分式不等式的解法基础测试题回顾.doc

合集下载

分式、高次不等式的解法

分式、高次不等式的解法
< x ≤ 5
1
2
3
5
3. (1) (− x + x + 12)( x + a) < 0
2
解: ( x + 3)( x − 4)( x + a) > 0 ①当 − a > 4,即 a < −4 时,解集为 (−3 , 4) U (− a , + ∞); ②当 − 3 < −a < 4,即 − 4 < a < 3 时,解集为 (−3 , − a) U (4 , + ∞); ③当 − a < −3,即 a > 3 时,解集为 (−a , − 3) U (4 , + ∞);
解:a = −1, b = 2 , c = 3 ∴ 解集为 (−∞ , − 1) U (2 , 3]。
-1 2 3
( x − 2) 2 ( x − 3) (5) ≤0 x +1 ( x − 2) 2 ( x − 3) 3 (7) <0 x +1
解:4) − 1 < x < 2 或 2 < x < 3 (
(5) − 1 < x ≤ 3
( 6) x = 2 或 4 < x ≤ 5
2
-1
2
3
4
5
(7 ) − 1 < x < 2 或 2 < x < 3
⇒ −2 < x ≤ 1 或 x > 3
-2 1
3
(3) 0 < x < 1 或 x > 1
0
1
( x − 2) 2 ( x − 3) (4) <0 x +1 ( x − 2) 2 ( x − 5) ( 6) ≤0 x−4 ( x − 5)( x − 3) 2 (8) ≤0 2 ( x − 1) ( x − 2)

