中考数学二轮复习讲义第08讲-二次函数-学案

合集下载

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案第一章:二次函数的基本概念1.1 二次函数的定义解释二次函数的一般形式:y = ax^2 + bx + c强调a、b、c系数的含义和作用1.2 二次函数的图像介绍二次函数图像的特点:开口方向、顶点、对称轴、与y轴的交点等利用图形软件绘制几个典型二次函数的图像,让学生观察和分析1.3 二次函数的性质讨论二次函数的增减性、对称性、周期性等性质引导学生通过图像理解二次函数的性质第二章:二次函数的顶点式2.1 顶点式的定义解释顶点式:y = a(x h)^2 + k强调顶点(h, k)对二次函数图像的影响2.2 利用顶点式求解二次函数的图像和性质引导学生通过顶点式确定二次函数的图像和性质举例说明如何利用顶点式求解最值问题2.3 顶点式的应用讨论顶点式在实际问题中的应用,如抛物线运动、几何问题等给出几个实际问题,让学生运用顶点式解决第三章:二次函数的解析式3.1 解析式的定义解释二次函数的解析式:y = ax^2 + bx + c强调解析式与顶点式的关系3.2 利用解析式求解二次函数的图像和性质引导学生通过解析式确定二次函数的图像和性质举例说明如何利用解析式求解最值问题3.3 解析式的应用讨论解析式在实际问题中的应用,如物理、化学等领域的方程求解给出几个实际问题,让学生运用解析式解决第四章:二次函数的图像与性质4.1 图像与性质的关系讨论二次函数图像与性质之间的关系引导学生通过图像判断二次函数的性质4.2 开口方向与a的关系解释开口方向与a的关系:a > 0时开口向上,a < 0时开口向下举例说明如何通过开口方向判断二次函数的性质4.3 对称轴与顶点的关系解释对称轴与顶点的关系:对称轴为x = h举例说明如何通过对称轴判断二次函数的性质第五章:二次函数的实际应用5.1 实际应用的基本形式讨论二次函数在实际应用中的基本形式举例说明如何将实际问题转化为二次函数问题5.2 利用二次函数解决实际问题引导学生运用二次函数解决实际问题,如最值问题、优化问题等给出几个实际问题,让学生运用二次函数解决5.3 实际应用的拓展讨论二次函数在其他领域的应用,如经济学、生物学等引导学生思考如何将二次函数应用于解决其他实际问题第六章:二次函数的综合应用6.1 二次函数与线性函数的组合解释二次函数与线性函数组合的形式,如y = ax^2 + bx + c 与y = dx + e 的组合强调组合函数的图像和性质6.2 利用综合应用解决实际问题引导学生运用综合应用解决实际问题,如函数交点问题、不等式问题等给出几个实际问题,让学生运用综合应用解决6.3 综合应用的拓展讨论综合应用在其他领域的应用,如物理学、工程学等引导学生思考如何将综合应用应用于解决其他实际问题第七章:二次函数与不等式7.1 二次不等式的定义解释二次不等式的形式,如ax^2 + bx + c > 0强调解二次不等式的方法和步骤7.2 利用图像解决二次不等式问题引导学生通过图像解决二次不等式问题,如找出不等式的解集举例说明如何利用图像解决实际问题7.3 二次不等式的拓展讨论二次不等式在其他领域的应用,如经济学、工程学等引导学生思考如何将二次不等式应用于解决其他实际问题第八章:二次函数的最值问题8.1 二次函数最值的概念解释二次函数最值的概念,如最大值、最小值强调最值与对称轴、顶点的关系8.2 利用顶点式求解最值问题引导学生通过顶点式求解二次函数的最值问题举例说明如何利用顶点式求解实际问题中的最值8.3 最值问题的拓展讨论最值问题在其他领域的应用,如物理学、工程学等引导学生思考如何将最值问题应用于解决其他实际问题第九章:二次函数与几何问题9.1 二次函数与几何图形的关系解释二次函数与几何图形的关系,如圆、椭圆、抛物线等强调二次函数在几何问题中的应用9.2 利用二次函数解决几何问题引导学生运用二次函数解决几何问题,如求解三角形面积、距离问题等举例说明如何利用二次函数解决实际问题中的几何问题9.3 几何问题的拓展讨论几何问题在其他领域的应用,如物理学、工程学等引导学生思考如何将几何问题应用于解决其他实际问题第十章:二次函数的综合训练10.1 综合训练的目的强调综合训练的重要性,提高学生对二次函数知识的综合运用能力引导学生通过综合训练巩固所学知识10.2 综合训练的内容设计几个综合训练题目,包括不同类型的二次函数问题,如图像分析、性质判断、实际应用等让学生在规定时间内完成综合训练题目给予学生综合训练的反馈,指出错误和不足之处重点和难点解析1. 第一章中二次函数的基本概念:理解二次函数的一般形式和系数含义是学习二次函数的基础,对于图像的特点和性质的理解也是解决复杂问题的关键。

