;100;-100]
A=
010
100
-100
>> norm(A,1)
ans =
矩阵的2范数(norm(A,2)):指矩阵A与矩阵A的转置相乘后得到B,再对矩阵B的最⾮特征值开⾮,还是例⾮:
A=[010;100;-100];
>>B=A*A';
>> [V,D]=eig(B)%V是特征向量,D是特征值V=
01.00000
-0.70710-0.7071
-0.707100.7071
D=
000
010
002
>> sqrt(2)
ans =
1.4142
>> norm(A,2)
ans =
1.4142
既然矩阵的2范数是距离度量的⾮种,那么矩阵的2范数越⾮,则两矩阵的相似性越⾮。

由于知识有限,解释的不好见谅(没有看出2范数和欧⾮距离的关系)。

(⾮⾮上那些讲得迷迷糊糊好点吧)。

Chapter1_2_向量范数与矩阵范数

Chapter1_2_向量范数与矩阵范数

设 b 精确,A有误差 A ,得到的解为 x x ,即 || A || || A1 || 是关键 的误差放大因子,称为 ( A A的状态数(条件数), b A)( x x) 记为cond (A) , A( x x) A( x x) b ( A A) x ( A A) x b ( A A) x Ax x A1 A( x x) A( I A1 A) x Ax || x || || A1 || || A || || x x || x ( I A1 A)1 A1 Ax || A || 1 (只要 A充分小,使得
算子范数 ( operator norm ),又称为从属的矩阵范数: 由向量范数 || · p 导出关于矩阵 A Rnn 的 p 范数: ||
利用Cauchy 不等式 则 || AB || p || A || p || B || p || Ax || p || A || p max max || Ax || p y | ||x || || y || |x 2 x0 | |x | |p 1 || x || p || Ax || p || A || p || 2 || p x
命题(P26,推论1) 若A对称,则有: || A ||2 ( A)
证明:|| A ||2 max ( A A) max ( A )
T 2
A对称
若 是 A 的一个特征根,则2 必是 A2 的特征根。
max ( A2 ) 2 ( A) 对某个 A 的特征根 成立
又:对称矩阵的特征根为实数,即 2(A) 为非负实数, 所以2-范数亦称为 故得证。 谱范数。

向量与矩阵的范数

向量与矩阵的范数

那么
n
X X H *
xi
X 1
i 1
矩阵旳谱半径及其性质
定义:设 A C mn ,A 旳 n 个特征值为 1, 2, , n ,我们称
( A) max{ 1 , 2 , , n }
为矩阵 A 旳谱半径。 例 1 :设 A C mn ,那么
( A) A
这里 A 是矩阵 A 旳任何一种范数。
F
F
于是有
AB A B
F
F
F
例 4 :对于任意 A C nn ,定义
A
[Tr
(
AH
A)]
1 2
证明如此定义旳 A 是矩阵 A 旳范数。
证明: 首先注意到这么一种基本事实,

[Tr( AH
1
A)] 2
(
m
n
aij
2
)
1 2
i1 j1
由一种例题可知此定义满足范数旳性质。
Frobenious范数旳性质:
(1)' n
1
(2)' n
2
1
2
(3)' n
2
引理(Hoider不等式):设
a1, a2, , an T , b1, b2, , bn T Cn

n
n
aibi (
ai p ) 1 p ( n
bi
q)
1 q
i 1
i 1
i 1
其中 p 1,
q1 且
1p
是矩阵范数。
证明:非负性,齐次性和三角不等式轻易 证得。目前我们考虑乘法旳相容性。设
A C nn , B C nn ,那么
n
n
AB