方程与不等式之分式方程基础测试题附解析

方程与不等式之分式方程基础测试题附解析

方程与不等式之分式方程基础测试题附解析一、选择题1.如果关于X 的方程ax 2 4x 30有两个实数根,且关于 x 的分式方程x a 2 a 有整数解,则符合条件的整数a 有()个x 33 xA . 2B . 3C. 4D . 5【答案】 B【解析】【分析】由一兀— 1次方程根的判别式求得 a 的取值范围,再解分式方程,利用解为整数分析得出答案. 【详解】所以:x a 2 ax 3a ,所以:(a 1)x 2a 2, 当a 1时,方程无解,当a 1时,方程的解为x 丝上 2 —, a 1 a 1因为x 为整数且x 3,所以a 1是4的约数,所以a 1 1,a 12,a 1所以a 的值为:3, 1,0,2,3,5 ,4又因为:a -且a 0, a 1, x 3,3所以a 3,a 0,a 5不合题意舍掉,所以a 的值为:1,2,3,. 故选B . 【点睛】本题考查的是一元二次方程根的判别式,分式方程的解的情况,掌握知识点并能注意到分 式方程的增根是解题关键.2.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小所以:24 4a (3) 0,且 a 0,解得: 4a3且a0, 因为:x a2a ,解:因为:关于x 的方程ax 2 x 3 3 x4x 3 0有两个实数根,4,俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()【详解】 小进跑800米用的时间为-8也 秒,小俊跑800米用的时间为 型 秒,1.25x x•••小进比小俊少用了 40秒,800 800万程是 40,x 1.25x故选C.【点睛】 本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.3. 已知关于x 的分式方程— 2 —的解为正数,则k 的取值范围为()x 11 xA . 2 k 0B . k 2 且 k 1 C. k 2 D . k 2且 k 1【答案】B 【解析】【分析】 先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案 【详解】 解:Q 该分式方程有解,2 k 1,A . 4 1.25x 40x 800800 800 40 B.——x 2.25x 800 800 800 800 C.40D .40x1.25x1.25x x【答案】C 【解析】 【分析】先分别表示出小进和小俊跑 800米的时间,再根据小进比小俊少用了 40秒列出方程即可.故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键2a 14.对于非零实数a 、b ,规定a? b =若 x? (2x - 1) =1,则x 的值为()b a11A . 1B.—C.- 1D.-—33【答案】A【解析】【分析】【详解】解:根据题中的新定义可得:x2x 1 2x 1 ,= 1,2x 1 x解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是 转化思想”,把分式方程转化为整式方程求解•解分式方程一定注意要验根.【分析】根据分式方程的增根的定义得出 【详解】去分母得: /• x=2+m•••分式方程— 有增根,x 3 x 3x-3=0, x= 3,• 2+m=3 , 所以m=1, 故选:B . 【点睛】x 25.若关于x 的分式方程—有增根,则m 的值是()x 3A .1【答案】B 【解析】B . 1 C. 2 D . 3x-3=0,再进行判断即可.x-2=m ,本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程 的关键,题目比较典型,难度不大.6.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做 140个零件,若设甲每天做x 个零件,则可以列出方程为()设甲每天做x 个零件,根据甲做 480个零件与乙做360个零件所用的时间相同,列出方程 即可. 【详解】【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关 键.本题用到的等量关系为:工作时间=工作总量勺:作效率.7. 春节期间嘉嘉去距家 10千米的电影院看电影,计划骑自行车和坐公交车两种方式,已 知汽车的速度是骑车速度的 2倍,若坐公交车可以从家晚 15分钟出发恰好赶上公交车,结果与骑自行车同时到达,设骑车学生的速度为x 千米/小时,则所列方程正确的是(1 10 1010 10 c 10 10 1 10 10 A.— 15B.— 15 c.— --- — D . --- ----- —x 2x2x xx 2x 42x x 4【答案】C【解析】【分析】设骑车的速度为x 千米/小时, 则坐公交车的速度为2x 千米/小时,根据 汽车所用时间坐公交车所用时间15分钟” 列出方程即可得.【详解】设骑车的速度为x 千米/小时, 则坐公交车的速度为2x 千米/小时,10 10 1所列方程正确的是:——-, x 2x 4故选:C . 【点睛】此题考查由实际问题列分式方程,根据题意找到题目蕴含的相等关系是列方程的关键.x-3=0是解此题480360 480480 A .pB.x140 x140 xx【答案】 A【解析】480 360 360 480 C.-140 D . 140x x xx解:设甲每天做x 个零件,根据题意得: 故选:A . 480 360x 140 x【分析】8. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是(1)15 15115 15115 15 115 15A. B. — C.-— D.-—x 1 x 2x x 12x 1 x2x x 12【答案】B【解析】【分析】设小李每小时走x千米,则小张每小时走(X+1 )千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走X千米,依题意得:15 1x x 1 2故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.1 x 19. 解分式方程2 的结果是()x 2 2 xA. x="2"B. x="3"C. x="4"D.无解【答案】D【解析】【分析】【详解】解:去分母得:1 - x+2x- 4= - 1,解得:x=2,经检验x=2是增根,分式方程无解.故选D.考点:解分式方程.10. 八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍. 设骑车学生的速度为x千米/小时,则所列方程正确的是()10 1010 1010 10 11010 1A. - =20 B-=20 C. - -D. ——x 2x2x x x 2x 32x x 3【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 10 _1x - 2x = 3 '故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程. 11. 八年级(1)班全体师生义务植树300棵•原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的 1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()30030030030020A20 B ———x 1.2x x 1.2x60300300 2030020300C. ----------------- -----------D.