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。

在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。

因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。

二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。

在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。

三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。

3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。

4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。

四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。

在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。

教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。

整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。

五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。

二次函数中考复习专题教案

二次函数中考复习专题教案

二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。

二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。

2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。

3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。

4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。

5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。

三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。

五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。

六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。

九年级数学《二次函数》总复习教案

九年级数学《二次函数》总复习教案

教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。

2.掌握二次函数的基本性质和图像的特点。

3.熟练运用二次函数解决实际问题。

4.理解抛物线的性质及其与二次函数的关系。

一、概念复习1.二次函数:通过变量的平方项表达的函数。

2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。

3.对称轴:二次函数图像的对称轴,表示为x=a。

4.开口方向:二次函数图像的开口方向,由二次项的系数决定。

二、性质复习1.零点:二次函数与x轴交点的横坐标。

2.判别式:用来判断二次函数的零点个数的式子。

当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。

当Δ=b^2-4ac=0时,二次函数有两个相等的零点。

当Δ=b^2-4ac<0时,二次函数没有实数零点。

3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。

当二次函数开口向下时,最大值是顶点的纵坐标。

三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。

当a<0时,二次函数开口向下。

2.对称轴:对称轴与顶点的横坐标相等。

3.零点:零点是二次函数与x轴交点的横坐标。

零点的个数由判别式Δ决定。

四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。

(2)设出二次函数的表达式。

(3)求出二次函数的最值或零点。

(4)用解出的最值或零点回答问题。

2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。

求该商场的最大营业额,并在什么时间实现。

解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。

(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。

五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。

若a>0,抛物线开口向上;若a<0,抛物线开口向下。

(完整版)二次函数复习课教案.docx

(完整版)二次函数复习课教案.docx

二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。

数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。

2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。

3、通过学生共同观看和争论,培育大家的合作沟通意识。

(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。

2、具有初步的创新精神和实践力量。

教学重点1、体会方程与函数之间的联系。

2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点1、探究方程与函数之间的联系的过程。

2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法争论探究法。

教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。

创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。

当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。

2、进一步进展估算力量。

(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。

二次函数的复习教案

二次函数的复习教案

二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。

2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。

3. 提高学生解决与二次函数相关的实际问题的能力。

教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。

- 回顾二次函数的图像特点,如开口方向、顶点位置等。

- 强调二次函数的轴对称性和零点的概念。

3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。

- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。

4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。

- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。

2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。

- 引导学生将问题转化为二次函数的方程,并解方程求出答案。

3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。

- 鼓励学生通过做更多的练习来巩固所学知识。

教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。

- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。

2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。

- 二次函数练习题,包括图像练习和实际问题练习。

评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。

2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。

教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。

教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。

教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。

问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。

师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。

3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二轮复习讲义第08讲-二次函数-学案学科教师辅导讲义学员编号_________年级九年级(下)课时数3学员姓名辅导科目数学学科教师授课主题第08讲-----二次函数授课类型T同步课堂P实战演练S归纳总结教学目标深刻理解并运用二次函数的相关知识点;掌握常考重点题型及相关解法,突破中考数学第22.23题;提高综合分析与解题能力。

授课日期及时段T (Textbook-Based)同步课堂体系搭建一.知识梳理1.求证“两线段相等”的问题2.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题3.平行于y轴的动线段长度的最大值”的问题4.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题5.三角形周长的“最值最大值或最小值”问题6.“某图形直线或抛物线上是否存在一点,使之与另两定点构成直角三角形”的问题7.“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题8.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题9.常数问题10.“两个三角形相似”的问题11.“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题12.“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”13.三角形面积的最大值问题14.“定四边形面积的求解”问题15.“题中含有两角相等,求相关点的坐标或线段长度”等的问题二.知识概念常用公式或结论破解二次函数难题的基石1.横线段的长横标之差的绝对值纵线段的长纵标之差的绝对值(2)点轴距离点P(,)到X轴的距离为,到Y轴的距离为。

