数字逻辑实验

合集下载

数字逻辑实验报告实验

数字逻辑实验报告实验

一、实验目的1. 理解数字逻辑的基本概念和基本原理。

2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。

3. 熟悉常用数字逻辑门电路的功能和应用。

4. 提高数字电路实验技能,培养动手能力和团队协作精神。

二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。

数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。

1. 与门:当所有输入端都为高电平时,输出端才为高电平。

2. 或门:当至少有一个输入端为高电平时,输出端为高电平。

3. 非门:将输入端的高电平变为低电平,低电平变为高电平。

4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。

三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。

(2)识别与测试与门、或门、非门、异或门。

(3)观察并记录实验现象,分析实验结果。

2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。

(2)根据真值表列出输入输出关系,画出逻辑电路图。

(3)利用逻辑门电路搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。

(2)根据电路功能,列出状态表和状态方程。

(3)利用触发器搭建电路,进行实验验证。

(4)观察并记录实验现象,分析实验结果。

四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。

(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。

(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。

2. 实验二:(1)根据实验要求,设计组合逻辑电路。

(2)列出真值表,画出逻辑电路图。

(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验组合逻辑电路实验一一、实验目的1、熟悉半加器、全加器的实验原理,学习电路的连接;2、了解基本74LS系列器件(74LS04、00、32)的性能;3、对实验结果进行分析,得到更为优化的实验方案。

二、实验内容1、按照实验原理图连接电路。

2、实验仪器:74LS系列的芯片、导线。

实验箱内的左侧提供了插放芯片的地方,右侧有控制运行方式的开关KC0、KC1及KC2。

其中KC1用来选择实验序号。

序号为0时,手动进行。

自动运行时按加、减选择所做实验的序号。

试验箱内有分别用于手动和自动实验的输入的控制开关Kn和Sn。

3、三、实验原理实验原理图如下:四、实验结果及分析1、将实验结果填入表1-11-1 表2、实验结果分析由实验结果可得半加和:Hi=Ai⊕Bi 进位:Ci=AiBi则直接可以用异或门和与门来实现半加器,减少门的个数和级数,提高实验效率。

实验二全加器一、实验目的1、掌握全加器的实验原理,用简单的与、或非门来实现全加器的功能。

2、分析实验结果,得到全加器的全加和和进位的逻辑表达式,根据表达式用78LS138和与、或、非门来实现全加器。

二、实验内容同半加器的实验,先采用手动方式,再用自动方式。

用自动方式时选实验序号2。

三、实验原理四、实验结果及其分析表1-2 2、实验结果分析从表1-2中的实验结果可以得到:Si=AiBiCi?1+AiBiCi?1+AiBiCi-1=Ai?Bi?Ci-1Ci=AiBi+AiCi-1+BiCi-1故Si=?m(1,2,4,7) Ci=?m(3,5,6,7)因此可用三—八译码器74LS138和与非门实现全加器,逻辑电路图如下:实验三三—八译码器与八—三编码器一、实验目的1、进一步了解译码器与编码器的工作原理,理解译码和编码是相反的过程。

2、在连接电路时,注意译码器74LS138和编码器74LS148使能端的有效级,知道两者的区别。

3、通过实验理解74LS148是优先权编码器。

数字逻辑实验报告金科

数字逻辑实验报告金科

一、实验目的1. 理解数字逻辑的基本概念和基本原理。

2. 掌握常用数字逻辑门的功能和特性。

3. 学会使用数字逻辑电路设计简单功能电路。

4. 提高实验操作能力和分析问题、解决问题的能力。

二、实验器材1. 数字逻辑实验箱2. 逻辑门电路芯片3. 逻辑测试笔4. 连接线5. 逻辑分析仪6. 示波器三、实验原理数字逻辑是研究数字信号和数字系统的一门学科。