-—x x 1.2x 60x60 1.2x【答案】D【解析】【分析】原计划每小时植树x棵,实际工作效率提高为原计划的 1.2倍,故每小时植1.2x棵,原计划植300棵树可用时300小时,实际用了-300小时,根据关键语句结果提前20分钟完x 1.2x成任务”可得方程.【详解】设原计划每小时植树x棵,实际工作效率提高为原计划的 1.2倍,故每小时植1.2x棵,由题意得:300 20型x 60 1.2x故选:D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.12. 某车间加工12个零件后,采用新工艺,工效比原来提高了件就少用1小时,那么采用新工艺前每小时加工的零件数为【答案】B50%,这样加工同样多的零()A. 3个B. 4个C. 5个D. 6个【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得:12 12 ’1,x x(1 50%)解得:x 4 ;经检验,x 4是原分式方程的解••••那么采用新工艺前每小时加工的零件数为4个;故选:B.【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.2 ax 413. --------------------------------------------- 如果关于x的分式方程 2 有正整数解,且关于y的不等式组3 x x 33 y 3 > 4y无解,那么符合条件的所有整数a的和是()y aA. - 16B.- 15 c.- 6 D.- 4【答案】D【解析】【分析】a的值, 先根据分式方程有正整数解确定出a的值,再由不等式组无解确定出满足题意的求出之和即可.【详解】解:分式方程去分母得:2+ax- 2x+6=- 4,整理得:(a - 2)x=- 12(a- 2工0)12解得:xa 2由分式方程有正整数解,得到a= 1, 0,- 1,- 2,- 4,- 10,当a=- 2时,x= 3,原分式方程无解,所以a= 1, 0, - 1,- 4,- 10,y< 9不等式组整理得:,y a由不等式组无解,即a>- 9,•符合条件的所有整数a有1, 0, - 1,- 4, • a = 1, 0,- 1,- 4,之和为-4,故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的 关键.1 kx 114. 若分式方程2+=有增根,则k 的值为( )x 22 xA .- 2B .- 1 C. 1 D . 2【答案】C 【解析】 【分析】根据分式方程有增根得到 x=2,将其代入化简后的整式方程中求出 k 即可.【详解】解:分式方程去分母得:2 (x -2) +1- kx =- 1,由题意将x = 2代入得:1 - 2k =- 1, 解得:k = 1. 故选:C. 【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的 解是解题的关键•15.某单位向一所希望小学赠送 1080本课外书,现用 A 、B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用 A 型包装箱可少用 6个;已知每个 B 型包装箱比每个 A 型 包装箱可多装15本课外书.若设每个 A 型包装箱可以装书 x 本,则根据题意列得方程为m 216.已知关于x 的分式方程 =1的解是负数,贝U m 的取值范围是( )x 1( )10801080A .1 6X—151080 1080 C. ------- =6xr + ISX 【答案】C【解析】设每个A 型包装箱可以装书 x 本,则每个B 型包装箱可以装书(x+15 )本,根据单独使用1080L0806个,列方程得:——- -------- 6,故选C+ IS xA . m <3【答案】D 【解析】B . m <3 且 m ^2 C. m v 3D . m v 3 且 m ^2B 型包装箱比单独使用 A 型包装箱可少用【分析】解方程得到方程的解,再根据解为负数得到关于求得m的取值范围.【详解】=1,解得:x=m- 3,•••关于x的分式方程—_ =1的解是负数,x 1m - 3v 0,解得:m v 3,当x=m - 3=- 1时,方程无解,则m^2,故m的取值范围是:m v 3且m^2,故选D.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.17.若关于x的分式方程x3m2x2有增根,则m的值为().3xA. 3B. 3C. .3D. .3【答案】D【解析】解关于x的方程x2m2得:x26 m , x 3x 3•••原方程有增根,••• x 3 0,即 6 m230 , 解得:m 3故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值•18.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间•设规定时间为x天,则可列方程为()900m的不等式结合分式的分母不为零,即可3【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的 关系即可列出方程. 【详解】解:设规定时间为 x 天,则慢马需要的时间为( x +1 )天,快马的时间为(x -3)天,•••快马的速度是慢马的 2倍900 900 2x 1x 3故选A . 【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.解:x a0① 33x 10 16 ②解①得,x a 解②得,x 2 •••不等式组无解•- y900 900 C.2x 1x 3【答案】A【解析】 900 900D .2x 1 x 32倍的速度19.从 4,1, 0, 2, 5, 8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不x a等式组 二-3x 10 0无解,且关于y162 y a的分式方程—y 33 y2有非负数解,则符合条件的a 的值的个数是(A . 1个【答案】C 【解析】 【分析】由不等式组无解确定出 围,综上可确定【详解】)B . 2个 C. 3个 D . 4个a 的一个取值范围、由分式方程其解为非负数确定 a 的一个取值范a 的最终取值范围,根据其取值范围即可判定出满足题意的值.3• a 8 且 a ^1 •综上所述,a 2且a 1•符合条件的a 的值有 4、0、2共三个. 故选:C【点睛】 本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定 解决问题的关键.x 220.分式方程—1 -2 ,解的情况是( )x 1 x 1A . x = 1B . x = 2 C. x =— 1 D .无解【答案】D 【解析】 【分析】观察式子确定最简公分母为(x+1)( x — 1),再进一步求解可得. 【详解】方程两边同乘以(x+1)( x — 1),得:x (x+1) — ( x 2— 1) = 2 ,解方程得:x =— 1 ,检验:把x =— 1代入x+1 = 0, 所以x =— 1不是方程的解. 故选:D . 【点睛】此题考查分式方程的解,掌握运算法则是解题关键•••关于y 的分式方程J_3y 32有非负数解•- y8 a~3~a 的取值范围是。

