2017年电大高等数学基础期末考试复习试题及答案
电大高等数学基础考试答案完整版

若,贝寸—9sin3x.
5-23.0.0下列积分计算正确的是(B).
ABCD
三、计算题
(
(1)利用极限的四则运算法则,主要是因式分解,消去零因子。
(2)利用连续函数性质:有定义,则极限 类型1:利用重要极限|,,|计算
1-1求.解:
1-2
1-3求解:=
类型2:因式分解并利用重要极限,化简计算。
1-1
解:
1-2
解:
1-3设,求.
解:
类型2:加减法与复合函数混合运算的求导,先加减求导,后复合求导
2-1,求解
2-2,求
解:
2-3,求,
解:
类型3:
乘积与复合函数混合运算的求导,先乘积求导,后复合求导
,求。
解:
其他:,求。
解:
0807.设,
求解:
0801.设,
求解:
0707.设,
求解:
0701.设,
核准通过,归档资 料。
未经允许,请勿外
传!
高等数学基础归类复习
、单项选择题
1-1下列各函数对中,(C)中的两个函数相等.
1-2.设函数的定义域为,则函数的图形关于(C)对称.
A.坐标原点轴轴
设函数的定义域为,则函数的图形关于(D)对称.
轴轴D.坐标原点
.函数的图形关于(A)对称.
(A)坐标原点(B)轴(C)轴(D)
1.函数的定义域是(3,+8).
函数的定义域是(2,3)U(3,4
函数的定义域是(—5,2)
若函数,则1.
2若函数,在处连续,则e.
.函数在处连续,则2函数的间断点是x=0.
函数的间断点是x=3^函数的间断点是x=2
2017高等数学考试题及答案

2017高等数学考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. -1D. 2答案:B3. 函数f(x)=x^3-3x+1的导数为:A. 3x^2-3B. x^3-3xC. 3x^2-3x+1D. 3x^2-3x-1答案:A4. 定积分∫(0,1) x^2 dx的值为:A. 1/3B. 1/2C. 1/4D. 1/6答案:B5. 曲线y=x^2与直线y=2x所围成的面积为:A. 1/3B. 1/6C. 1/2D. 2/3答案:A二、填空题(每题4分,共20分)6. 函数f(x)=x^3的反函数为_________。
答案:f^(-1)(x)=x^(1/3)7. 极限lim(x→∞) (1/x)的值为_________。
答案:08. 函数f(x)=x^2+2x+1的极小值点为_________。
答案:-19. 定积分∫(0,2) x dx的值为_________。
答案:210. 曲线y=e^x与直线y=1所围成的面积为_________。
答案:e-1三、计算题(每题10分,共30分)11. 计算极限lim(x→2) (x^2-4)/(x-2)。
解:lim(x→2) (x^2-4)/(x-2) = lim(x→2) ((x+2)(x-2))/(x-2) = lim(x→2) (x+2) = 412. 计算定积分∫(-1,1) (x^2+1) dx。
解:∫(-1,1) (x^2+1) dx = [1/3x^3 + x](-1,1) = (1/3 + 1) - (-1/3 + 1) = 4/313. 计算曲线y=ln(x)绕x轴旋转一周所形成的立体的体积。
解:V = ∫(1,e) π(ln(x))^2 dx = π∫(1,e) (x^2/2 - x + 1/x) dx = π[1/3x^3 - x^2/2 + ln(x)](1,e) = π(1/3e^3 - e^2/2 + 1 - 1/3 + 1/2) = π(1/6e^3 - e^2/2 + 5/6)四、证明题(每题10分,共20分)14. 证明:对于任意x∈(0,1),有ln(x)<x-1。
电大高等数学基础考试答案完整版(整理)

核准通过,归档资料。
未经允许,请勿外传!高等数学基础归类复习一、单项选择题1-1下列各函数对中,( C )中的两个函数相等.A. 错误!未找到引用源。
,错误!未找到引用源。
B. 错误!未找到引用源。
,错误!未找到引用源。
C.错误!未找到引用源。
,错误!未找到引用源。
D. 错误!未找到引用源。
,错误!未找到引用源。
1-⒉设函数错误!未找到引用源。
的定义域为错误!未找到引用源。
,则函数错误!未找到引用源。
的图形关于(C )对称.A. 坐标原点B. 错误!未找到引用源。
轴C. 错误!未找到引用源。
轴D. 错误!未找到引用源。
设函数错误!未找到引用源。
的定义域为错误!未找到引用源。
,则函数错误!未找到引用源。
的图形关于(D )对称.A. 错误!未找到引用源。
B. 错误!未找到引用源。
轴C. 错误!未找到引用源。
轴D. 坐标原点.函数错误!未找到引用源。
的图形关于(A )对称.(A) 坐标原点(B) 错误!未找到引用源。
轴(C) 错误!未找到引用源。
轴(D) 错误!未找到引用源。
1-⒊下列函数中为奇函数是(B ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
下列函数中为奇函数是(A ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
下列函数中为偶函数的是( D ).A 错误!未找到引用源。
B 错误!未找到引用源。
C 错误!未找到引用源。
D 错误!未找到引用源。
2-1 下列极限存计算不正确的是( D ).A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
2-2当错误!未找到引用源。
时,变量( C )是无穷小量.A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
当错误!未找到引用源。
时,变量( C )是无穷小量.A 错误!未找到引用源。
2017高等数学考试题及答案

2017高等数学考试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^3-3x+1的导数是()A. 3x^2-3B. x^3-3C. 3x^2-3xD. 3x^2+3x-3答案:A2. 极限lim(x→0) (sin x)/x的值是()A. 0B. 1C. 2D. 3答案:B3. 曲线y=x^2在点(1,1)处的切线斜率是()A. 2B. 1C. 0D. -1答案:A4. 定积分∫(0 to 1) x^2 dx的值是()A. 1/3B. 1/2C. 1D. 2答案:B二、填空题(每题5分,共20分)1. 函数f(x)=e^x的不定积分是______。