它主要研究数字电路的设计、分析和实现。

数字逻辑的基本元件包括逻辑门、触发器、寄存器等。

本实验主要涉及以下几种逻辑门:1. 与门(AND):只有当所有输入端都为高电平时,输出才为高电平。

2. 或门(OR):只要有一个输入端为高电平,输出就为高电平。

3. 非门(NOT):输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。

4. 异或门(XOR):只有当两个输入端电平不同时,输出才为高电平。

四、实验内容1. 逻辑门功能测试(1)测试与门、或门、非门、异或门的功能。

(2)使用逻辑测试笔和逻辑门电路芯片,观察输入和输出之间的关系。

2. 组合逻辑电路设计(1)设计一个简单的组合逻辑电路,实现二进制加法功能。

(2)使用逻辑门电路芯片和连线,搭建电路。

(3)测试电路功能,验证其正确性。

3. 时序逻辑电路设计(1)设计一个简单的时序逻辑电路,实现计数功能。

(2)使用触发器、寄存器等时序逻辑元件,搭建电路。

(3)测试电路功能,验证其正确性。

五、实验步骤1. 准备工作(1)检查实验器材是否齐全,确保实验顺利进行。

(2)阅读实验指导书,了解实验原理和步骤。

2. 逻辑门功能测试(1)将逻辑门电路芯片插入实验箱。

(2)根据实验指导书,连接输入和输出端口。

(3)使用逻辑测试笔,观察输入和输出之间的关系。

3. 组合逻辑电路设计(1)根据设计要求,选择合适的逻辑门。

(2)使用连线,搭建组合逻辑电路。

(3)测试电路功能,验证其正确性。

4. 时序逻辑电路设计(1)根据设计要求,选择合适的时序逻辑元件。

数字逻辑实验报告解析

数字逻辑实验报告解析

一、实验背景数字逻辑是电子技术与计算机科学的基础课程,它研究数字电路的设计与实现。

为了加深对数字逻辑电路的理解,我们进行了本次实验,通过实际操作和仿真,验证数字逻辑电路的理论知识,并掌握数字逻辑电路的设计与实现方法。

二、实验目的1. 理解数字逻辑电路的基本原理和组成。

2. 掌握逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法。

3. 通过实验验证数字逻辑电路的功能,提高动手能力和分析问题能力。

三、实验内容1. 逻辑门电路实验(1)实验目的:学习分析基本的逻辑门电路的工作原理,掌握与门、或门、非门等基本逻辑门电路的逻辑功能。

(2)实验步骤:①按照实验指导书的要求,连接实验电路;②根据输入信号,观察输出信号,验证逻辑门电路的逻辑功能;③记录实验结果,分析实验现象。

(3)实验结果与分析:实验结果显示,与门、或门、非门等基本逻辑门电路的逻辑功能符合预期。

通过实验,我们加深了对逻辑门电路工作原理的理解。

2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,验证组合逻辑电路的功能。

(2)实验步骤:①根据实验要求,设计组合逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证组合逻辑电路的功能;④记录实验结果,分析实验现象。

(3)实验结果与分析:实验结果显示,设计的组合逻辑电路功能符合预期。

通过实验,我们掌握了组合逻辑电路的设计方法,提高了逻辑思维能力。

3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,验证时序逻辑电路的功能。

(2)实验步骤:①根据实验要求,设计时序逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证时序逻辑电路的功能;④记录实验结果,分析实验现象。

(3)实验结果与分析:实验结果显示,设计的时序逻辑电路功能符合预期。

通过实验,我们掌握了时序逻辑电路的设计方法,提高了逻辑思维能力。

四、实验总结通过本次实验,我们完成了以下任务:1. 理解了数字逻辑电路的基本原理和组成;2. 掌握了逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法;3. 通过实验验证了数字逻辑电路的功能,提高了动手能力和分析问题能力。

