2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷解析版
2019-2020学年陕西省宝鸡市高新区九年级上期末数学模拟试卷及答案解析

2019-2020学年陕西省宝鸡市高新区九年级上期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)一元二次方程x2﹣2x=0的解是()A.x=0B.x=2C.x1=0,x2=﹣2D.x1=0,x2=2 2.(3分)如图所示几何体的左视图正确的是()A.B.C.D.3.(3分)下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分4.(3分)两个人的影子在两个相反的方向,这说明()A.他们站在阳光下B.他们站在路灯下C.他们站在路灯的两侧D.他们站在月光下5.(3分)若===k,则k的值为()A.2B.﹣1C.2或﹣1D.不存在6.(3分)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在左右,则a的值大约为()A.12B.15C.18D.27.(3分)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB =6,AC=4,则AE的长是()A.1B.2C.3D.48.(3分)“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2109.(3分)在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③S正方形ABCD=4+;其中正确的是()A.①②③B.只有①③C.只有①D.只有③10.(3分)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)11.(3分)已知一个一元二次方程的二次项系数是2,常数项是﹣14,它的一个根是﹣7,则这个方程为.12.(3分)矩形的两边长分别为x和6(x<6),把它按如图方式分割成三个全等的小矩形,每一个小矩形与原矩形相似,则x=.。
陕西省宝鸡市2020版九年级上学期数学期末考试试卷(II)卷

陕西省宝鸡市2020版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共11分)1. (2分)池塘里,一只青蛙刚从水里钻出来,同学们开始议论:①青蛙可能会再次钻入水底;②青蛙一定会爬上岸;③青蛙可能会飞上天;④青蛙不可能再次钻入水底。
这些说法中正确的有()A . 1个B . 2个C . 3个D . 4个2. (2分)若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A . m<-4B . m>-4C . m<4D . m>43. (2分)若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A . a≥2B . a≤2C . a<2D . a>24. (2分)如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是()A .B .C .D .5. (2分) (2019九上·虹口期末) 如果抛物线开口向下,那么的取值范围为()A .B .C .D .6. (1分) (2019·银川模拟) 如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为________.二、填空题 (共9题;共9分)7. (1分)已知∠AOB=30°,C是射线OB上的一点,且OC=4,若以点C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是________.8. (1分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是________.9. (1分)(2017·普陀模拟) 已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于________厘米.10. (1分)如图,已知圆锥的底面直径为4,母线长为6,则它的全面积为________.11. (1分)如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为________12. (1分) (2015九上·宜春期末) 太原市公共自行车的建设速度、单日租骑量等四项指标稳居全国首位.公共自行车车桩的截面示意图如图所示,AB⊥AD,AD⊥DC,点B,C在EF上,EF∥HG,EH⊥HG,AB=75cm,AD=24cm,BC=25cm,EH=4cm,则点A到地面的距离是________ cm.13. (1分) (2016九上·云梦期中) 如图是一座抛物形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降3m时,水面的宽为________ m.14. (1分)(2019·高新模拟) 在平面直角坐标系中,将二次函数y=﹣x2+x+6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,将这个新函数的图象记为G(如图所示).当直线y=m与图象G有4个交点时,则m的取值范围是________.15. (1分) (2017九上·东丽期末) 如图,在半径为的⊙ 中,弦,于点,则 ________三、解答题 (共11题;共117分)16. (10分) (2016九上·鼓楼期末) 计算题(1)解方程:2x2﹣4x﹣6=0.(2)①直接写出函数y=2x2﹣4x﹣6的图象与x轴交点坐标;②求函数y=2x2﹣4x﹣6的图象的顶点坐标.17. (12分) (2017九下·滨海开学考) 射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099①乙107101098②9.5(注:方差公式.)(1)完成表中填空①________;②________;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩的方差为,你认为推荐谁参加比赛更合适,请说明理由.18. (15分)(2017·新泰模拟) 如图,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△D EF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,射线EF 与线段AB相交于点G,与射线CA相交于点Q.(1)求证:△BPE∽△CEQ;(2)求证:DP平分∠BPQ;(3)当BP=a,CQ= a,求PQ长(用含a的代数式表示).19. (10分)(2017·广丰模拟) 在两个不透明的口袋中分别装有三个颜色分别为红色、白色、绿色的小球,这三个小球除颜色外其他都相同,(1)在其中一个口袋中一次性随机摸出两个球,请写出在这一过程中的一个必然事件;(2)若分别从两个袋中随机取出一个球,试求出两个小球颜色相同的概率.20. (5分) (2016九上·自贡期中) 某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?21. (15分)综合与探究如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=﹣x2+x+4.抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点.(1)求A、B两点的坐标及直线l的函数表达式.(2)将抛物线W沿x轴向右平移得到抛物线W′,设抛物线W′的对称轴与直线l交于点F,当△ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W′的函数表达式.(3)如图2,连接AC,CB,将△ACD沿x轴向右平移m个单位(0<m≤5),得到△A′C′D′.设A′C交直线l于点M,C′D′交CB于点N,连接CC′,MN.求四边形CMNC′的面积(用含m的代数式表示).22. (5分)(2017·埇桥模拟) 如图,AB是半圆O的直径,点C在圆弧上,D是弧AC的中点,OD与AC相交于点E.求证:△ABC∽△COE.23. (10分) (2019九上·海珠期末) 如图,已知:AB为⊙O直径,PQ与⊙O交于点C,AD⊥PQ于点D,且AC为∠DAB的平分线,BE⊥PQ于点E.(1)求证:PQ与⊙O相切;(2)求证:点C是DE的中点.24. (10分)(2018·曲靖模拟) 如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.25. (10分) (2019九上·荆门期中) 有一块形状如图的五边形余料,,,,, .要在这块余料中截取一块矩形材料,其中一边在上,并使所截矩形的面积尽可能大.(1)若所截矩形材料的一条边是或,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.26. (15分) (2018九上·宁波期中) 如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,连结AC,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连结FC.(1)求证:∠ACF=∠ADB;(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长(用含m、n的代数式表示);(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.参考答案一、单选题 (共6题;共11分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共9题;共9分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共11题;共117分)16-1、16-2、17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
陕西省宝鸡市2019-2020学年九年级(上)期末数学试卷 含解析

2018-2019学年九年级(上)期末数学试卷一.选择题(共10小题)1.如图,几何体的左视图是()A.B.C.D.2.已知点(3,﹣4)在反比例函数y=的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)3.已知三角形的两边长分别是3和4,第三边是方程x2﹣12x+35=0的一个根,则此三角形的周长是()A.12 B.14 C.15 D.12或144.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B.5 C.6 D.85.如图,以正方形ABCD的一边CD为边,向形外作等边三角形CDE,连接AC、AE,则下列结论错误的是()A.∠ACE=105°B.∠ADE=150°C.∠DEA=15°D.△EFC的面积大于△ACF的面积6.下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形7.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.138.在平时的数学测验中,小刚、小文、凡凡、欢欢四人表现优秀,现决定从这四名同学中任选两名参加数学竞赛,则恰好选中小刚和凡凡两名同学的概率是()A.B.C.D.9.如图,点M是▱ABCD边CD上的一点,BM的延长线交AD大延长线于点N,则图中相似的三角形有()A.3对B.2对C.1对D.0对10.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A.B.C.D.二.填空题(共4小题)11.在一个不透明的口袋内放入红球8个,黑球4个,黄球n个,这些球除颜色外无任何差别,摇匀后随机摸出一个恰好是黄球的概率为,则放入口袋中的黄球个数是.12.若反比例函数y=的图象在每一象限内,y值随x值的增大而减小,则k的值可以是(写出一个即可).13.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为.14.如图,在等边三角形ABC中,点D、E、F分别在边AB、BC、CA上,且∠ADF=∠BED=∠CFE=90°,则△DEF与△ABC的面积之比为.三.解答题(共9小题)15.如图,有一块三角形的铁皮求作:以∠C为一个内角的菱形CEFG,使顶点F在AB边上要求:尺规作图,不写作法,保留作图痕迹.16.已知,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(0,3)、B(3,4)、C(2,2).