方程与不等式之分式方程基础测试题附答案解析

方程与不等式之分式方程基础测试题附答案解析

方程与不等式之分式方程基础测试题附答案解析一、选择题1.方程31144x x x --=--的解是( ) A .-3B .3C .4D .-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.故选:B .【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.2.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -= C .800800401.25x x-= D .800800401.25x x -= 【答案】C【解析】【分析】 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】 小进跑800米用的时间为8001.25x 秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800800401.25x x-=, 故选C .【点睛】 本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.3.若关于x 的分式方程2x x -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1B .0C .5D .6 【答案】A【解析】【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可.【详解】解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩, 解得:﹣2<y ≤52m +, ∵不等式组至多有六个整数解, ∴52m +≤4, ∴m ≤3, 将分式方程的两边同时乘以x ﹣2,得x +m ﹣1=3(x ﹣2),解得:x =52m +, ∵分式方程的解为正整数,∴m +5是2的倍数,∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3,∵x ≠2, ∴52m +≠2, ∴m ≠﹣1, ∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1,故选:A .【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.4.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x 件,则下列方程正确的是( )A .400400(130%)x x -+=4 B .400400(130%)x x -+=4 C .400400(130%)x x--=4 D .4004004(130%)x x -=- 【答案】A【解析】【分析】根据“原计划所用时间-实际所用时间=4”可得方程.【详解】设每月原计划生产的医疗器械有x 件, 根据题意,得:()4004004130%x x -=+故选A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.对于非零实数a 、b ,规定a ⊗b =21a b a -.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1B .13C .﹣1D .-13 【答案】A【解析】【分析】【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解,故选A .【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D【解析】【分析】 根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质. 7.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( ) A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=-【答案】B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.8.关于x 的分式方程230+=-x x a 解为4x =,则常数a 的值为( ) A .1a =B .2a =C .4a =D .10a = 【答案】D【解析】【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230+=-x x a,得 23044a+=-, 解得a=10.经检验,a=10是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为0.9.中秋节是我国的传统节日,人们素有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风靡省城市场.省城某商场在中秋节来临之际购进A 、B 两种汾阳月饼共1500个,已知购进 A 种月饼和 B 种月饼的费用分别为3000元和2000元,且 A 种月饼的单价比 B 种月饼单价多1元.求 A 、B 两种月饼的单价各是多少?设 A 种月饼单价为x 元,根据题意,列方程正确的是( )A .3000200015001x x +=+B .2000300015001x x +=+C .3000200015001x x +=-D .2000300015001x x +=- 【答案】C【解析】【分析】设A 种月饼单价为x 元,再分别表示出A 种月饼和B 种月饼的个数,根据“购进A 、B 两种汾阳月饼共1500个”,列出方程即可.【详解】设A 种月饼单价为x 元,则B 种月饼单价为(x -1)元, 根据题意可列出方程3000200015001x x +=-, 故选C.【点睛】本题考查分式方程的应用,读懂题意是解题关键.10.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为 ( )A .3个B .4个C .5个D .6个【答案】B【解析】【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得: 12121(150%)x x -=+, 解得:4x =;经检验,4x =是原分式方程的解.∴那么采用新工艺前每小时加工的零件数为4个;故选:B .【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.11.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯-+ 【答案】A【解析】【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x 天,则慢马需要的时间为(x +1)天,快马的时间为(x -3)天, ∵快马的速度是慢马的2倍 ∴900900213x x ⨯=+- 故选A .【点睛】 本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.12.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-4【答案】D【解析】【详解】 2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D .13.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 【答案】A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值14.九年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了25分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的3倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .1010253x x-= B .1010253x x -= C .10105312x x -= D .10105312x x -= 【答案】D【解析】【分析】 设骑车学生的速度为x 千米/小时,则汽车的速度为3x,先分别表示出骑自行车学生和乘汽车学生所用时间,然后根据题中所给的等量关系,即可列出方程.【详解】解:设骑车学生的速度为x 千米/小时,则汽车的速度为3x 由题意得:10105312x x -= 故答案为D .【点睛】 本题考查了出分式方程的应用,明确题意、确定等量关系是解答本题的关键.15.若分式方程2+1kx x 2--=12x -有增根,则k 的值为( ) A .﹣2B .﹣1C .1D .2【答案】C【解析】【分析】根据分式方程有增根得到x=2,将其代入化简后的整式方程中求出k即可.【详解】解:分式方程去分母得:2(x﹣2)+1﹣kx=﹣1,由题意将x=2代入得:1﹣2k=﹣1,解得:k=1.故选:C.【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的解是解题的关键.16.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a =﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a 的和为0.故选B .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.17.若整数a 使关于x 的分式方程111a x a x x ++=-+的解为负数,且使关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10 【答案】C【解析】【分析】解分式方程和不等式得出关于x 的值及x 的范围,根据分式方程的解不是增根且为负数和不等式组无解得出a 的范围,继而可得整数a 的所有取值,然后相加.【详解】解:解关于x 的分式方程111a x a x x ++=-+,得x =−2a+1, ∵x ≠±1,∴a ≠0,a≠1,∵关于x 的分式方程111a x a x x ++=-+的解为负数, ∴−2a+1<0, ∴12a >, 解不等式1()02x a -->,得:x <a , 解不等式2113x x +-≥,得:x≥4, ∵关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解, ∴a ≤4,∴则所有满足条件的整数a的值是:2、3、4,和为9,故选:C.【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的方法,并根据题意得到a的范围是解题的关键.18.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩……无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.19.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=100【答案】B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 -﹣10000x=100,故选B .【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x 米,则根据题意可列方程为( ).A .120012002(120%)x x -=+ B .120012002(120%)x x -=- C .120012002(120%)x x -=+ D .120012002(120%)x x -=-【答案】A【解析】设原计划每天修建道路xm ,则实际每天修建道路为(1+20%)xm ,由题意得,()12001200 2120%x x -=+. 故选A.。