(3)两点间的距离公式若A(),B,则AB(4)点到直线的距离点P()到直线AxByC0其中常数A,B,C最好化为整系数,也方便计算的距离为或(5)中点坐标公式若A,B(),则线段AB的中点坐标为()(6)直线的斜率公式若A (),B(),则直线AB的斜率为,(7)两直线平行的结论已知直线若若(8)两直线垂直的结论已知直线若若(9)由特殊数据得到或猜想的结论已知点的坐标或线段的长度中若含有.等敏感数字信息,那很可能有特殊角出现。

在抛物线的解析式求出后,要高度关注交点三角形和顶点三角形的形状,若有特殊角出现,那很多问题就好解决。

还要高度关注已知或求出的直线解析式中的斜率k的值,若,则直线与X轴的夹角为;若;则直线与X轴的夹角为;若,则直线与X轴的夹角为。

这对计算线段长度或或点的坐标或三角形相似等问题创造条件。

1.求证“两线段相等”的问题借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x轴(y轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等。

2.“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题首先弄清题中是否规定了哪个点为等腰三角形的顶点。

(若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形,则有三种情况)。

先借助于动点所在图象的解析式,表示出动点的坐标(一母示),按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程。

解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点(就是不能构成三角形这个题意)。

例1.【xx临沂】如图,在平面直角坐标系中,直线y2x10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC(1)求过O,A,C三点的抛物线的解析式,并判断ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动规定其中一个动点到达端点时,另一个动点也随之停止运动设运动时间为t秒,当t为何值时,PAQA(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形若存在,求出点M的坐标;若不存在,请说明理由3.“平行于y轴的动线段长度的最大值”的问题由于平行于y 轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。

例2.【xx大连】如图,抛物线yx23x与x轴相交于A.B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标4.“在定直线(常为抛物线的对称轴,或x轴或y轴或其它的定直线)上是否存在一点,使之到两定点的距离之和最小”的问题先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度应用两点间的距离公式计算即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出(利用求交点坐标的方法)。

5.三角形周长的“最值最大值或最小值”问题“在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题(简称“一边固定两边动的问题)由于有两个定点,所以该三角形有一定边(其长度可利用两点间距离公式计算),只需另两边的和最小即可。

6.“某图形直线或抛物线上是否存在一点,使之与另两定点构成直角三角形”的问题若夹直角的两边与y轴都不平行先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。

若夹直角的两边中有一边与y轴平行,此时不能使用斜率公式。

补救措施是过余下的那一个点(没在平行于y轴的那条直线上的点)直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定。

例3.【xx枣庄】如图,已知抛物线yax2bxc(a0)的对称轴为直线x1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B(1)若直线ymxn经过B.C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x1上的一个动点,求使BPC为直角三角形的点P的坐标7.“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。

进一步有1若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在。

2若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在。

3若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在。

例4.【xx荆门】如图,在矩形OABC中,OA5,AB4,点D为边AB上一点,将BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系(1)求OE 的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C 出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q 从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DPDQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形若存在,请求出M点坐标;若不存在,请说明理由8.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题(此为“单动问题”即定解析式和动图形相结合的问题)先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就计算出它的具体面积),然后由题意建立两个图形面积关系的一个方程(通常需要用到点到直线的距离公式),解之即可。

(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。

9.常数问题(1)点到直线的距离中的常数问题“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。

(2)三角形面积中的常数问题“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题先求出定线段的长度,再表示出动点(其坐标需用一个字母表示)到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了。

例5.【xx深圳】如图1,关于x的二次函数yx2bxc经过点A(3,0),点C (0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E 在x轴上(1)求抛物线的解析式;(2)DE上是否存在点P到AD 的距离与到x轴的距离相等若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2SFBC3SEBC若存在求出点F的坐标,若不存在请说明理由例6.【xx西宁】如图,在平面直角坐标系中,四边形ABCD是以AB为直径的M 的内接四边形,点A,B在x轴上,MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交M于点E,垂足为点M,且点D平分(1)求过A,B,E三点的抛物线的解析式;(2)求证四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得ABP 的面积等于定值5若存在,请求出所有的点P的坐标;若不存在,请说明理由10.“两个三角形相似”的问题(1)已知有一个角相等的情形运用两点间的距离公式求出已知角的两条夹边,看看是否成比例若成比例,则相似;否则不相似。

相关文档
最新文档