(1)以点B为位似中心,在网格区域内画出△A1BC1,使△A1BC1与△ABC位似,且位似比为2:1;(2)点A1的坐标是;(3)△A1BC1的面积=个平方单位.17.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.18.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.19.如图,有一块长和宽分别为70厘米和50厘米的长方形铁皮,要在它的四角截去四个全等的小正方形,做成一个无盖的长方体铁盒,且使盒子的底面积为1500平方厘米,那么做成盒子的高是多少厘米?20.环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度γ(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度γ与时间x成反比例关系(1)求整改过程中硫化物的浓度γ与时间x的函数表达式(要求标注自变量x的取值范围)(2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?21.如图,在Rt△ACB中,∠C=90°,AC=16cm,BC=8cm,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为4cm/s,Q点的运动速度为2cm/s,那么运动几秒时,△ABC和△PCQ相似?22.已知A(﹣4,m+10)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.23.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.参考答案与试题解析一.选择题(共10小题)1.如图,几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形,比较即可.【解答】解:如图,几何体的左视图是.故选:C.2.已知点(3,﹣4)在反比例函数y=的图象上,则下列各点也在该反比例函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(2,6)【分析】利用反比例函数图象上点的坐标特征进行判断.【解答】解:∵点(3,﹣4)在反比例函数y=的图象上,∴k=3×(﹣4)=﹣12,而3×4=﹣3×(﹣4)=2×6=12,﹣2×6=﹣12,∴点(﹣2,6)在该反比例函数图象上.故选:C.3.已知三角形的两边长分别是3和4,第三边是方程x2﹣12x+35=0的一个根,则此三角形的周长是()A.12 B.14 C.15 D.12或14【分析】利用因式分解方法求出方程的解得到x的值,确定出三角形第三边长,即可确定出周长.【解答】解:解方程x2﹣12x+35=0得x=5或x=7,当x=5时,三角形三边长为3、4、5,此时三角形的周长为3+4+5=12;当x=7时,三角形三边长为3、4、7,由于3+4=7,不能构成三角形,此情况舍去;故选:A.4.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B.5 C.6 D.8【分析】由AD∥BE∥CF可得=,代入可求得EF.【解答】解:∵AD∥BE∥CF,∴=,∵AB=1,BC=3,DE=2,∴=,解得EF=6,故选:C.5.如图,以正方形ABCD的一边CD为边,向形外作等边三角形CDE,连接AC、AE,则下列结论错误的是()A.∠ACE=105°B.∠ADE=150°C.∠DEA=15°D.△EFC的面积大于△ACF的面积【分析】根据四边形ABCD是正方形,三角形CDE为等边三角形,结合其性质对每个选项分析、解答即可得出结论;【解答】解:根据题意,四边形ABCD是正方形,三角形CDE为等边三角形,∴∠ACE=45°+60°=105°,∠ADE=90°+60°=150°,∠DEA==15°;所以,选项A、B、C正确;∵S△ACF=×CF×AD,S△EFC=×CF×AD;AD>AD;即△EFC的面积小于△ACF的面积;故选项D错误;故选:D.6.下列说法中不正确的是()A.两组对边分别平行的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相平分且垂直的四边形是菱形D.有一组邻边相等的矩形是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定定理判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,不符合题意;B、对角线相等且平分的四边形是矩形,符合题意;C、对角线互相平分且垂直的四边形是菱形,不符合题意;D、有一组邻边相等的矩形是正方形,不符合题意,故选:B.7.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13【分析】根据反比例函数系数k的几何意义,可得第一象限的小正方形的面积,再乘以4即可求解.【解答】解:∵双曲线y=经过点D,∴第一象限的小正方形的面积是3,∴正方形ABCD的面积是3×4=12.故选:C.8.在平时的数学测验中,小刚、小文、凡凡、欢欢四人表现优秀,现决定从这四名同学中任选两名参加数学竞赛,则恰好选中小刚和凡凡两名同学的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出恰好选中小刚和凡凡两名同学的情况数,即可求出所求.【解答】解:列表如下(1表示小刚,2表示小文,3表示凡凡,4表示欢欢):所有等可能的情况有12种,其中恰好选中1,3的情况有2种,则P(恰好选中小刚和凡凡两名同学)==,故选:D.9.如图,点M是▱ABCD边CD上的一点,BM的延长线交AD大延长线于点N,则图中相似的三角形有()A.3对B.2对C.1对D.0对【分析】根据平行四边形的性质得出AB∥CD,AD∥BC,再根据相似三角形的判定定理推出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴△DMN∽△CMB,△DMN∽△NBA,∴△CMB∽△NBA,即有3对相似三角形,故选:A.10.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A.B.C.D.【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【解答】解:A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;B、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m<0,相矛盾,故错误;D、由函数y=x+m的图象可知m=0,由函数y=的图象可知m<0,相矛盾,故错误.故选:B.二.填空题(共4小题)11.在一个不透明的口袋内放入红球8个,黑球4个,黄球n个,这些球除颜色外无任何差别,摇匀后随机摸出一个恰好是黄球的概率为,则放入口袋中的黄球个数是 3 .【分析】根据概率公式列出关于n的分式方程,解方程即可得.【解答】解:因为摇匀后随机摸出一个恰好是黄球的概率为,所以=,解得:n=3,经检验n=3是分式方程的解,即黄球有3个,故答案为:3.12.若反比例函数y=的图象在每一象限内,y值随x值的增大而减小,则k的值可以是 2 (写出一个即可).【分析】根据“图象在其每个象限内,y的值随x值的增大而减小”得k+1>0,求解后再根据选项作出正确选择.【解答】解:根据题意,得k+1>0,解得k>﹣1,所以2符合.故答案为:2.13.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为10m.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵=即=,∴楼高=10米.故答案为:10m.14.如图,在等边三角形ABC中,点D、E、F分别在边AB、BC、CA上,且∠ADF=∠BED=∠CFE=90°,则△DEF与△ABC的面积之比为.【分析】设BE=x,Rt△BDE中,求得BD=2BE=2x、DE==x,再证△DEF 是等边三角形,继而可得AD=x,得出AB的长后,利用相似三角形的性质可得答案.【解答】解:设BE=x,∵△ABC是等边三角形,且DE⊥BC,∴∠B=60°,∠BED=90°,∴∠BDE=30°,∴BD=2BE=2x,DE==x,∵DF⊥AB,∴∠ADF=90°,∴∠EDF=60°,同理知∠DEF=∠EFD=∠EDF=60°,∴△DEF也是等边三角形,且DE=EF=DF=x,在Rt△ADF中,AD===x,∴AB=BD+AD=3x,则=()2=()2=,故答案为:.三.解答题(共9小题)15.如图,有一块三角形的铁皮求作:以∠C为一个内角的菱形CEFG,使顶点F在AB边上要求:尺规作图,不写作法,保留作图痕迹.【分析】先作∠ACB的平分线,交AB于点D,再以点D为顶点作∠CDP=∠DCB、∠CDQ =∠DCA,分别交AC、BC于点E、F,据此即可得.【解答】解:如图所示,菱形CEFD即为所求.16.已知,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(0,3)、B(3,4)、C(2,2).(1)以点B为位似中心,在网格区域内画出△A1BC1,使△A1BC1与△ABC位似,且位似比为2:1;(2)点A1的坐标是(﹣3,2);(3)△A1BC1的面积=10 个平方单位.【分析】(1)延长BA到A1,使BA1=2BA,延长BC到C1,使BC1=2BC,再顺次连接即可得;(2)由所作图形可得坐标;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1BC1即为所求;(2)由图知,点A1的坐标是(﹣3,2),故答案为:(﹣3,2).(2)△A1BC1的面积=6×4﹣×4×2﹣×2×4﹣×6×2=10(个平方单位),故答案为:10.17.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.【分析】(1)连接CB延长CB交DE于O,点O即为所求.(2)连接OG,延长OG交DF于H.线段FH即为所求.(3)根据=,可得=,即可推出DE=4m.【解答】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.18.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.19.如图,有一块长和宽分别为70厘米和50厘米的长方形铁皮,要在它的四角截去四个全等的小正方形,做成一个无盖的长方体铁盒,且使盒子的底面积为1500平方厘米,那么做成盒子的高是多少厘米?【分析】设截去的小正方形的边长为xcm,则长方体盒子的底的长为(70﹣2x)cm,宽为(50﹣2x)cm.根据题意列出方程就可以求出其解.【解答】解:设做成盒子的高是x厘米,由题意得:(70﹣2x)(50﹣2x)=1500,整理得:x2﹣60x+500=0,x=10或50,显然x<50,故只取x=10,即做成盒子的高是10厘米.20.环保局对某企业排污情况进行检测,结果显示,所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L,环保局要求该企业立即整改,在15天以内(含15天)排污达标,整改过程中,所排污水中硫化物的浓度γ(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度γ与时间x成反比例关系(1)求整改过程中硫化物的浓度γ与时间x的函数表达式(要求标注自变量x的取值范围)(2)该企业所排污水中硫化物的浓度,能否在15天以内(含15天)排污达标?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12,3<12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得:,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12,3<12<15,故能在15天以内不超过最高允许的1.0mg/L.21.如图,在Rt△ACB中,∠C=90°,AC=16cm,BC=8cm,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为4cm/s,Q点的运动速度为2cm/s,那么运动几秒时,△ABC和△PCQ相似?【分析】设同时运动ts时两个三角形相似,再分△PCQ∽△BCA或△PCQ∽△ACB两种情况进行讨论即可.【解答】解:设同时运动ts时两个三角形相似,当△PCQ∽△BCA,则,t=0.8;当△PCQ∽△ACB,则,t=2.答:同时运动0.8s或者2s时两个三角形相似.22.