答案:e^x + C2. 函数y=ln(x)的导数是______。
答案:1/x3. 函数y=x^3-6x^2+11x-6的极值点是______。
答案:1, 24. 函数y=x^2-4x+4的最小值是______。
答案:0三、解答题(每题10分,共30分)1. 求函数y=x^3-6x^2+11x-6的单调区间。
答案:函数y=x^3-6x^2+11x-6的导数为y'=3x^2-12x+11。
令y'>0,解得x>3或x<1/3;令y'<0,解得1/3<x<3。
因此,函数在(-∞, 1/3)和(3, +∞)上单调递增,在(1/3, 3)上单调递减。
2. 求定积分∫(0 to 2) (2x+1)dx。
答案:∫(0 to 2) (2x+1)dx = [x^2+x](0 to 2) = (4+2) - (0+0) = 6。
3. 求曲线y=x^3-3x+1与直线y=2x-1的交点坐标。
答案:联立方程组:\begin{cases}y = x^3 - 3x + 1 \\y = 2x - 1\end{cases}解得x^3 - 5x + 2 = 0,解得x=1,代入直线方程得y=1,所以交点坐标为(1,1)。
2017年电大《工程数学》期末考试复习资料及答案

1.设B A ,都是n 阶方阵,则下列命题正确的是(A )AB A B = 2.向量组的 秩是(B ).B. 33.n 元线性方程组AX b =有解的充分必要条件是(A ).A. )()(b A r A r =4. 袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两球都是红球的概率是(D ).D. 9/255.设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则(C )是μ无偏估计. C.321535151x x x ++ 6.若A 是对称矩阵,则等式(B )成立. B.A A ='7.=⎥⎦⎤⎢⎣⎡-15473( D ).D. 7543-⎡⎤⎢⎥-⎣⎦8.若(A )成立,则n 元线性方程组AX O =有唯一解.A. r A n ()=9. 若条件(C )成立,则随机事件A ,B 互为对立事件. C.∅=AB 且A B U +=10.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,记∑==3131i i X X ,则下列各式中(C)不是统计量. C. ∑=-312)(31i i X μ11. 设A 为43⨯矩阵,B 为25⨯矩阵,当C 为(B )矩阵时,乘积B C A ''有意义.B.42⨯12. 向量组[][][][]αααα1234000*********====,,,,,,,,,,, 的极大线性无关组是( A ).A .ααα234,,13. 若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=(D )时线性方程组有无穷多解. D .1/214. 掷两颗均匀的骰子,事件“点数之和为4”的概率是(C ). C.1/12 15. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是(B ).B. 未知方差,检验均值⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡732,320,011,00116. 若A B ,都是n 阶矩阵,则等式(BAB BA = 17. 向量组[][][][]3,2,1,3,0,0,0,2,1,0,0,14321====αααα的秩是(C ).C. 318. 设线性方程组b AX =有惟一解,则相应的齐次方程组O AX =(A ).A. 只有0解 19. 设A B ,为随机事件,下列等式成立的是(D ).D. )()()(AB P A P B A P -=-1.设B A ,为三阶可逆矩阵,且0>k ,则下式(B )成立.B A AB '=2.下列命题正确的是(C3.设⎥⎦⎤⎢⎣⎡=1551A ,那么A 的特征值是(D ) D .-4,64.矩阵A 适合条件( D )时,它的秩为r . D .A 中线性无关的列有且最多达r 列 5.下列命题中不正确的是( D ).D .A 的特征向量的线性组合仍为A 的特征向量 6. 掷两颗均匀的骰子,事件“点数之和为3”的概率是( B ). B .1/17.若事件A 与B 互斥,则下列等式中正确的是.A .P A B P A P B ()()()+=+8. 若事件A ,B 满足1)()(>+B P A P ,则A 与B 一定(A ). A .不互斥9.设A ,B 是两个相互独立的事件,已知则=+)(B A P (B )B .2/310.设n x x x ,,,21 是来自正态总体),(2σμN 的样本,则(B )是统计量. B .∑=ni i x n 11 1. 若0351021011=---x ,则=x (A).A.32. 已知2维向量组4321,,,αααα,则),,,(4321ααααr 至多是(B ).B 23. 设B A ,为n 阶矩阵,则下列等式成立的是(C ). C. B A B A '+'='+)(4. 若A B ,满足(B ),则A 与B 是相互独立. B. )()()(B P A P AB P =5. 若随机变量X的期望和方差分别为)(X E 和)(X D ,则等式(D )成立. D.22)]([)()(X E X E X D -=1.设BA ,均为n 阶可逆矩阵,则下列等式成立的是( ).)BAAB 11=-,31)(,21)(==B P A P2.方程组⎪⎩⎪⎨⎧=+=+=-331232121a x xa x x a x x 相容的充分必要条件是(),其中0≠i a ,)3,2,1(=i . B .0321=-+a a a 3.设矩阵⎥⎦⎤⎢⎣⎡--=1111A 的特征值为0,2,则3A 的特征值为 ( ) . B .0,6 4. 设A ,B 是两事件,其中A ,B 互不相容,则下列等式中( )是不正确的. C. )()()(B P A P AB P = 5.若随机变量X 与Y 相互独立,则方差)32(Y X D -=( ).D .)(9)(4Y D X D +6.