人教版-数学-高一-必修一-1.3-7-一元二次不等式与分式不等式的解法.

人教版-数学-高一-必修一-1.3-7-一元二次不等式与分式不等式的解法.
含有一个未知数,且未知数最高次数为2的 不等式。
一元二次不等式的定义
只含有一个未知数,并且未知数的最高次数是 2的不等式,称为一元二次不等式。
常见形式:
1, ax2 bx c>0(a>0)
2, ax2 bx c <0(a>0)
3, ax2 bx c >0(a<0)
4, ax2 bx+c <0(a<0)
1.求函数y x2 4x 9的定义域.
2.若关于x的一元二次方程x2-(m+1)xm=0有两个不等实根,求m的取值范围.
3.
若不等式ax2
bx
2
0的解集是x
1 2
x
1 3
则a -12 , b -2 .
例3:解不等式 x2 2x 3 0 化正x2 2x 3 0
解一元二次不等式的基本步骤 (1)化正——把二次项系数化成正数;
回顾:一元一次不等式的解法 画图——求根——定范围
根据一次函数y=2x-8的图象,填空: 当x =4 时,y=0; 当x >4 时,y>0;解2x-8>0 当x <4 时,y<0.
1. 已知函数y=x2-5x
(1)画出函数的图像
(2)当x取何值时,y=0;
y
当x取何值是,y>0;
当x取何值时,y<0 ?
判别式 =b2-4ac
二次函数 y=ax2+bx+c
(a>0)
>0 y
x1
x2 x
0 y
x x1=x2
<0 y
x
一元二次方程 ax2+bx+c=0
有两个相异的
实根x1,x2 x1<x2
有两个相等实根 x1=x2