已知A(﹣4,m+10)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.【分析】(1)先把点A的坐标代入反比例函数解析式,即可得到m的值,再把点B的坐标代入反比例函数解析式,即可求出n的值,然后利用待定系数法确定一次函数的解析式;(2)先求出直线与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【解答】解:(1)把A(﹣4,m+10)代入y=,得m=(m+10)×(﹣4),解得m=﹣8,∴A(﹣4,2),∴m=﹣4×2=﹣8,所以反比例函数解析式为y=﹣,把B(n,﹣4)代入y=﹣,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得,解得,所以一次函数的解析式为y=﹣x﹣2;(2)y=﹣x﹣2中,令y=0,则x=﹣2,即直线y=﹣x﹣2与x轴交于点C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;(3)由图可得,不等式kx+b﹣>0的解集为:x<﹣4或0<x<2.23.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.【分析】(1)根据矩形的性质先证明四边形AECF是平行四边形,然后证明∠EAC=∠ACE 得出AE=CE,从而可证得四边形AECF是菱形;(2)首先设BF=x,则FC=8﹣x,然后由勾股定理求得(8﹣x)2+42=x2,求出x的值,得出FC,再根据菱形面积计算方法即可求得答案.【解答】证明:(1)∵四边形ABCD是矩形∴AE∥CF∵AE=CF∴四边形AECF是平行四边形∵AC平分∠ECF∴∠ACF=∠ACE∵AE∥CF∴∠ACF=∠EAC∴∠EAC=∠ACE∴AE=CE∴四边形AECF是菱形(2)设BF=x,则FC=8﹣x∴AF=FC=8﹣x在Rt△ABF中AB2+BF2=AF2∴(8﹣x)2=x2+42解得:x=3∴FC=8﹣3=5∴S菱形AECF=FC•AB=5×4=20。
2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷

2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷一、选择题(每题3分,共计30分;每道题只有一个选项是符合题意的,请将正确答案填涂在答题卡上)1. 一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.2. 下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.13. 若a,b是方程x2+2x−2016=0的两根,则a2+3a+b=()A.2016B.2015C.2014D.20124. 一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个5. 如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m6. 把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.√2:1B.4:1C.3:1D.2:17. 如图,在正方形ABCD中,E为AB的中点,G,F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF= 90∘,则GF的长为( )A.2B.3C.4D.58. 某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A.560(1+x)2=1850B.560+560(1+x)2=1850C.560(1+x)+560(1+x)2=1850D.560+560(1+x)+560(1+x)2=18509. 如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为( )A.30B.27C.14D.3210. 如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=kx(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.9 2B.274C.245D.12二、填空题(本大题共8小题,共24分)已知2b3a−b =34,则ab=________.若3是关于x的方程x2−x+c=0的一个根,则方程的另一个根等于________.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅均后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是________.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25∘,则∠BEC=________.如图,D、E分别是△ABC的边AB、BC上的点,DE // AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为________.小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2, 0),则点E的坐标是________.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=________.三、解答题(共66分,注意写出必要的解题步骤)选用合适的方法解下列方程:(1)x2−7x+10=0;(2)3x2−4x−1=0;(3)(x+3)2=(1−3x)2.如图所示,请画出这个几何体的三视图.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,篮球1个.若从中随机摸出一个球,摸到篮球的概率是14.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=kx (k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=34OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤kx的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.参考答案与试题解析2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷一、选择题(每题3分,共计30分;每道题只有一个选项是符合题意的,请将正确答案填涂在答题卡上)1.【答案】C【考点】由三视图判断几何体【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,即可得出答案.【解答】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱;2.【答案】C【考点】正方形的判定矩形的判定与性质中点四边形菱形的判定平行四边形的性质【解析】根据三角形的中位线性质、平行四边形的性质、矩形的判定、菱形的判定、正方形的判定逐个判断即可.【解答】∵四边相等的四边形一定是菱形,∴ ①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴ ②错误;∵对角线相等的平行四边形才是矩形,∴ ③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴ ④正确;其中正确的有2个.3.【答案】C【考点】函数的求值【解析】先根据一元二次方程的解的定义得到a2+2a−2016=0,即a2=−2a+2016,则a2+3a+b可化简为a+ b+2016,再根据根与系数的关系得a+b=−2,然后利用整体代入的方法计算.【解答】解:∵a是方程x2+2x−2016=0的实数根,∴a2+2a−2016=0,∴a2=−2a+2016,∴a2+3a+b=−2a+2016+3a+b=a+b+2016.∵a,b是方程x2+2x−2016=0的两个实数根,∴a+b=−2,∴a2+3a+b=−2+2016=2014.故选C.4.【答案】A【考点】利用频率估计概率【解析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,其中“黑白球总数=黑球个数+白球个数“,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【解答】设盒子里有白球x个,根据=得:8=80解得:x=32.经检验得x=32是方程的解.答:盒中大约有白球32个.故选:A.5.【答案】C【考点】相似三角形的应用【解析】此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高.【解答】如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得CBBD=10.8而CB=1.2,∴BD=0.96,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得x3.56=10.8,∴x=4.45,∴树高是4.45m.6.【答案】A【考点】相似多边形的性质【解析】设原矩形的长为2a,宽为b,表示出对折后的矩形的宽为a,然后根据相似多边形对应边成比例列出比例式,即可得出大矩形与小矩形的相似比.【解答】设原矩形的长为2a,宽为b,则对折后的矩形的长为b,宽为a,∵对折后所得的矩形与原矩形相似,∴2ab =ba,∴大矩形与小矩形的相似比是√2:1;7.【答案】B【考点】相似三角形的性质与判定正方形的性质勾股定理【解析】由在正方形ABCD中,∠GEF=90∘,易证得△AGE∽△BEF,又由E为AB的中点,AG=1,BF=2,根据相似三角形的对应边成比例,易求得AE与BE的长,然后由勾股定理求得答案.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=90∘,∴∠AGE+∠AEG=90∘,∵∠GEF=90∘,∴∠AEG+∠BEF=90∘,∴∠AGE=∠BEF,∴△AGE∼△BEF,∴AGBE =AEBF,∵E为AB的中点,∴AE=BE,∵AG=1,BF=2,∴1AE =AE2,解得:BE=AE=√2,在Rt△AEG中,GE2=AG2+AE2=3,在Rt△BEF中,EF2=BE2+BF2=6,∴在Rt△GEF中,GF=√GE2+EF2=3.故选B.8.【答案】D【考点】由实际问题抽象出一元二次方程【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),根据二、三月份平均每月的增长为x,则二月份的产量是560(1+x)吨,三月份的产量是560(1+x)(1+x)=560(1+x)2,再根据第一季度共生产钢铁1850吨列方程即可.【解答】依题意得二月份的产量是560(1+x),三月份的产量是560(1+x)(1+x)=560(1+x)2,∴560+560(1+x)+560(1+x)2=1850.9.【答案】A【考点】相似三角形的性质与判定平行四边形的性质【解析】用相似三角形的面积比等于相似比的平方,以及面积的和差求解.【解答】解:∵BEAB=23,∴BEAE=25.∵四边形ABCD是平行四边形,∴AB=CD,CD // AB,BC // AD,∴△BEF∼△AED,∴S△BEFS△AED=(25)2=425,∵ △BEF的面积为4,∴S△AED=25,∴S四边形ABFD=S△AED−S△BEF=21.∵AB=CD,BEAB=23,∴BECD=23.∵AB // CD,∴△BEF∼△CDF,∴S△BEFS△CDF=(BECD)2=(23)2=49,∴S△CDF=9,∴S平行四边形ABCD=S四边形ABFD+S△CDF=21+9=30.故选A.10.【答案】C【考点】反比例函数系数k的几何意义【解析】所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B的横纵坐标的积即是反比例函数的比例系数.【解答】∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a, b),∵BD=3AD,∴D(a4, b),∵点D,E在反比例函数的图象上,∴ab4=k,∴E(a, ka),∵S△ODE=S矩形OCBA −S△AOD−S△OCE−S△BDE=ab−12⋅ab4−12k−12⋅3a4⋅(b−ka)=9,∴k=245,二、填空题(本大题共8小题,共24分)【答案】119【考点】比例的性质【解析】根据2b3a−b =34,可得3a−b2b=43,再根据比例的性质即可求解.【解答】解:∵2b3a−b =34,∴3a−b2b =43,∴3a2b −12=43,a b =119.