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是(B .n s ⨯ )矩阵. 7.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( )是AX =B 的解. A .213231X X +8.设矩阵,则A 的对应于特征值2=λ的一个特征向量α=()C .1,1,0 列事件运算关系正确的是( ).A .A B BA B +=9. 下10.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( N2.,3) ).D .11.设321,,x x x 是来自正态总体),(2σμN 的样本,则()是μ的无偏估计. C .32153511x x ++12.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( ).B .t 分布 a a a b b b c c c 1231231232=,则a a a ab a b a bc c c 123112233123232323---=(D ).D. -6⒈设⒉若,则a =(A ). A. 1/2⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=C. 10⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B )AB BA --=11 ⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D =-kA k A n ()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为().C. 5321--⎡⎣⎢⎤⎦⎥⒏方阵A 可逆的充分必要条件是(B ).B.A ≠0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).D. ()B C A ---'111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A 10100200001000=aa⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是 A. ()A B A AB B +=++2222 ⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).C. [,,]--'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).B. 有唯一解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ).A. 3⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.B.ααα123,,⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ).D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).可能无解 ⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论()成立.D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-1 ⒈A B ,为两个事件,则( B )成立. B. ()A B B A +-⊂⒉如果( C )成立,则事件A 与B 互为对立事件. C. AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). D. 307032⨯⨯..4. 对于事件A B ,,命题(C )是正确的. C. 如果A B ,对立,则A B ,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6,0.87.设f x ()为连续型随机变量X 的密度函数,则对任意的a ba b ,()<,E X ()=(A).A.xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ). B.9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P (D ).D. f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. C. Y X =-μσ⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量. A. x 1⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计D.x x x 123--二、填空题(每小题3分,共15分) 1.设B A ,均为3阶方阵,2,3A B ==,则13A B -'-=-18 .2.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ= ,则称λ为A 的特征值. 3设随机变量12~0.20.5X a ⎛⎫ ⎪⎝⎭,则a = 0.3.4.设X 为随机变量,已知3)(=X D ,此时D X ()32-= 27 . 5.设θˆ是未知参数θ的一个无偏估计量,则有 ˆ()E θθ=. 6.设B A ,均为3阶方阵,6,3A B =-=,则13()A B -'-=8.7.设A 为n 阶方阵,若存在数λ和非零n 维向量X ,使得AX X λ=,则称X 为A 相应于特征值λ的特征向量.8.若5.0)(,8.0)(==B A P A P ,则=)(AB P0.3 .9.如果随机变量X 的期望2)(=X E ,9)(2=X E ,那么=)2(X D 20.10.不含未知参数的样本函数称为 统计量 . 11. 设B A ,均为3阶矩阵,且3==B A ,则=--12AB -8 .12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=070040111A ,_________________)(=A r .213. 