分式不等式的解法基础测试题.doc

分式不等式的解法基础测试题.doc

分式不等式的解法一.学习目标:1.会解简单的分式不等式。

二.学习过程(一)基础自测1.解下列不等式(1)43107x x -<+(2)-x 2+7x >6(3)()()015<+-x x .(二)尝试学习2.解下列不等式(1)121>+-x x(2)2x +11-x <0.(3)412+-x x ≥0 (4)x +5(x -1)2≥2(三)巩固练习题1.不等式021<+-x x 的解集是 .2.不等式01312>+-x x 的解集是( ) .A }2131|{>-<x x x 或 .B }2131|{<<-x x .C }21|{>x x .D }31|{->x x(四)归纳总结1.解分式不等式的基本方法是将其转化为与之同解的整式不等式或不等式组.2.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解;若不等式含有等号时,分母不为零.即:(1)f (x )g (x )>0⇔()()0>⋅x g x f (f (x )g (x )<0⇔()()0<⋅x g x f ); (2)f (x )g (x )≥0⇔()()()⎩⎨⎧≠≥⋅00x g x g x f (f (x )g (x )≤0⇔⎩⎨⎧ f (x )·g (x )≤0g (x )≠0); (3)f (x )g (x )≥a ⇔f (x )-ag (x )g (x )≥0(f (x )g (x )≤a ⇔f (x )-ag (x )g (x )≤0)三.当堂检测1.不等式23--x x ≥0的解集是 .2.不等式0121≤+-x x 的解集是3.不等式042>+-x x 的解集是4.不等式1x x-≥2的解集为( ) .A [1,0)- .B [1,)-+∞ .C (,1]-∞- .D (,1](0,)-∞-+∞5.解下列不等式(1)2x +11-x <0 (2)x +12x -3≤1四.作业解不等式:(1)0324≤+-x x (2)321≥-+xx。

分式不等式练习题与答案

分式不等式练习题与答案

分式不等式练习题与答案精品文档分式不等式练习题与答案一、分式不等式的解法 1)标准化:移项通分化为ffff?0;?0的形式, gggg?fg?0ff?0?fg?0;?0??2)转化为整式不等式g?0gg?练习:解下列分式不等式:1、x?5x?4?024、2x?3x?2?157、x2?3x?13x2?7x?2?0810、?2?1x?2、2x?3x?2?0 、3x2x?2?1 、3x?13?x??1、1?2xx?3?0 、5x?31 / 13精品文档2x?3?、2x2?3x?7x2?x?2?1作业:1) 不等式x?1 ((((((((((((((((((((((((((( ?0的解集是( x?1?x|x??1? ?x|x?1??x|?1?x?0? ?x|x?1或x??1?2) 與不等式x?2 (((((((((((((((((((((( ?0同解的不等式是( x?3?x?2??x?3??0 ?x?2??x?3??0?x?2??0 ?x?3??03) 不等式x?2 (((((((((((((((((((((((((( ?0的解集是( x?22 / 13精品文档?x|x?2? ?x|?2?x?2? ?x|x?2或x??2??x|?2?x?2?4) 不等式x?5 (((((((((((((((((((((((((( ?0的解集是( x?2?x|x??2? ?x|x??5? ?x|x??5或x?2??x|x??5或x?2?5) 不等式2x?1 (((((((((((((((((((((((((( ?1的解集是( x?2?x|x?1? ?x|x??1? ?x|x?1或x??2??x|?2?x?1?x2?x?6,0的解集为.不等式3 / 13精品文档x?1?xx,?2,或x,3??xx,?2,或1,x,3? ?x?2,x,1,或x,3??x?2,x,1,或1,x,3?(不等式x?5?2的解集是2C(?,1???1,3?A(??3???1?2?B(??,3??1??2??1??2?D(??,1???1,3??1??2?x?2x?2?xx的解集是.3.不等式A. B. C. D. ?2?x?0的解集是( x?4x?210.)不等式2?0的解集是.4 / 13精品文档x?3x?29.不等式11.已知关于x的不等式ax?11,0的解集是?.则x?12a? .13.不等式x?1?1的解集是__________(x2?8x?2014.若不等式?0对一切x?R恒成立,求实数m的取值范围. mx?mx?115. 解关于x的不等式a?1 x不等式的基本知识不等式与不等关系1、应用不等式表示不等关系;不等式的主要性质:对称性:a?b?b?a 传递性:a?b,b?c?a?c加法法则:a?b?a?c?b?c;a?b,c?d?a?c?b?d乘法法则:a?b,c?0?ac?bc; a?b,c?0?ac?bca?b?0,c?d?0?ac?bd5 / 13精品文档倒数法则:a?b,ab?0?11? 乘方法则:a?b?0?an?bn ab开方法则:a?b?0?a?2、应用不等式的性质比较两个实数的大小:作差法3、应用不等式性质证明不等式解不等式1、一元二次不等式的解法一元二次不等式ax?bx?c?0或ax?bx?c?0?a?0?的解集:2设相应的一元二次方程ax?bx?c?0?a?0?的两根为x1、x2且x1?x2,??b?4ac,则不等式的解的各种情况22如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;根据曲线显现f的符号变化规律,写出不等式的解集。