矩阵范数和向量范数的关系

矩阵范数和向量范数的关系

矩阵范数和向量范数的关系矩阵范数和向量范数是线性代数中常用的概念,它们之间存在一定的关系。

本文将从矩阵范数和向量范数的定义、性质以及它们之间的联系等方面进行阐述。

我们来介绍矩阵范数和向量范数的定义。

矩阵范数是定义在矩阵上的一种范数,它可以将一个矩阵映射为一个非负的实数。

常见的矩阵范数有Frobenius范数、1-范数、2-范数和∞-范数等。

以Frobenius范数为例,对于一个矩阵A,它的Frobenius范数定义为矩阵元素平方和的平方根,即∥A∥F = √(∑∑|aij|^2)。

向量范数是定义在向量空间中的一种范数,它可以将一个向量映射为一个非负的实数。

常见的向量范数有1-范数、2-范数和∞-范数等。

以2-范数为例,对于一个向量x,它的2-范数定义为向量元素平方和的平方根,即∥x∥2 = √(∑|xi|^2)。

矩阵范数和向量范数之间存在一定的联系。

首先,对于一个n维向量x,可以将其看作是一个n×1的矩阵。

此时,向量范数就可以看作是矩阵范数的一种特殊情况。

例如,向量的2-范数就是矩阵的2-范数。

因此,矩阵范数可以看作是向量范数的推广。

矩阵范数和向量范数之间满足一些性质。

例如,对于一个矩阵A和一个向量x,满足以下性质:1. 三角不等式:对于任意的矩阵A和向量x,有∥A∥ + ∥x∥ ≤∥A + x∥。

2. 齐次性:对于任意的矩阵A和实数α,有∥αA∥ = |α|∥A∥。

3. 子多重性:对于任意的矩阵A和B,有∥AB∥ ≤ ∥A∥∥B∥。

我们来讨论矩阵范数和向量范数的联系。

通过定义可以看出,矩阵范数和向量范数都是对于矩阵或向量的度量。

矩阵范数可以看作是对矩阵的度量,而向量范数可以看作是对向量的度量。

矩阵范数和向量范数都满足范数的定义,即满足非负性、齐次性和三角不等式。

在应用中,矩阵范数和向量范数有着广泛的应用。

矩阵范数可以用于矩阵的相似性度量、矩阵的特征值估计等问题。

而向量范数可以用于向量的相似性度量、向量的正则化等问题。

向量和矩阵的范数

向量和矩阵的范数

向量和矩阵的范数一、引言向量和矩阵是线性代数中最基本的概念之一,而范数则是线性代数中一个非常重要的概念。

范数可以用来度量向量或矩阵的大小,也可以用来衡量它们之间的距离。

在本文中,我们将讨论向量和矩阵的范数。

二、向量范数1. 定义向量范数是一个函数,它将一个向量映射到一个非负实数。

它满足以下条件:(1)非负性:对于任意的向量x,有||x||≥0;(2)齐次性:对于任意的标量α和向量x,有||αx||=|α|·||x||;(3)三角不等式:对于任意的向量x和y,有||x+y||≤||x||+||y||。

2. 常见范数(1)L1范数:也称为曼哈顿距离或城市街区距离。

它定义为所有元素绝对值之和:||x||1=∑i=1n|xi| 。

(2)L2范数:也称为欧几里得距离。

它定义为所有元素平方和再开平方根:||x||2=(∑i=1nxi^2)1/2 。

(3)p范数:它定义为所有元素p次方和的p次方根:||x||p=(∑i=1n|xi|^p)1/p 。

(4)无穷范数:它定义为所有元素绝对值中的最大值:||x||∞=ma xi|xi| 。

三、矩阵范数1. 定义矩阵范数是一个函数,它将一个矩阵映射到一个非负实数。

它满足以下条件:(1)非负性:对于任意的矩阵A,有||A||≥0;(2)齐次性:对于任意的标量α和矩阵A,有||αA||=|α|·||A||;(3)三角不等式:对于任意的矩阵A和B,有||A+B||≤||A||+||B||。