故答案为:119.【答案】−2【考点】根与系数的关系【解析】设方程的另一个根为a,根据根与系数的关系得出a+3=1,求出即可.【解答】设方程的另一个根为a,∵3是关于x的方程x2−x+c=0的一个根,∴a+3=1,解得:a=−2,【答案】10%【考点】一元二次方程的应用【解析】设平均每次降价的百分率是x,根据原价及经两次降价后的现价,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】设平均每次降价的百分率是x,根据题意得:60(1−x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.【答案】13【考点】列表法与树状图法【解析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】画树状图如图:∵一共有6种情况,两个球都是白球有2种,∴P(两个球都是白球)=26=13,【答案】115∘【考点】矩形的性质【解析】由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ACD,从而求出∠ACB,最后用等腰三角形的性质即可.【解答】∵四边形ABCD是矩形,∴∠ADC=∠BCD=90∘,BE=CE,∵∠ADF=25∘,∴∠CDF=∠ADC−∠ADF=90∘−25∘=65∘,∵DF=DC,∴∠DFC=∠DCA=180−∠CDF2=180−652=1152,∴∠BCE=∠BCD−∠DCA=90∘−1152=652,∵BE=CE,∴∠BEC=180∘−2∠BCE=180∘−65∘=115∘,【答案】1:16【考点】相似三角形的性质与判定【解析】证明BE:EC=1:3,得出BE:BC=1:4;证明△BDE∽△BAC,△DOE∽△AOC,得到DEAC =BEBC=14,由相似三角形的性质即可解决问题.【解答】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE // AC,∴△BDE∽△BAC,△DOE∽△AOC,∴DEAC =BEBC=14,∴S△DOE:S△AOC=(DEAC )2=116;【答案】(3.76, 0)【考点】中心投影相似三角形的性质与判定位置的确定【解析】根据相似三角形的判定和性质即可得到结论.【解答】∵BC // DE,∴△ABC∽△ADE,∴BCDE =2−0.752,∵BC=1.1,∴DE=1.76,∴OE=OD+DE=2+1.76=3.76.∴E(3.76, 0).【答案】−3【考点】反比例函数系数k的几何意义反比例函数图象上点的坐标特征平行四边形的性质【解析】由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.【解答】过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO⋅EO=3∴设P点坐标为(x, y)k=xy=−3三、解答题(共66分,注意写出必要的解题步骤)【答案】x2−7x+10=0.(x−2)(x−5)=0,x−2=0或x−5=0,解得x1=2,x2=5.△=(−4)2−4×3×(−1)=28>0,则x=4±2√76=2±√73;∵(x+3)2=(1−3x)2,∴x+3=1−3x或x+3=−1+3x,解得:x=−0.5或x=2.【考点】解一元二次方程-公式法解一元二次方程-因式分解法【解析】(1)利用因式分解法求解可得;(2)利用公式法求解可得;(3)利用因式分解法求解可得.【解答】x2−7x+10=0.(x−2)(x−5)=0,x−2=0或x−5=0,解得x1=2,x2=5.△=(−4)2−4×3×(−1)=28>0,则x=4±2√76=2±√73;∵(x+3)2=(1−3x)2,∴x+3=1−3x或x+3=−1+3x,解得:x=−0.5或x=2.【答案】【考点】作图-三视图【解析】根据三视图的画法解答即可.【解答】【答案】设红球有x个,根据题意得:12+1+x =14,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个;列表如下:所有等可能的情况有12种,其中两次摸到的球恰是一黄一蓝的情况有4种,则P=412=13.【考点】概率公式列表法与树状图法【解析】(1)设口袋里红球的个数为x,根据题意列出方程,求出方程的解得到x的值即可;(2)列表得出所有等可能的情况数,找出两次摸到的球恰是一黄一蓝的情况数,即可求出所求概率.【解答】设红球有x个,根据题意得:12+1+x=14,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个;列表如下:所有等可能的情况有12种,其中两次摸到的球恰是一黄一蓝的情况有4种,则P=412=13.【答案】该单位这次共有30名员工去风景区旅游【考点】一元二次方程的应用【解析】首先根据共支付给旅行社旅游费用10500元,如果人均旅游费用500元,可知人数超过15人,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去风景区旅游,可由对话框,超过15人的人数为(x−15)人,每人降低10元,共降低了10(x−15)元.实际每人收了[500−10(x−15)]元,列出方程求解.【解答】设该单位这次共有x名员工去风景区旅游.因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500−10(x−15)]x=10500,整理,得x2−65x+1050=0,解得x1=35,x2=30.当x1=35时,500−10(x−15)=300<320,故舍去x1;当x2=30时,500−10(x−15)=350>320,符合题意.【答案】∵CD // EF // AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴CDAB =DFBF,EFAB=FGBG,又∵CD=EF,∴DFBF =FGBG,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴3DB+3=4BD+7,∴BD=9,BF=9+3=12,∴ 1.6AB =312,解得,AB=6.4m.【考点】相似三角形的应用【解析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【解答】∵CD // EF // AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴CDAB =DFBF,EFAB=FGBG,又∵CD=EF,∴DFBF =FGBG,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴3DB+3=4BD+7,∴BD=9,BF=9+3=12,∴ 1.6AB =312,解得,AB=6.4m.【答案】证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO−AE=OB−BF=CO−CG=DO−DH,即:OE=OF=OG=OH,∴四边形EFGH是矩形;∵G是OC的中点,∴GO=GC,∵DG⊥AC,∴∠DGO=∠DGC=90∘,又∵DG=DG,∴△DGC≅△DGO,∴CD=OD,∵F是BO中点,OF=2cm,∴BO=4cm,∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB=√DB2−DC2=4√3,∴矩形ABCD的面积=4×4√3=16√3cm2.【考点】矩形的判定与性质【解析】(1)首先证明四边形EFGH是平行四边形,然后再证明HF=EG;(2)根据题干求出矩形的边长CD和BC,然后根据矩形面积公式求得.【解答】证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO−AE=OB−BF=CO−CG=DO−DH,即:OE=OF=OG=OH,∴四边形EFGH是矩形;∵G是OC的中点,∴GO=GC,∵DG⊥AC,∴∠DGO=∠DGC=90∘,又∵DG=DG,∴△DGC≅△DGO,∴CD=OD,∵F是BO中点,OF=2cm,∴BO=4cm,∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB=√DB2−DC2=4√3,∴矩形ABCD的面积=4×4√3=16√3cm2.【答案】∵CD⊥OA,∴DC // OB,∴OBCD =OAAD=36=12,∴CD=2OB=8,∵OA=OD=34OB=3,∴A(3, 0),B(0, 4),C(−3, 8),把A、B两点的坐标分别代入y=ax+b可得{3a+b=0b=4,解得{a=−43b=4,∴一次函数解析式为y=−43x+4,∵反比例函数y=kx的图象经过点C,∴k=−24,∴反比例函数的解析式为y=−24x;由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(−3, 8),∴0<−43x+4≤−24x的解集为−3≤x<0;∵B(0, 4),C(−3, 8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP−PB=5−4=1,∴P点坐标为(0, 9)或(0, −1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0, 8),∴P点坐标为(0, 12);综上可知存在满足条件的点P,其坐标为(0, −1)或(0, 9)或(0, 12).【考点】反比例函数与一次函数的综合反比例函数综合题二次函数综合题【解析】(1)由平行线分线段成比例可求得CD的长,则可求得A、B、C、的坐标,再利用待定系数法可求得函数解析式;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,结合函数图象可求得答案;(3)由B、C的坐标可求得BC的长,当BC=BP时,则可求得P点坐标,当BC=PC时,可知点C在线段BP的垂直平分线上,则可求得BP的中点坐标,可求得P点坐标.【解答】∵CD⊥OA,∴DC // OB,∴OBCD =OAAD=36=12,∴CD=2OB=8,∵OA=OD=34OB=3,∴A(3, 0),B(0, 4),C(−3, 8),把A、B两点的坐标分别代入y=ax+b可得{3a+b=0b=4,解得{a=−43b=4,∴一次函数解析式为y=−43x+4,∵反比例函数y=kx的图象经过点C,∴k=−24,∴反比例函数的解析式为y=−24x;由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(−3, 8),∴0<−43x+4≤−24x的解集为−3≤x<0;∵B(0, 4),C(−3, 8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP−PB=5−4=1,∴P点坐标为(0, 9)或(0, −1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0, 8),∴P点坐标为(0, 12);综上可知存在满足条件的点P,其坐标为(0, −1)或(0, 9)或(0, 12).。
陕西省宝鸡市金台区2019-2020学年九年级上学期期末考试数学试题精品