设A B C ,,是三个事件,那么A 发生,但C B ,至少有一个不发生的事件表示为 )(C B A +.14. 设随机变量)15.0,100(~B X ,则=)(X E15.15. 设n x x x ,,,21 是来自正态总体N (,)μσ的一个样本,∑==ni i x n x 11,则=)(x D 16. 设B A ,是3阶矩阵,其中2,3==B A ,则='-12B A 12.17. 当λ=1 时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解..18. 若5.0)(,6.0)(,9.0)(===+B P A P B A P ,则=)(AB P 0.2.19. 若连续型随机变量X 的密度函数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则=)(X E 2/3.20. 若参数θ的估计量 θ满足E ( )θθ=,则称 θ为θ的无偏估计nσ. 1.行列式701215683的元素21a 的代数余子式21A 的值为= -56.2.已知矩阵n s ij c C B A ⨯=)(,,满足CB AC =,则A 与B 分别是n n s s ⨯⨯, 阶矩阵.3.设B A ,均为二阶可逆矩阵,则=⎥⎦⎤⎢⎣⎡---111O BA O⎥⎦⎤⎢⎣⎡O A B O .4.线性方程组⎪⎩⎪⎨⎧=-+=+++=+++326423343143214321x x x x x x x x x x x 一般解的自由未知量的个数为 2.5.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量.6. 设A ,B 为两个事件,若P (AB )= P (A )P (B ),则称A 与B 相互独立 . 7.设随机变量X 的概率分布为则a = 0.3 .8.设随机变量⎪⎪⎭⎫ ⎝⎛3.03.04.0210~X,则E X ()=0.9. 9.设X 为随机变量,已知2)(=X D ,那么=-)72(X D 8.10.矿砂的5个样本中,经测得其铜含量为1x ,2x ,3x ,4x ,5x (百分数),设铜含量服从N (μ,2σ),2σ未知,在01.0=α下,检验0μμ=,则取统计量 x t =1. 设B A ,均为n 阶可逆矩阵,逆矩阵分别为11,--B A ,则='--11)(A B B A )(1'-. 2. 向量组),0,1(),1,1,0(),0,1,1(321k ===ααα线性相关,则_____=k .1-3. 已知2.0)(,8.0)(==AB P A P ,则=-)(B A P 6.0 .4. 已知随机变量⎥⎦⎤⎢⎣⎡-5.01.01.03.05201~X ,那么=)(X E 4.2.5. 设1021,,,x x x 是来自正态总体)4,(μN 的一个样本,则~101101∑=i i x )104,(μN . 1.设412211211)(22+-=x x x f ,则0)(=x f 的根是 2,2,1,1--2.设向量β可由向量组n ααα,,,21 线性表示,则表示方法唯一的充分必要条件是n ααα,,,21 . 线性无关3.若事件A ,B 满足B A ⊃,则 P (A - B )= )()(B P A P - 4..设随机变量的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它,010,1)(2x x kx f ,则常数k =π45.若样本n x x x ,,,21 来自总体)1,0(~N X ,且∑==ni i x nx 11,则~x )1,0(nN7.设三阶矩阵A 的行列式21=A ,则1-A =2 8.若向量组:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k .2≠9.设4元线性方程组AX =B 有解且r (A )=1,那么AX =B 的相应齐次方程组的基础解系含有 3 个解向量.10.设A B ,互不相容,且P A ()>0,则P B A ()=0 . 11.若随机变量X ~ ]2,0[U ,则=)(X D 1/3.12.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ的无偏估计. ⒈210140001---=7 .⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 .⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 . ⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a= 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 .⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A .⒈当λ=1时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 . ⒊向量组[][][][]123120100000,,,,,,,,,,,的秩3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ的根. 10.若矩阵A满足A A'=-1,则称A为正交矩阵.⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为2/5. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 .3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x xx . 8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . 1.统计量就是不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和最大似然估 两种方法.3.比较估计量好坏的两个重要标准是无偏性,有效性 . 4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.三、(每小题16分,共64分) A1.设矩阵A B =---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎤⎦⎥112235324215011,,且有AX B =',求X .