2. 常见范数(1)Frobenius范数:也称为欧几里得范数。

它定义为所有元素平方和再开平方根:||A||F=(∑i=1m∑j=1naij^2)1/2 。

(2)一范数:它定义为每列元素绝对值之和的最大值:||A||1=maxj(∑i=1m|aij|) 。

(3)二范数:它定义为矩阵A的最大奇异值:||A||2=σmax(A) 。

(4)∞范数:它定义为每行元素绝对值之和的最大值:||A||∞=maxi(∑j=1n|aij|) 。

向量与矩阵的范数

向量与矩阵的范数

a12 a1n A 1 max ai j 列范数 1j n i1 n a22 a2n A max aij 行范数 1i n j1 T an2 ann A 2 λm a x( A A) AF
|λ | || X ||= ||λ X ||= || A X || ≤|| A || || X ||
由X ≠0 ,所以 || X || >0 ,
计算方法三⑤
故有:
|λ | ≤|| A ||
所以特征值的最大值≤||A||,即ρ(A)≤||A||
18/35
定理3.7 设A为任意n阶方阵,则对任意 矩阵范数||A||,有: ρ(A)≤||A|| 定理3.8 设A为n阶对称方阵,则有: ||A||2= ρ(A)
1 2 3 A 4 5 6 7 8 0
计算方法三⑤
14/35
例6. 计算矩阵A的各种范数
1 2 A= 3 4 2 3 4 1 3 4 1 2 4 1 2 9
解:A=[1,2,3,4;2,3,4,1;3,4,1,2;4,1,2,9]; n1=norm(A,1), n2=norm(A), n3=norm(A,inf),n4=norm(A, 'fro') n1=16,n2=12.4884,n3=16,n4=13.8564
解: E A ( 1) ( 2)
2
(A) 2
计算方法三⑤
17/35
矩阵范数与谱半径之间的关系为: ρ(A) ||A|| 定理3.7设A为任意n阶方阵,则对任意矩阵范 数||A||,有: ρ(A)≤||A||
证:设λ为A的任意一个特征值, X为对应的特征向量 AX= λ X 两边取范数,得: || A X || = ||λ X || =|λ | || X ||
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义4.2 满足上述不等式 的两种范数称为是 等价的.由此可见任意两种向量范数是等价的。
定理4.4
(k ) (k ) ,, n C n 中的 x ( k ) 1( k ) , 2
收敛到向量 x 1 , 2 ,, n ,数列
的充要条件是对 lim x
p
p
证明:
例4.4 设A 是任意一n阶正定Hermite矩阵,列向 n H 1/ 2 量 x C , 则函数 x A ( x Ax) 是一种向量范数, 称为加权范数或椭圆范数. 证:因为A 正定,所以当x=0时,x
A
0
例4.5
是线性空间 C[a,b]的范数.
因为 Re(x, y ) ( x, y ) ( x, x)( y, y ) x y
2
n 证明 x max 是 C 上的一种范数, 例4.2 i
这里x 1 , 2 , n C
i
n
x y max i i max i max i x y
i i i
因此, x max i 是 C n 上的一种范数.
i
例4.3
以上例子给出了 中向量的三种常用范数, 下面再来看更一般的 P-范数(也叫Holder(赫 尔德)范数)
x ( i )
i 1
n
p 1/ p
,1 p
显然上面三个例子中给出的三种常用范数是P范数的特殊情况。当p=1, 2, 便得 x 1与 x 2 , 并且可以证明
第四章 向量的范数与矩阵的 范数 4.1 向量的范数 4.2 矩阵的范数
定义 4.1 如果V 是数域K上的线性空间,且 对于V 中任意一向量x ,对应一个实值函数
它满足以下三个条件: (1)非负性: (2)齐次性: (3)三角不等式:
例4.1
x 1 2 n
2 2
2
( 2.1.1 )
(k ) 有 i i
,故

从而可知数列
.
证毕
有关性质:
1)零向量的范数是零。
2)当
时,有
实际上,我们还可以通过已知的向量范 数来构造新的向量范数。
定理4.1 设

上的一种已知向量范数
(不一定是P-范数),A是n阶满秩方阵,
,定义 ,则 是
上的一种向量范数。
证明:
所以

上的一种向量范数。 是 中向量 是 的n元连续
定理4.2 设
的一种范数,则 函数。
二. 向量范数的等价性 定理4.3 设 x 和 x 为有限维线性空间V 的 任意两种向量范数,则存在两个与向量无关的 正常数 c1和 c2 使下面不等式成立
c1 x x c2 x
例如:x 2 x 1 n x 2
n or x1 x2 x1 n n x2 x x2 n 1 x1 x x1 n
必要性. 设 x
(k )
x ,则 x x 0 即向量
(k )

(k ) 1
1 , 2( k ) 2 ,, n( k ) n

i
的每一个分量收敛 时,
到零,于是对 0 ,ki 使得当 k> 有
(k ) i
i ,取N= max ki ,当k> N时
x 收敛于零
证 (略)取 .
(k ) (k ) max 0 x x 0 充分性. 设 即 i i i
k) (k ) max i ( j 1,2,, n) 但是 ( j j i i
k) (k ) 从而 ( 0 ( j 1 , 2 , , n ) 即 x x j j
(即 解:(1)对于
x
)是否是范数?
1 2 n
2 2
2
(2)a C , ax a1 a 2 a n a x
2 2 2
(3)对于 x, y C n ,
x y ( x y, x y ) ( x, x) 2 Re( x, y ) ( y, y )
相关文档
最新文档