第1题图九年级(上)数学期末质量检测试题(卷)2020.01一、选择题(每题3分,共计30分;每道题只有一个选项是符合题意的,请将正确答案填涂在答题卡上)1. 一个几何体的三视图如图所示,那么这个几何体是( )A. B. C. D.2. 下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )个.A. 4B. 3C. 2D. 13. 若a ,b 是方程x 2+2x-2016=0的两根,则a 2+3a+b=( )A. 2016B. 2015C. 2014D. 20124. 一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )A. 32个B. 36个C. 40个D. 42个5. 如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m ,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是( )A. 4.25mB.4.45mC. 4.60mD.4.75m6. 把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是( )2:1B. 4:1C. 3:1D. 2:17. 如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为( )A. 2B. 3C. 4D. 58. 某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可列方程为( ) A. 560+(1+x)2=1850 B. 560+560(1+x)2=1850C. 560(1+x)+560(1+x)2=1850D. 560+560(1+x)+560(1+x)2=18509. 如图,E 为平形四边形ABCD 的边AB 延长线上的一点,且BE :AB=2:3,△BEF 的面积为4,则平形四边形ABCD 的面积为( ) A. 30B. 27C. 14D. 3210. 如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数ky x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则的值是( )A.92B.74 C. 245D. 12 二、填空题(本大题共8小题,共24分) 11. 已知2b 33a b 4=-,则ab=______. 第9题图第5题图第7题图第10题图12. 若3是关于x 的方程x 2-x+c=0的一个根,则方程的另一个根等于______. 13. 国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是______.14. 在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是______. 15. 如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF=DC ,若∠ADF=25°,则∠BEC= .16. 如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为______.第18题图17. 小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC ,在距地面2米的A 处有一盏灯,圆桌的影子为DE ,依据题意建立平面直角坐标系,其中点D 的坐标为(2,0),则点E 的坐标是 . 18. 如图,反比例函数ky x的图象经过平形四边形ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,平形四边形ABCD 的面积为6,则k =__________. 三、解答题(共66分,注意写出必要的解题步骤) 19.(每题5分,共15分)选用合适的方法解下列方程:(1)x 2-7x+10=0. (2)3x 2-4x-1=0, (3)(x +3)2=(1-3x)2.第15题图 第16题图第17题图20.(6分)如图所示,请画出这个几何体的三视图.21.(7分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是14.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.22.(8分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?23.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.第23题图24.(10分)如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD 的面积.第24题图25.(12分)如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数kyx(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=34OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤kx的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由第25题图九年级(上)数学期末质量检测试题答案一、选择题(每题3分,共计30分)1.D2.C3.C4.A5.B6.A7.B8.D9.A 10.C二、填空题(每空3分,共计24分)11.12.-2 13.10% 14.15.115°16.1:16 17.(3.76,0)18.-3三、解答题(共66分)19.(每题5分,共15分)解:(1)x2-7x+10=0.(x-2)(x-5)=0,x-2=0或x-5=0,解得x1=2,x2=5.(2)△=(-4)2-4×3×(-1)=28,x===,(3)∵(x+3)2=(1-3x)2,∴x+3=1-3x或x+3=-1+3x,解得:x=-0.5或x=2.20.(6分)解:如图所示:21.(7分)解:(1)设红球有x个,根据题意得:=,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个;(3分)(2)列表如下:红黄黄蓝红---(黄,红)(黄,红)(蓝,红)黄(红,黄)---(黄,黄)(蓝,黄)黄(红,黄)(黄,黄)---(蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)---由上表可知,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种,则P==.(8分)22.(8分)解:设该单位这次共有x名员工去风景区旅游.(1分)因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500-10(x-15)]x=10500,(3分)整理,得x2-65x+1050=0,解得x1=35,x2=30.(6分)当x1=35时,500-10(x-15)=300<320,故舍去x1;当x2=30时,500-10(x-15)=350>320,符合题意.(7分)答:该单位这次共有30名员工去风景区旅游.(8分)23.(8分)【答案】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,(2分)∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,(5分)∴BD=9,BF=9+3=12,∴,解得,AB=6.4m.(8分)因此,路灯杆AB的高度6.4m。
陕西省宝鸡市九年级(上)期末数学试卷(含解析)

陕西省宝鸡市九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.若,则的值为()A.1B.C.D.2.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1 3.△ABC三边边长之比为3:5:7,与它相似的△DEF的最长边边长21cm,则△DEF的周长为()A.45cm B.32cm C.24cm D.18cm4.在反比例函数y=的图象的每一支位上,y随x的增大而减小,则m的取值范围是()A.m>7B.m<7C.m=7D.m≠75.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.42316.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项是0,则m的值()A.1B.1或2C.2D.±17.在Rt△ABC中,∠C=90°,cos B=,则sin A的值为()A.B.C.D.8.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20B.30C.40D.509.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣110.如图,正方形ABCD的对角线上的两个动点M、N,满足AB=MN,点P是BC的中点,连接AN、PM,若AB=6,则当AN+PM的最小值时,线段AN的长度为()A.4B.2C.6D.3二、填空题(本大题共5小题,每小题3分,共15分)11.一元二次方程x2﹣a=0的一个根是2,则a的值是.12.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD 于点F,已知S△AEF=4,则下列结论:①=;②△AEF∽△ACD;③S△BCE=36;④S△ABE=12.其中一定正确的是(填序号)13.如图,点A为反比例函数y=的图象上一点,B点在x轴上且OA=BA,则△AOB的面积为.14.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为.15.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为.三、解答题(本大题共8小题,共55分)16.(1)计算:2cos30°﹣tan45°﹣.(2)在△ABC中,∠C=90°,sin A=,AB=15,求△ABC的周长和tan A的值.17.解方程:①(x+1)(x﹣2)=4(公式法)②x2+2x﹣3=0(配方法)18.已知:如图,矩形ABCD的对角线交于点O,DE∥AC,CE∥BD.求证:四边形OCED 是菱形.19.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.20.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m)参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.21.如图,反比例函数的图象与一次函数y2=kx+b的图象交于A、B两点.已知A(2,n),B(﹣,﹣2).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)请结合图象直接写出当y1≥y2时自变量x的取值范围.22.宝鸡市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.小亮想知道石鼓阁的高是多少,他和同学小明对石鼓阁进行测量.测量方案如下:如图,小明在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小明看着镜面上的标记,他来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小明眼睛与地面的高度ED =1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.6米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.6米,影长FH=3.2米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.23.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式及顶点坐标.(2)设点P是该抛物线上的动点,当△ABP的面积等于△ABC面积的时,求出点P 的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.若,则的值为()A.1B.C.D.【解答】解:∵,∴设x=4k,y=3k,∴==,故选:C.2.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥且k≠1【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,∴,解得:k>且k≠1.故选:C.3.△ABC三边边长之比为3:5:7,与它相似的△DEF的最长边边长21cm,则△DEF的周长为()A.45cm B.32cm C.24cm D.18cm【解答】解:三角形三边之比等于与他相似的三角形的三边之比,即3:5:7,与它相似的三角形最长边为21cm,设这个三角形三边为3x,5x,7x,已知7x=21,则x=3,那么其他两边分别是9,15,那么与它相似的三角形周长为21+9+15=45.故选:A.4.在反比例函数y=的图象的每一支位上,y随x的增大而减小,则m的取值范围是()A.m>7B.m<7C.m=7D.m≠7【解答】解:∵在反比例函数y=的图象的每一支位上,y随x的增大而减小,∴m﹣7>0,解得m>7.故选:A.5.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234B.4312C.3421D.4231【解答】解:时间由早到晚的顺序为4312.故选:B.6.关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项是0,则m的值()A.1B.1或2C.2D.±1【解答】解:由题意,得m2﹣3m+2=0且m﹣1≠0,解得m=2,故选:C.7.在Rt△ABC中,∠C=90°,cos B=,则sin A的值为()A.B.C.D.【解答】解:在Rt△ABC中,∠C=90°,cos B=,则sin A=cos B=,故选:A.8.