七年级上期数学培优试题
七年级上期培优数学测试题

七年级上期培优数学测试题姓名 分数一、选择题(本大题共10小题,每小题3分,共30分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、 一滴墨水洒在一个数轴上,根据图24中标出的数值, 可以判定墨迹盖住的整数个数是( ) A .285. B .286. C .287. D .288. 2、 整数a,b 满足:a b ≠O 且a+b =O ,有以下判断:○1a,b 之间没有正分数. ○2a,b 之间没有负分数. ○3a,b 之间至多有一个整数. ○4a,b 之间至少有一个整数. 其中,正确判断的个数为( ) (A )1. (B )2. (C) 3. (D) 4.3、 方程13153520052007x x x x +++=⨯ 的解是 x =( ) (A )20072006. (B )20062007 . (C) 10032007. (D) 20071003.4、 如图2,边长为1的正六边形纸片是轴对称图形,它的对称轴的条数是( )。
(A ) 1. (B) 3. (C) 6. (D) 9..5、 在9个数:-5,-4,-3,-2,-1,0,1,2,3中,能使不等式-32x <-14成立的数的个数是( ) (A )2. (B)3. (C)4. (D)5.6、 韩老师特制了4个同样的立方块,并将它们如图3(a )放置,然后又如图3(b )放置,则图3(b )中四个底面正方形中的点数之和为( ) (A )11. (B)13. (C)14. (D)16.图37、 对于彼此互质的三个正整数,,a b c ,有以下判断:①,,a b c 均为奇数. ②,,a b c 中必有一个偶数. ③,,a b c 没有公因数. ④,,a b c 必有公因数. 其中,不正确的判断的个数为( )(A )1 . (B )2 . (C )3 . (D )4.图1LOBA图28、 某中学科技楼窗户设计如图15所示.如果每个符号(窗户形状)代表一个阿拉伯数码,每横行三个符号自左至右看成一个三位数.这四层组成四个三位数,它们是837,571,206,439.则按照图15中所示的规律写出1992应是图16中的()9、将棱长为1厘米的42个立方体积木拼在一起,构成一个实心的长方体。
数学培优测试卷七年级上

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001……D. -1/32. 若a、b、c是三角形的三边,且a+b>c,b+c>a,a+c>b,则下列不等式中一定成立的是()A. a+b+c>0B. a-b+c>0C. a+b-c>0D. a-b-c>03. 下列各数中,绝对值最小的是()A. -1B. 0C. 1D. -24. 若x²=9,则x的值为()A. ±3B. ±2C. ±1D. ±55. 下列函数中,y是x的二次函数的是()A. y=2x+1B. y=x²+2C. y=x³+1D. y=3x²-2x+16. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则S10=()A. 10a1+45dB. 10a1+90dC. 10a1+55dD. 10a1+50d7. 在平面直角坐标系中,点A(-2,3)关于y轴的对称点是()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,-3)8. 若a、b是方程x²-2ax+a²=0的两个实数根,则a+b=()A. 2B. 0C. -2D. -49. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的两个锐角互余D. 正方形的对边平行10. 若x、y是方程2x²-3xy+2y²=0的两个实数根,则x²+y²=()A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)11. 已知一元二次方程x²-5x+6=0,求其两个根之和和两个根之积。
12. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则S20=______。
13. 在平面直角坐标系中,点P(3,-2)到原点O的距离是______。
人教版:七年级数学上册培优试卷(2套),家有初中生,打印1份

人教版:七年级数学上册培优试卷(2套),家有初中生,打
印1份
数学学科进入初中阶段应该注意些什么?肯定是要多做多练,进入初中阶段的学习,数学学科的难度相比于小学阶段会增强很多,因此孩子只有通过自己去做题,感受知识考点的难度,并且把每一个考点知识弄清楚,数学成绩才会得到提升。
而初一数学呢,在整个初中阶段是打基础的阶段,更注重的是对一些基础考点的掌握,所以在做题的时候,不需要选择难度系数大的,只要紧贴教材就可以,下面这两套初一数学的培优试卷,我相信对同学们会有帮助。
七年级上册数学 期末试卷培优测试卷