解:利用初等行变换得112100235010324001112100011210012301---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥1201721511 由矩阵乘法和转置运算得X A B ='=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-12017215112011511111362 2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-52012515105158500500021461351341B A3.已知B AX =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=108532,1085753321B A ,求X.解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1055200132100013211001085010753001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1211002550103640211121100013210001321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→121100255010146001即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1212551461A由矩阵乘法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-12823151381085321212551461B A X 4.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=031052,843722310B A ,I 是3阶单位矩阵,且有B X A I =-)(,求X .1. 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111 →---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111即()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111由矩阵乘法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-=-6515924031052111103231)(1B A I X 5.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=21101211,1341102041121021B A ,求(1)A ;(2)B A I )(-. (1)13171020411*******41102041121021----=----=A =2513171200011317120121-=--=--(2)因为 )(A I-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------0341112041221020所以 B A I)(-=⎪⎪⎪⎪⎪⎭⎫⎝⎛-------⋅0341112041221020=⎪⎪⎪⎪⎪⎭⎫⎝⎛--21101211⎪⎪⎪⎪⎪⎭⎫⎝⎛----09355245.6.设矩阵⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=653312,112411210B A ,解矩阵方程B AX '=.解:因为 ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫⎝⎛-120730001210010411100112010411001210 ⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛---→123100247010235001123100001210011201,得 ⎪⎪⎪⎭⎫⎝⎛----=-1232472351A 所以='=-B A X 1⎪⎪⎪⎭⎫⎝⎛----123247235⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-13729161813635132. 7设矩阵⎥⎦⎢⎢⎢⎣⎡---=423532211A1)1111021121110211423532211=---=---=---=A(2)利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---103210012110001211100423010532001211 →-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥112100011210001511112100011210001511 即A-=-----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥12017215118 .,3221,5231X B ,XA B A 求且=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=X..,B A B ,AX .BA X,A AI 求且己知例于是得出⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡---→⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡=--18305210738525312341112353221123513251001132510011021130110015321)(119.设矩阵⎥⎦⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210211321,100110132B A 解:(1)因为210110132-=--=A12111210211110210211321-=-===B所以 2==B A AB .