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20B.30C.40D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.9.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣1【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.10.如图,正方形ABCD的对角线上的两个动点M、N,满足AB=MN,点P是BC的中点,连接AN、PM,若AB=6,则当AN+PM的最小值时,线段AN的长度为()A.4B.2C.6D.3【解答】解:过P作PE∥BD交CD于E,连接AE交BD于N,过P作PM∥AE交BD 于M,此时,AN+PM的值最小,∵P是BC的中点,∴E为CD的中点,∴PE=BD,∵AB=BD,AB=MN,∴MN=BD,∴PE=MN,∴四边形PENM是平行四边形,∴EN=PM,∵AE==3,∵AB∥CD,∴△ABN∽△EDN,∴==2,∴AN=2,故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.一元二次方程x2﹣a=0的一个根是2,则a的值是4.【解答】解:把x=2代入方程x2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD 于点F,已知S△AEF=4,则下列结论:①=;②△AEF∽△ACD;③S△BCE=36;④S△ABE=12.其中一定正确的是①③④(填序号)【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,OA=OC,∵AE=EO,∴AE:EC=1:3,∵AF∥BC,∴===,=()2,∴AF:AD=1:3,∴AF:DF=1:2,故①正确,∵S△AEF=4,∴S△AEB=3×4=12,S△EBC=4×9=36,故③④正确,∵EF不平行CD,∴△AEF与△ACD不相似,故②错误,故答案为①③④.13.如图,点A为反比例函数y=的图象上一点,B点在x轴上且OA=BA,则△AOB的面积为1.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,所以过点A向x轴作垂线,垂足是C,则S△ABO=2S△AOC=2×|k|=|k|.所以△ABO的面积S=1.故答案为:1.14.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为20(1﹣20%)(1﹣x)2=11.56.【解答】解:设这辆车第二、三年的年折旧率为x,有题意,得20(1﹣20%)(1﹣x)2=11.56.故答案是:20(1﹣20%)(1﹣x)2=11.56.15.二次函数y=﹣x2+bx+c的部分图象如图所示,由图象可知,不等式﹣x2+bx+c<0的解集为x<﹣1或x>5.【解答】解:抛物线的对称轴为直线x=2,而抛物线与x轴的一个交点坐标为(5,0),所以抛物线与x轴的另一个交点坐标为(﹣1,0),所以不等式﹣x2+bx+c<0的解集为x<﹣1或x>5.故答案为x<﹣1或x>5.三、解答题(本大题共8小题,共55分)16.(1)计算:2cos30°﹣tan45°﹣.(2)在△ABC中,∠C=90°,sin A=,AB=15,求△ABC的周长和tan A的值.【解答】解:(1)原式=2×﹣1﹣|1﹣|=﹣1﹣+1=0;(2)如图所示:∵sin A==,AB=15,∴BC=AB=×15=12.∴AC===9,∴△ABC的周长为9+12+15=36.∴tan A===.17.解方程:①(x+1)(x﹣2)=4(公式法)②x2+2x﹣3=0(配方法)【解答】解:①方程整理得:x2﹣x﹣6=0,这里a=1,b=﹣1,c=﹣6,∵△=1+24=25,∴x=,解得:x1=3,x2=﹣2;②移项得:x2+2x=3,配方得:x2+2x+1=4,即(x+1)2=4,开方得:x+1=2或x+1=﹣2,解得:x1=1,x2=﹣3.18.已知:如图,矩形ABCD的对角线交于点O,DE∥AC,CE∥BD.求证:四边形OCED 是菱形.【解答】证明:∵DE∥AC,即DE∥OC,CE∥BD,即CE∥OD.∴四边形OCED是平行四边形.又∵四边形ABCD是矩形,∴OC=AC,OD=BD,且AC=BD,∴OC=OD.∴四边形OCED是菱形.19.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.【解答】解:(1)树状图如下:房间柜子结果(2)由(1)中的树状图可知:P(胜出)=20.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m)参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.【解答】解:作AE⊥CD于E,∵AB=15m,∴DE=AB=15m,∵∠DAE=45°,∴AE=DE=15m,在Rt△ACE中,tan∠CAE=,则CE=AE•tan37°=15×0.75≈11m,∴CD=CE+DE=11+15=26m.答:实验楼的垂直高度即CD长为26m.21.如图,反比例函数的图象与一次函数y2=kx+b的图象交于A、B两点.已知A(2,n),B(﹣,﹣2).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)请结合图象直接写出当y1≥y2时自变量x的取值范围.【解答】解:(1)把B(﹣,﹣2)代入得:﹣2=,解得m=1,故反比例函数的解析式为:y=,把A(2,n)代入y=得n=,则A(2,),把A(2,),B(﹣,﹣2)代入y2=kx+b得:,解得,故一次函数的解析式为y=x﹣;(2)△AOB的面积=×+2×=;(3)由图象知:当y1≥y2时,自变量x的取值范围为0<x≤2 或x≤﹣.22.宝鸡市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.小亮想知道石鼓阁的高是多少,他和同学小明对石鼓阁进行测量.测量方案如下:如图,小明在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小明看着镜面上的标记,他来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小明眼睛与地面的高度ED =1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.6米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.6米,影长FH=3.2米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.【解答】解:∵∠ABC=∠EDC∠ACB=∠ECD∴△EDC∽△ABC;∴,即:=,∵GF∥AB∴△GFH∽ABH∴=,即:=∴=∴BC=77米,∴AB=56米答:“石鼓阁”的高AB的长度是56米.23.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式及顶点坐标.(2)设点P是该抛物线上的动点,当△ABP的面积等于△ABC面积的时,求出点P 的坐标.【解答】解:(1)根据题意得:.解得:b=2,c=﹣3,∴二次函数的解析式为y=x2+2x﹣3,∵y=x2+2x﹣3=(x+1)2﹣4;∴顶点坐标(﹣1,﹣4);(2)当y=0时,x2+2x﹣3=0,解得x1=﹣3,x2=1,则B(﹣3,0),A(1,0),∴AB=4∵C(0,﹣3)∴△ABC的面积=×4×3=6,∵△ABP的面积等于△ABC面积的∴△ABP的面积=×6=10,∴×4×|y p|=10∴|y p|=5,∴y p=±5,当y p=5时解方程x2+2x﹣3=5得x1=﹣4,x2=2,此时P点坐标为(﹣4,5),(2,5);当y p=﹣5时,方程x2+2x﹣3=﹣5没有实数解,∴P点坐标为(﹣4,5),(2,5).。
2020年宝鸡市九年级数学上期末模拟试卷(含答案)

2020年宝鸡市九年级数学上期末模拟试卷(含答案)一、选择题1.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<12.下列图形中既是轴对称图形又是中心对称图形的是( )A.正三角形B.平行四边形C.正五边形D.正六边形3.把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是( )A.2B.1C.0D.﹣14.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个6.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6B.8C.10D.127.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形AEFG,AE,FG 分别交射线CD 于点 PH,连结 AH,若 P 是 CH 的中点,则△APH 的周长为()A .15B .18C .20D .24 8.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( )A .4B .5C .6D .79.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m 10.二次函数y=3(x –2)2–5与y 轴交点坐标为( ) A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 11.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( )A .﹣3B .﹣1C .1D .3 12.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150二、填空题13.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.14.如图,将半径为6的半圆,绕点A 逆时针旋转60°,使点B 落到点B′处,则图中阴影部分的面积是_____.15.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.19.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.20.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值:_____.三、解答题21.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.22.如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 Rt ∆ABC 和 Rt ∆BED 的边长,已知2=AE c ,这时我们把关于 x 的形如220++=ax cx b 二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于 x 的“勾系一元二次方程”220+=ax cx b ,必有实数根;(3)若x=-1是“勾系一元二次方程” 220ax cx b的一个根,且四边形ACDE的++=周长是62,求∆ABC的面积.23.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.24.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 2.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.3.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.4.B解析:B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B .【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.5.B解析:B【解析】【分析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.D解析:D【解析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】连结AC,先由△AGH≌△ADH得到∠GHA=∠AHD,进而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定理求出AC的长,然后由△HAC∽△ADC,根据=求出AH的长,再根据△HAC∽△HDA求出DH的长,进而求得HP和AP的长,最后得到△APH的周长.