高三数学分式不等式试题答案及解析

高三数学分式不等式试题答案及解析

高三数学分式不等式试题答案及解析1.已知,如果是的充分不必要条件,则实数k的取值范围是()A.B.C.D.【答案】B【解析】由得,,即,解得或,由是的充分不必要条件知,,故选B.【考点】分式不等式解法,充要条件2.已知关于的不等式的解集为. 若,则实数的取值范围为()A..B..C..D..【答案】B【解析】有两种情形,一种是,另一种是使分母为0,即,解得.【考点】解分式不等式.3.不等式的解集是A.B.C.D.【答案】D【解析】根据题意,由于不等式故可知不等式的解集是,选D.【考点】不等式的解集点评:主要是考查了不等式的解集的运算,属于基础题。

4.(本小题满分12分)已知,解不等式【答案】当时原不等式的解集为;当时,解集为;当时,解集为。

【解析】试题分析:原不等式可化为①(1)当时,原不等式为……2分(2)当时,原不等式化为. ②……4分当时,原不等式等价于,由于,可解得;……8分当时,原不等式等价于,由于,可解得或……10分综上,当时原不等式的解集为;当时,解集为;当时,解集为. ……12分【考点】本小题主要考查含参数的不等式的解法.点评:由于在①中,分子中的系数中含有字母,分类讨论就从这里引起。

对于不等式②,分子中的系数不能随意约去,因为根据不等式的性质,若给不等式两边同时乘以一个负数,不等式的方向要改变.5.若a>b>1,不等式<0的解集是______.【答案】{x|x<或b<x<a【解析】原不等式等价于(x-)(x-a)(x-b)<0,∵a>b>1,∴a>b>.∴解集{x|x<或b<x<a.6.不等式的解集是A.B.C.(0,2)D.【答案】D【解析】略7.不等式的解集为【答案】【解析】略8.(本小题满分14分)条件p:条件q:(1)若k=1,求(2)若的充分不必要条件,求实数k的取值范围【答案】(1)(2)【解析】由题意可知:;由可得2-k<a<4-k,所以........................................................................................ .........4分(1)当k=1时,,所以故所以.........................................................................................9分(2)的充分不必要条件,则的充分不必要条件...................................11分则,解得,...........................................14分9.当、满足条件时,变量的取值范围是( )A.B.C.D.【答案】B【解析】略10.不等式的解集为()A.B.C.[1,3]D.【答案】D【解析】略11.若,则, , , 按由小到大的顺序排列为 .【答案】【解析】略12.不等式的解集为__________【答案】(-∞,0)∪[1,+∞)【解析】略13.不等式的解集为____________.【答案】【解析】略14.不等式的解集为A.B.C.D.【答案】C【解析】略15.不等式的解集为A.B.C.D.【答案】C【解析】略16.已知(1)若p > 1时,解关于x的不等式;(2)若对时恒成立,求p的范围.【答案】(1)①②p = 2时,解集为③p > 2时,解集为(2)p > 2【解析】(1)①②p = 2时,解集为③p > 2时,解集为(2)∴恒成立∴恒成立∵上递减∴∴p > 217.已知关于的不等式的解集为.(1)当时,求集合;(2)当时,求实数的范围.【答案】(1)(-∞,1)∪(1,5);(2)【解析】(1)把a=1代入不等式中,求出解集即可得到集合M;(2)因为3∈M且5∉M,先把x=5代入不等式求出a的范围,然后取范围的补集,又因为3属于集合M,所以把x=3代入不等式中,求出关于a的不等式的解集即可得到a的取值范围;与求出a的范围联立求出公共解集即可.试题解析:(1)当时,(2)不成立.又不成立综上可得,【考点】一元二次不等式的解法.18.不等式的解集为.【答案】.【解析】.【考点】解不等式.19.不等式的解集为.【答案】.【解析】,∴不等式的解集是.【考点】解不等式.20.不等式的解集为 .【答案】【解析】由,所以不等式的解集为.【考点】不等式.。