(2)因为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100010110001132I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→10010011001012/32/1001100100110010101032所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-1011012/32/11A .10.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎦⎢⎢⎢⎣⎡--=350211B ,求X .解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→110100121010120001110100011110010101即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--11121120)(1A I所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X 11.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组. 解:因为(1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→11770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→00200011002341 所以,r (4321,,,αααα) = 3. 它的一个极大线性无关组是 431,,ααα(或432,,ααα).1⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎦⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC 13写出4阶行列式:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a14求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R15.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x xA2.求线性方程组 的全部解.解: 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------0462003210010101113122842123412127211131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000002200010101113106600022000101011131方程组的一般解为x x x x x x14243415=+==-⎧⎨⎪⎩⎪ (其中x 4为自由未知量) 令x 4=0,得到方程的一个特解)0001(0'=X .方程组相应的齐方程的一般解为⎪⎩⎪⎨⎧-===4342415xx x x x x (其中x 4为自由未知量)令x 4=1,得到方程的一个基础解系)1115(1'-=X .于是,方程组的全部解为 10kX X X +=(其中k 为任意常数)2.当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=+++=+++-=--+1479637222432143214321λx x x x x x x x x x x x有解,在有解的情况下求方程组的全部解. 解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---19102220105111021211114796371221211λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1000010511108490110000105111021211λλ 由此可知当1≠λ时,方程组无解。
电大微积分基础期末试卷及答案_1801

户 Xdx = 主二 lna +c(a > 0 且 α# 1)
j内 == e I 十 C
(e)' =ex
(1唱 Z)F=J 一 xlna
(l nx)'
=~ z
f ~ d卢nlxl 十 C
f
(sinx )' = cosx
si 叫x =-cosx +c
(cosx)' = - sinx
fco 叫x =sinx +c
B. sinx 十 cosx
nL
LK
fJ
z
--- 'AU
n 一亏一
e
Z
-,
e-'"
z
4f nu
寸
z
nu
3. 函数 y=(X+ 1) 2 在区间〈一 2 , 2) 是(
4 若 Jf 叫工 =x 2 e 2 .r 十 c ,则 f(x)=(
A. 2xe2z
C. 2x e 2
:&
5. 微分方程 y'=O 的通解为(
7. 2
1
8.
v=~x 十一
1
1
2
2-
,
9. e- x ' dx
10. 4
三、计算题(每小题 11 分,本题共 44 分}
(z 十 5) (x-3 )
1 1.解:原式工 lim ----,----,--一 ~'-'3 (x-3)(x 十 3) 3
4
(1 1 分)
1 1 12. 解 zj=-sinJZ· 一τ=+ 一 2 ,J x x
6. 函数 f(x- l) =x 2 -2x 十 7 ,则 f(x)=
2017高等数学考试题及答案

2017高等数学考试题及答案一、选择题(每题4分,共20分)1. 极限lim(x→0) (sin x)/x 的值是多少?A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = x^2 + 3x + 2的导数是什么?A. 2x + 3B. x^2 + 3C. 2x^2 + 3xD. 3x + 2答案:A3. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B4. 定积分∫(0 to 1) x^2 dx 的值是多少?A. 1/3B. 1/2C. 1/4D. 1/6答案:B5. 无穷级数∑(1/n^2) 从n=1到无穷的和是多少?A. 1B. π^2/6C. eD. ln(2)答案:B二、填空题(每题4分,共20分)1. 函数f(x) = ln(x)的不定积分是 ________。