【详解】∵P是CH的中点,PH=PC,∵AH=AH,AG=AD,且AGH与ADH都是直角,∴△AGH≌△ADH,∴∠GHA=∠AHD,又∵GHA=HAP,∴∠AHD=∠HAP,∴△AHP是等腰三角形,∴PH=PA=PC,∴∠HAC是直角,在Rt△ABC中,AC==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周长=AP+PH+AH=6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.8.B解析:B【解析】【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤193且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤193且a≠6,所以整数a的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.9.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.10.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.12.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“-”.二、填空题13.3【解析】【分析】根据旋转的性质知AB=AE在直角三角形ADE中根据勾股定理求得AE长即可得【详解】∵四边形ABCD是矩形∴∠D=90°BC=AD=3∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG解析:【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB ′+S扇形ABB′﹣S半圆AB而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.15.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆解析:2-1【解析】【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8,∴内切圆的半径为:6+810=22-;若8=1.故答案为2【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】2+2=4,恒星的面积=4×4-4π=16-4π. 故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题 解析:1a 4>-且a 0≠ 【解析】【分析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0V >,继而可求得a 的范围.【详解】 Q 关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>V ,解得:1a 4>-, Q 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根. 19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.20.4【解析】【分析】由抛物线开口向上可知a>0再由开口的大小由a的绝对值决定可求得a的取值范围【详解】解:∵抛物线y1=ax2的开口向上∴a>0又∵它的开口比抛物线y2=3x2+2的开口小∴|a|>3解析:4【解析】【分析】由抛物线开口向上可知a>0,再由开口的大小由a的绝对值决定,可求得a的取值范围.【详解】解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意【点睛】本题主要考查二次函数的性质,掌握二次函数的开口大小由a的绝对值决定是解题的关键,即|a|越大,抛物线开口越小.三、解答题21.(1)n>0;(2)x1=0,x2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240∆=->,即可求出n的取值范围;b ac(2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.22.(1)2340x ++=(答案不唯一)(2)见解析(3)1.【解析】【分析】(1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出a,b,c 的关系,再根据完全平方公式的变形进行求解.【详解】(1)当a=3,b=4,c=5时,勾系一元二次方程为2340x ++=;(2)依题意得△=)2-4ab=2c 2-4ab,∵a 2+b 2=c 2,∴2c 2-4ab=2(a 2+b 2)-4ab=2(a-b )2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得c∵四边形 ACDE 的周长是,即,故得到c=2,∴a 2+b 2=4,∵(a+b)2= a 2+b 2+2ab∴ab=2,故∆ABC 的面积为12ab=1. 【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.23.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°【解析】【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=180ACD2︒-∠,∠CBE=180BCE2︒-∠,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE =80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.24.(1)详见解析(2)85%【解析】【分析】(1)根据童车的数量是300×25%,童装的数量是300-75-90,儿童玩具占得百分比是90÷300×100%,童装占得百分比1-30%-25%,即可补全统计表和统计图.(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可.【详解】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%.童装占得百分比1-30%-25%=45%.补全统计表和统计图如下:(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×88%=66,童装中合格的数量是135×80%=108, ∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是816610885%300++=. 25.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x ,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去) 所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用。
最新版2019-2020年陕西省宝鸡市初中九年级上学期期末模拟考试数学试题及答案-精编试题

九年级第一学期期末模拟测试卷一、选择题(每小题3分,共30分)1.已知=,那么的值为()A.B.C.D.2.下列立体图形中,俯视图是正方形的是()A.B.C.D.3.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直4.用配方法解一元二次方程x 2+4x ﹣3=0时,原方程可变形为( )A .1)22=+x ( B .19)22=+x ( C .13)22=+x ( D .7)22=+x ( 5.若双曲线x y 2=过两点(﹣1,1y ),(﹣3,2y ),则1y 与2y 的大小关系为( )A .1y >2yB .1y <2yC .1y =2yD .y 1与y 2大小无法确定6.函数1322)(+--=m mx m m y 是反比例函数,则( ) A .m ≠0B .m ≠0且m ≠1C .m=2D .m=1或27.如图,矩形ABCD 的对角线交于点O ,若∠ACB=30°,AB=2,则OC 的长为( )A .2B .3C .2D .48.如图所示,在一块长为22m,宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),若剩余部分种上草坪,使草坪的面积为300m2,则所修道路的宽度为( )m。
A.4 B.3 C.2 D.1 9.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A.B.C.D.10.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)二、填空题(每小题3分,共18分)11.已知关于x 的方程x 2﹣3x+m=0的一个根是1,则m= . 12.在菱形ABCD 中,对角线AC=6,BD=10,则菱形ABCD 的面积为 .13.如图,在△ABC 中,点D,E,F 分别在AB,AC ,BC 上, DE//BC, EF//AB,若 AB=8, BD=3,BF=4,则FC 的长为 .14.一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm ,则它的最大边长为 cm .15.一个布袋内只装有一个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是 .16.如图,直线y=﹣x+b 与双曲线y=﹣(x <0)交于点A , 与x 轴交于点B ,则OA 2﹣OB 2= .三、解答题(共52分)17.(4分)解下列方程: 0)3(2)3(2=-+-x x x18.(6分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?19.(6分) 甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.20.(8分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.21.(8分)如图,花丛中有一路灯杆AB,在灯光下,大华在D 点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.22.(8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于2微克/毫升的持续时间多少小时?23.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1使得BB1∥AC.动点D从点A出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D 运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.九年级数学试卷答案一.选择题 BBCDB CACCA 二.填空题 11. 2 12.30 13. 2.4 14. 20 15.16.2三.解答题 17. 解: 0)23)(3(=+--x x x 0)33)(3(=--x x 03=-x 或033=-x 即31=x 或12=x ……………4分18.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.……………3分(2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100﹣m )件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.6分19.解:(1)树状图如下:………3分(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为,即P(两个数字之和能被3整除)=.……………6分20.解:(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.………3分(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.8分21.解:∵CD∥AB,∴△EAB∽△ECD,∴=,即=①,……………3分∵FG∥AB,∴△HFG∽△HAB,∴=,即=②,……………6分由①②得=,解得BD=7.5,∴=,解得:AB=7.答:路灯杆AB的高度为7m.……………8分22.