专题二、分式不等式的解法

专题二、分式不等式的解法

(一)分式不等式:型如:0)()(>x x f ϕ或0)()(<x x f ϕ(其中)(、x x f ϕ)(为整式且0≠)(x ϕ)的不等式称为分式不等式。

(2)归纳分式不等式与整式不等式的等价转化:(1)0)()(0)()(>⋅⇔>x x f x x f ϕϕ (3)0)()(0)()(<⋅⇔<x x f x x f ϕϕ(2)⎩⎨⎧≠≥⋅⇔≥0)(0)()(0)()(x x x f x x f ϕϕϕ (4)⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x x x f x x f ϕϕϕ (3)小结分式不等式的解法步骤:(1)移项通分,不等式右侧化为“0”,左侧为一分式 (2)转化为等价的整式不等式(3)因式分解,解整式不等式(注意因式分解后,一次项前系数为正) (1)分式不等式的解法:解关于x 的不等式0231>-+x x方法一:等价转化为: 方法二:等价转化为:⎩⎨⎧>->+02301x x 或⎩⎨⎧<-<+02301x x 0)23)(1(>-+x x 变式一:0231≥-+x x等价转化为:⎩⎨⎧≠-≥-+0230)23)(1(x x x比较不等式0231<-+x x 及0231≤-+x x 的解集。

(不等式的变形,强调等价转化,分母不为零)练一练:解关于x 的不等式 051)1(>--x x 3532)2(≤-x例1、 解关于x 的不等式:232≥+-x x 解:0232≥-+-x x 03)3(22≥++--x x x即,038≥+--x x038≤++x x (保证因式分解后,保证一次项前的系数都为正)等价变形为:⎩⎨⎧≠+≤++030)3)(8(x x x∴原不等式的解集为[)3,8--例2、解关于x 不等式23282<+++x x x 方法一:322++x x恒大于0,利用不等式的基本性质方法二:移项、通分,利用两式同号、异号的充要条件,划归为一元一次或一元二次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式不等式的解法
一.学习目标:
1.会解简单的分式不等式。

二.学习过程
(一)基础自测
1.解下列不等式
(1)43107x x -<+
(2)-x 2+7x >6
(3)()()015<+-x x .
(二)尝试学习
2.解下列不等式
(1)121
>+-x x
(2)2x +11-x <0.
(3)41
2+-x x ≥0 (4)
x +5(x -1)2≥2
(三)巩固练习题
1.不等式
02
1<+-x x 的解集是 .
2.不等式
01
312>+-x x 的解集是( ) .A }2131|{>-<x x x 或 .B }2131|{<<-x x .C }21|{>x x .D }31|{->x x
(四)归纳总结
1.解分式不等式的基本方法是将其转化为与之同解的整式不等式或不等式组.
2.解分式不等式时,一定要等价变形为一边为零的形式,再化归为一元二次不等式(组)求解;若不等式含有等号时,分母不为零.即:
(1)f (x )g (x )>0⇔()()0>⋅x g x f (f (x )g (x )
<0⇔()()0<⋅x g x f ); (2)f (x )g (x )≥0⇔()()()⎩
⎨⎧≠≥⋅00x g x g x f (f (x )g (x )≤0⇔⎩⎨⎧ f (x )·g (x )≤0g (x )≠0); (3)
f (x )
g (x )≥a ⇔f (x )-ag (x )g (x )≥0(f (x )g (x )≤a ⇔f (x )-ag (x )g (x )
≤0)
三.当堂检测
1.不等式
23--x x ≥0的解集是 .
2.不等式
0121≤+-x x 的解集是
3.不等式
042>+-x x 的解集是
4.不等式1x x
-≥2的解集为( ) .A [1,0)- .B [1,)-+∞ .C (,1]-∞- .D (,1](0,)-∞-+∞
5.解下列不等式
(1)2x +11-x <0 (2)x +12x -3≤1
四.作业
解不等式:(1)
0324≤+-x x (2)321≥-+x
x。

相关文档
最新文档