答案:xln(x) - x + C2. 微分方程dy/dx = 2x的通解是 y = ________。
答案:x^2 + C3. 函数f(x) = e^x 的反函数是 ________。
答案:ln(x)4. 函数f(x) = x^3 - 3x^2 + 2x的极值点是 ________。
答案:x = 0 和 x = 25. 曲线y = x^2 在点(1,1)处的切线斜率是 ________。
答案:2三、解答题(每题15分,共30分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点和极值。
答案:首先求导数:f'(x) = 3x^2 - 12x + 11。
令f'(x) = 0,解得x = 1 和 x = 3/3。
计算二阶导数:f''(x) = 6x - 12。
当x = 1时,f''(1) = -6 < 0,所以x = 1是极大值点,极大值为f(1) = 0。
当x = 3/3时,f''(3/3) = 2 > 0,所以x = 3/3是极小值点,极小值为f(3/3) = 2/3。
电大高等数学基础复习资料

高等数学基础复习资料复习资料一一、单项选择题1.设函数)(x f 的定义域为)(∞+-∞,,则函数)(x f +)(x f - 的图形关于(C )对称。
A .x y = B .x 轴 C .y 轴 D .坐标原点2.当0→x 时,变量(D )是无穷小量。
A .x 1 B . xx sin C . x2 D . )1ln(+x 3.下列等式中正确的是(B ). A .xdx x d arctan )11(2=+ B . 2)1(xdx x d -= C . dx d xx 2)2ln 2(= D . xdx x d cot )(tan = 4.下列等式成立的是(A ). A .)()(x f dx x f dx d=⎰B . )()(x f dx x f ='⎰C . )()(x f dx x f d =⎰D . )()(x f x df =⎰5.下列无穷积分收敛的是(C ). A .⎰+∞11dx xB .⎰+∞11dx xC . ⎰+∞1341dx xD .⎰+∞1sin xdx二、填空题 1.函数24)(2--=x x x f 的定义域是22>-≤x x 或.2.函数12++=x x y 的间断点是1-=x . 3.曲线xx f 1)(=在点(1,1)处的切线的斜率是21-=k . 4.函数)1ln(2x y +=的单调增加区间是[)∞+,0. 5.⎰-dx ed x 2=dx e x 2-.三、计算题1.计算极限4586lim 224+-+-→x x x x x .解:原式=)4)(1()4)(2(lim4----→x x x x x =12lim 4--→x x x =32. 2.设x x x y ln tan 2+=,求y '.解:xx x x x y 1ln 2sec 22⨯++='=x x x x ++ln 2sec 23.设x x y 35ln +=,求y '.解:)(ln ln 3524'⨯+='x x x y =xxx 24ln 35+4.设52cos x x y -=,求dy .解:45)sin (cos 2x x x y --='=452sin x x --dx y dy '==dx x x )52sin (4--5.设53cos x x y -=,求dy .解:425)sin (cos 3x x x y --='=425sin cos 3x x x --dx y dy '==dx x x x )5sin cos 3(42--6.设x x e y 3sin +=,求dy 解:3ln 3)(sin sin x xx ey +'⨯='=3ln 3cos sin x x x e +dx y dy '==dx x e x x)3ln 3cos (sin +7.设2cos ln x y =,求dy . 解:)(cos cos 122'='x x y =x x x2)sin (cos 122⨯-=2tan 2x x -. 8.设)(x y y =是由方程yxy x 2sin 2=确定的函数,求y '. 解:方程两边同时对x 求导得:2222cos sin 2yy x y y y x y x '-='+ 移项合并同类项得:y xy y y x y y x sin 22)2cos (222-='+再移项得:xy y x yxy y y 2cos sin 22222+-='9.计算不定积分⎰dx xx cos .解:原式=⎰x d x cos 2=C x +sin 210.计算定积分⎰exdx x 1ln .解:原式=⎰-e x d x e x x 122)(ln 21ln 2=⎰-e xdx e 12212=141222e x e -=4141222+-e e =4142+e11.计算定积分⎰2sin πxdx x .解:原式=⎰---20)cos (02cos ππdx x x x =02sin )00(πx +-=1四、应用题1.求曲线x y =2上的点,使其到点)03(,A 的距离最短. 解:设曲线x y =2上的点)(y x ,到点)03(,A 的距离为d ,则 22)3(y x d +-==x x +-2)3(=952+-x x求导得:952522+--='x x x d令0='d 得驻点25=x ,将25=x 带入x y =2中得210±=y ,有实际问题可知该问题存在最大值,所以曲线x y =2上的点)21025(,和点)21025(-,到点)03(,A 的距离最短. 五、证明题当0>x 时,证明不等式)1ln(x x +>. 证明:设)1ln(x x y +-= ∵ 0=x 时,0=y 求导得:x y +-='111=xx +1 当0>x ,0>'y 即)1ln(x x y +-=为增函数∴ 当0>x 时,0)1ln(>+-=x x y 即 )1ln(x x +>成立复习资料二一、单项选择题1.设函数)(x f 的定义域为)(∞+-∞,,则函数)(x f -)(x f - 的图形关于(D )对称. A .x y = B .x 轴 C .y 轴 D .坐标原点 2.当0→x 时,变量(C )是无穷小量。