解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,……………2分当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).……………5分(2)当y=2,则2=2x,解得:x=1,当y=2,则2=,解得:x=16,∵16﹣1=15(小时),∴血液中药物浓度不低于2微克/毫升的持续时间15小时.……………8分23.解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.……………4分(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴或,∴t=或t=;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴或,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.……………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷一、选择题(每题3分,共计30分;每道题只有一个选项是符合题意的,请将正确答案填涂在答题卡上)1.(3分)一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.2.(3分)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.13.(3分)若a,b是方程x2+2x﹣2016=0的两根,则a2+3a+b=()A.2016B.2015C.2014D.20124.(3分)一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个5.(3分)如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m6.(3分)把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.:1B.4:1C.3:1D.2:17.(3分)如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2B.3C.4D.58.(3分)某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A.560(1+x)2=1850B.560+560(1+x)2=1850C.560(1+x)+560(1+x)2=1850D.560+560(1+x)+560(1+x)2=18509.(3分)如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30B.27C.14D.3210.(3分)如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.12二、填空题(本大题共8小题,共24分)11.(3分)已知=,则=.12.(3分)若3是关于x的方程x2﹣x+c=0的一个根,则方程的另一个根等于.13.(3分)国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是.14.(3分)在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅均后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是.15.(3分)如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠BEC=.16.(3分)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为.17.(3分)小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2,0),则点E的坐标是.18.(3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD ⊥DC,▱ABCD的面积为6,则k=.三、解答题(共66分,注意写出必要的解题步骤)19.(15分)选用合适的方法解下列方程:(1)x2﹣7x+10=0;(2)3x2﹣4x﹣1=0;(3)(x+3)2=(1﹣3x)2.20.(6分)如图所示,请画出这个几何体的三视图.21.(7分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,篮球1个.若从中随机摸出一个球,摸到篮球的概率是.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.22.(8分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?23.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.24.(10分)如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.25.(12分)如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB =3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共计30分;每道题只有一个选项是符合题意的,请将正确答案填涂在答题卡上)1.【解答】解:由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱;故选:C.2.【解答】解:∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个.故选:C.3.【解答】解:∵a是方程x2+2x﹣2016=0的实数根,∴a2+2a﹣2016=0,∴a2=﹣2a+2016,∴a2+3a+b=﹣2a+2016+3a+b=a+b+2016,∵a、b是方程x2+2x﹣2016=0的两个实数根,∴a+b=﹣2,∴a2+3a+b=﹣2+2016=2014.故选:C.4.【解答】解:设盒子里有白球x个,根据=得:=解得:x=32.经检验得x=32是方程的解.答:盒中大约有白球32个.故选:A.5.【解答】解:如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,∴x=4.45,∴树高是4.45m.故选:C.6.【解答】解:设原矩形的长为2a,宽为b,则对折后的矩形的长为b,宽为a,∵对折后所得的矩形与原矩形相似,∴=,∴大矩形与小矩形的相似比是:1;故选:A.7.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∵∠GEF=90°,∴∠AEG+∠BEF=90°,∴∠AGE=∠BEF,∴△AGE∽△BEF,∴,∵E为AB的中点,∵AG=1,BF=2,∴,解得:BE=AE=,在Rt△AEG中,GE2=AG2+AE2=3,在Rt△BEF中,EF2=BE2+BF2=6,∴在Rt△GEF中,GF==3.故选:B.8.【解答】解:依题意得二月份的产量是560(1+x),三月份的产量是560(1+x)(1+x)=560(1+x)2,∴560+560(1+x)+560(1+x)2=1850.故选:D.9.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,CD∥AB,BC∥AB,∴△BEF∽△AED,∵,∴,∴,∵△BEF的面积为4,∴S△AED=25,∴S四边形ABFD=S△AED﹣S△BEF=21,∵AB=CD,,∴,∵AB∥CD,∴△BEF∽△CDF,∴,∴S平行四边形ABCD=S四边形ABFD+S△CDF=21+9=30,故选:A.10.【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选:C.二、填空题(本大题共8小题,共24分)11.【解答】解:∵=,∴=,∴﹣=,=.故答案为:.12.【解答】解:设方程的另一个根为a,∵3是关于x的方程x2﹣x+c=0的一个根,∴a+3=1,解得:a=﹣2,故答案为:﹣2.13.【解答】解:设平均每次降价的百分率是x,根据题意得:60(1﹣x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.14.【解答】解:画树状图如图:∵一共有6种情况,两个球都是白球有2种,∴P(两个球都是白球)==,故答案为:.15.【解答】解:∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,BE=CE,∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°,∵DF=DC,∴∠DFC=∠DCA===,∴∠BCE=∠BCD﹣∠DCA=90°﹣=,∵BE=CE,∴∠BEC=180°﹣2∠BCE=180°﹣65°=115°,故答案为115°16.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△BDE∽△BAC,△DOE∽△AOC,∴=,∴S△DOE:S△AOC=()2=;故答案为:1:16.17.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,∵BC=1.1,∴DE=1.76,∴OE=OD+DE=2+1.76=3.76.∴E(3.76,0).故答案为:(3.76,0).18.【解答】解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3三、解答题(共66分,注意写出必要的解题步骤)19.【解答】解:(1)x2﹣7x+10=0.(x﹣2)(x﹣5)=0,x﹣2=0或x﹣5=0,解得x1=2,x2=5.(2)△=(﹣4)2﹣4×3×(﹣1)=28>0,则x==;(3)∵(x+3)2=(1﹣3x)2,∴x+3=1﹣3x或x+3=﹣1+3x,解得:x=﹣0.5或x=2.20.【解答】解:如图所示:21.【解答】解:(1)设红球有x个,根据题意得:=,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个;(2)列表如下:红黄黄蓝红﹣﹣﹣(黄,红)(黄,红)(蓝,红)黄(红,黄)﹣﹣﹣(黄,黄)(蓝,黄)黄(红,黄)(黄,黄)﹣﹣﹣(蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)﹣﹣﹣所有等可能的情况有12种,其中两次摸到的球恰是一黄一蓝的情况有4种,则P==.22.【解答】解:设该单位这次共有x名员工去风景区旅游.因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500﹣10(x﹣15)]x=10500,整理,得x2﹣65x+1050=0,解得x1=35,x2=30.当x1=35时,500﹣10(x﹣15)=300<320,故舍去x1;当x2=30时,500﹣10(x﹣15)=350>320,符合题意.答:该单位这次共有30名员工去风景区旅游.23.【解答】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得,AB=6.4m.24.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO﹣AE=OB﹣BF=CO﹣CG=DO﹣DH,即:OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC,∵DG⊥AC,∴∠DGO=∠DGC=90°,又∵DG=DG,∴△DGC≌△DGO,∴CD=OD,∵F是BO中点,OF=2cm,∴BO=4cm,∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB==4,∴矩形ABCD的面积=4×4=16cm2.25.【解答】解:(1)∵CD⊥OA,∴DC∥OB,∴===,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为y=﹣x+4,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;(3)∵B(0,4),C(﹣3,8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP﹣PB=5﹣4=1,∴P点坐标为(0,9)或(0,﹣1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0,8),∴P点坐标为(0,12);综上可知存在满足条件的点P,其坐标为(0,﹣1)或(0,9)或(0,12).。