七年级上册数学期末试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.如图,数轴上线段AB=4(单位长度),CD=6(单位长度),点A在数轴上表示的数是-16,点C在数轴上表示的数是18.(1)点B在数轴上表示的数是________,点D在数轴上表示的数是________,线段AD=________;(2)若线段AB以4个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动,设运动时间为t秒,①若BC=6(单位长度),求t的值;②当0<t<5时,设M为AC中点,N为BD中点,求线段MN的长.【答案】(1)-12;24;40(2)解:①设运动t秒时,BC=6当点B在点C的左边时,由题意得:4t+6+2t=30,解之:t=4;当点B在点C的右边时,由题意得:4t−6+2t=30,解之:t=6.综上可知,若BC=6(单位长度),t的值为4或6秒;②当0<t<5时,A点表示的数为−16+4t,B点表示的数为−12+4t,C点表示的数为18−2t,D点表示的数为24−2t,∵M为AC中点,N为BD中点,∴点M表示的数为:=1+t,点N表示的数为:=6+t∴MN=6+t-(1+t)=5.【解析】【解答】解:(1)∵AB=4,A在数轴上表示的数是-16,∴点B在数轴上表示的数为:-16+4=-12∵点C在数轴上表示的数是18,CD=6,∴点D在数轴上表示的数为:18+6=24;∵点A在数轴上表示的数是-16,点D在数轴上表示的数为24,∴AD=|-16-24|=40故答案为:-12;24;40【分析】(1)由线段AB=4,点A在数轴上表示的数是-16,根据两点间的距离公式可得点B在数轴上表示的数;由CD=6,点C在数轴上表示的数是18,根据两点间的距离公式可得点D在数轴上表示的数;根据两点间的距离公式可得AD的长。
七年级上册数学有理数培优50题含详细答案

(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。
人教版初中数学七年级上学期培优强化训练试卷及答案(1-8)

培优强化训练11.下列关于单项式532xy -的说法中,正确的是()A.系数是3,次数是2B.系数是53,次数是2C.系数是53,次数是3D.系数是53-,次数是32.下列四个平面图形中,不能折叠成无盖的长方体盒子的是()A B C D3.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了()A.70元B.120元C.150元D.300元4.若021=+a ,则=3a 。
5.如图,点A 在射线OX 上,OA 的长等于2cm。
如果OA 绕点O 按逆时针方向旋转30°到/OA ,那么点/A 的位置可以用(2,30°)表示。
如果将/OA 再沿逆时针方向继续旋转45°,到//OA ,那么点//A 的位置可以用(,)表示。
X/A O 6.已知线段AB=20cm,直线..AB 上有一点C,且BC=6cm,M 是线段AC 的中点,则AM=cm。
7.某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a 个座位。
(1)请你在下表的空格里填写一个适当的代数式:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…第n排的座位数1212+a…(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少个座位?8.在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示。
(1)这个几何体由个小正方体组成,请画出这个几何体的三视图。
主视图左视图俯视图(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色。
(3分)(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm2?(4分)数学培优强化训练(一)答案1.下列关于单项式532xy -的说法中,正确的是(D )A.系数是3,次数是2B.系数是53,次数是2C.系数是53,次数是3D.系数是53-,次数是32.下列四个平面图形中,不能折叠成无盖的长方体盒子的是(A)A B C D3.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了(B)A.70元B.120元C.150元D.300元4.若021=+a ,则=3a 。
数学七年级上册 期末试卷培优测试卷

数学七年级上册期末试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.4.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.【答案】(1)解:a=-3,b=9(2)解:设3秒后,点C对应的数为x则CA=|x+3|,CB=|x-9|∵CA=3CB∴|x+3|=3|x-9|=|3x-27|当x+3=3x-27,解得x=15,此时点C的速度为当x+3+3x-27=0,解得x=6,此时点C的速度为(3)解:设运动的时间为t点D对应的数为:t点P对应的数为:-3-5t点Q对应的数为:9+20t点M对应的数为:-1.5-2t点N对应的数为:4.5+10t则PQ=25t+12,OD=t,MN=12t+6∴为定值.【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。
七年级数学上册期末试卷培优测试卷

七年级数学上册期末试卷培优测试卷一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.2.如图(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;(2)将(1)中的纸片沿GF剪下,得梯形纸片ABFG,再将GF沿GM折叠,F落在F′处,GF′与BF交于H,且ABHG为长方形(如图2);再将纸片展开,将AG沿GN折叠,使A 点落于GF上一点A,(如图3).在两次折叠的过程中,求两条折痕GM、GN所成角的度数?【答案】(1)解:∵∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′)∴GE平分∠DED′,FE平分∠CED′,∴∠DED′=2∠DEG,∠CED′=2∠CEF∴∠DED′+∠CED′=180°即2∠CEF+2∠DEG=180°∴∠CEF+∠DEG=90°答:∠CEF与∠DEG的关系是互余.(2)解:如图,由题意得:GM平分∠FGF, GN平分∠AGF设∠FGM=∠F'GM=x,∠FGN=∠AGN=y∴2y-2x=90°,即y-x=45°,∴∠MGN=∠FGN-∠FGM=45°答:两条折痕GM、GN所成角的度数为45°.【解析】【分析】(1)根据折叠的性质,可知GE平分∠DED′,FE平分∠CED′,再利用角平分线的性质,可证得∠DED′=2∠DEG,∠CED′=2∠CEF,然后根据平角的定义,可解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上期数学培优试题
1、如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a - D.2b
2、式子||||||a b ab a b ab ++的所有的可能的值有( ) 个 个 C. 4 个 D.无数个
3、如果m 是大于1的有理数,那么m 一定小于它的( )
A.相反数
B.倒数
C.绝对值
D.平方
4、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值为
5、已知2(3)|2|0a b -+-=,求b a 的值是( ) .3 C
6、设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,b a
,b 的形式,则20062007a b +的值为
7、若,,a b c 为整数,且20072007||||1a b c a -+-=,则||||||c a a b b c -+-+-的值为
8、若|1|a b ++与2(1)a b -+互为相反数,则321a b +-的值为
9、已知a 、b 是有理数,且a b ,含23a b c +=,23a c x +=,23
c b y +=,请将,,,,a b c x y 按从小到大的顺序排列为
10、已知2a b =;5c a =,代数式624a b c a b c
+--+的值为 11、当多项式210m m +-=时,多项式3222006m m ++的值为
12、已知:当1x =时,代数式31Px qx ++的值为2007,当1x =-时,代数式31Px qx ++的值为
13、已知,a b 均为正整数,且1ab =,代数式11
a b a b +++的值为 14、已知一个数列2,5,9,14,20,x ,35…则x 的值应为:( )
15、在以下两个数串中:
1,3,5,7,…,1991,1993,1995,1997,1999和1,4,7,10,…,
1990,1993,1996,1999,同时出现在这两个数串中的数的个数共有( )
个。
16、请你从右表归纳出计算13+23+33+…+n 3的公式,并算出13+23+33+…+1003
的值为
17、观察下列各式,你会发现什么规律
3×5=15,而15=42-1 5×7=35,而35=62-1 … …
11×13=143,而143=122-1 … …
将你猜想的规律用只含一个字母的式子表示出来 。
18、一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为( )
A 、142857
B 、157428
C 、124875
D 、175248
19、若2x =-是关于x 的方程233x x a +=-的解,则代数式21a a
-的值是( ) A 、0 B 、283
- C 、29- D 、29 20、计算:①2232(2)|3.14|| 3.14|(1)
ππ-+------- ②{}235324[3(2)(4)(1)]7-⨯-+⨯-⨯---÷--
(3)222133599101+++⨯⨯⨯ (4)11111120072006200520041232323-+-+-
21、已知1abc =,求111
a b c ab a bc b ac c ++++++++的值。
22、解方程200612233420062007
x x x x ++++=⨯⨯⨯⨯
23、已知a 、b 、c 都是有理数,且1111113a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
,而0a b c ++≠,试求111a b c ++的值。
24、某中学组织初一同学春游,如果租用45座的客车,则有15个人没有座位;如果租用同数量的60座的客车,则除多出一辆外,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为每辆300元,问租用哪种客车更合算租几辆车
25、有一满池水,池底有泉总能均匀地向外涌流,已知用24部A型抽水机,6天可抽干池水,若用21部A型抽水机13天也可抽干池水,设每部抽水机单位时间的抽水量相同,要使这一池水永抽不干,则至多只能用多少部A型抽水机抽水
26、小张在水中逆流游泳,于A处所带水壶丢失。
8分钟后发觉水壶丢失,此时壶正顺流而下,立即追赶,在A处下游320米处将水壶追到,求水流的速度。
27、一名落水小孩抱着木头在河中漂流,在A处遇到逆水而上的快艇和轮船,因雾大而未被发现,1小时快艇和轮船获悉此事,随即掉头追救,求快艇和轮船从获悉到追及小孩各需多少时间
28、某市场鸡蛋买卖按个数计价,一商贩以每个元购进一批鸡蛋,但在贩运途中不慎碰坏了12个,剩下的蛋以每个元售出,结果仍获利元,问该商贩当初买进多少个鸡蛋
29、一个三位数,十位上的数比个位上的数大4,个位上的数比百位上的数小2,若将此三位数的个位与百位对调,所得的新数与原数之比为7:4,求原来的三位数。