数字逻辑上机实验报告

数字逻辑上机实验报告

一、实验目的1. 理解数字逻辑的基本概念和基本门电路的功能。

2. 掌握组合逻辑电路和时序逻辑电路的设计方法。

3. 学会使用逻辑仿真软件进行电路设计和验证。

4. 培养动手能力和逻辑思维。

二、实验环境1. 实验软件:Multisim 14.02. 实验设备:个人计算机3. 实验工具:万用表、示波器、数字逻辑实验箱三、实验内容1. 组合逻辑电路设计(1)实验一:全加器设计实验目的:设计并验证一个全加器电路。

实验步骤:1. 打开Multisim软件,创建一个新的项目。

2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建全加器电路。

3. 使用示波器观察输入和输出波形,验证电路功能。

实验结果:成功搭建全加器电路,输出波形符合预期。

(2)实验二:译码器设计实验目的:设计并验证一个3-8译码器电路。

实验步骤:1. 打开Multisim软件,创建一个新的项目。

2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建3-8译码器电路。

3. 使用示波器观察输入和输出波形,验证电路功能。

实验结果:成功搭建3-8译码器电路,输出波形符合预期。

2. 时序逻辑电路设计(1)实验一:D触发器设计实验目的:设计并验证一个D触发器电路。

实验步骤:1. 打开Multisim软件,创建一个新的项目。

2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建D触发器电路。

3. 使用示波器观察输入和输出波形,验证电路功能。

实验结果:成功搭建D触发器电路,输出波形符合预期。

(2)实验二:计数器设计实验目的:设计并验证一个4位同步加法计数器电路。

实验步骤:1. 打开Multisim软件,创建一个新的项目。

2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门、触发器等,搭建4位同步加法计数器电路。

3. 使用示波器观察输入和输出波形,验证电路功能。

实验结果:成功搭建4位同步加法计数器电路,输出波形符合预期。

四、实验结果分析1. 通过实验,掌握了组合逻辑电路和时序逻辑电路的设计方法。

数字逻辑实验报告

数字逻辑实验报告

数字逻辑实验报告数字逻辑实验报告引言数字逻辑是计算机科学中的重要基础知识,通过对数字信号的处理和转换,实现了计算机的高效运算和各种复杂功能。

本实验旨在通过实际操作,加深对数字逻辑电路的理解和应用。

实验一:二进制加法器设计与实现在这个实验中,我们需要设计一个二进制加法器,实现两个二进制数的加法运算。

通过对二进制数的逐位相加,我们可以得到正确的结果。

首先,我们需要将两个二进制数输入到加法器中,然后通过逻辑门的组合,实现逐位相加的操作。

最后,将得到的结果输出。

实验二:数字比较器的应用在这个实验中,我们将学习数字比较器的应用。

数字比较器可以比较两个数字的大小,并输出比较结果。

通过使用数字比较器,我们可以实现各种判断和选择的功能。

比如,在一个电子秤中,通过将待测物品的重量与设定的标准重量进行比较,可以判断物品是否符合要求。

实验三:多路选择器的设计与实现在这个实验中,我们需要设计一个多路选择器,实现多个输入信号中的一路信号的选择输出。

通过使用多路选择器,我们可以实现多种条件下的信号选择,从而实现复杂的逻辑控制。

比如,在一个多功能遥控器中,通过选择不同的按钮,可以控制不同的家电设备。

实验四:时序电路的设计与实现在这个实验中,我们将学习时序电路的设计与实现。

时序电路是数字逻辑电路中的一种重要类型,通过控制时钟信号的输入和输出,实现对数据的存储和处理。

比如,在计数器中,通过时序电路的设计,可以实现对数字的逐位计数和显示。

实验五:状态机的设计与实现在这个实验中,我们将学习状态机的设计与实现。

状态机是一种特殊的时序电路,通过对输入信号和当前状态的判断,实现对输出信号和下一个状态的控制。

状态机广泛应用于各种自动控制系统中,比如电梯控制系统、交通信号灯控制系统等。

实验六:逻辑门电路的优化与设计在这个实验中,我们将学习逻辑门电路的优化与设计。

通过对逻辑门电路的布局和连接方式进行优化,可以减少电路的复杂性和功耗,提高电路的性能和可靠性。

数字逻辑实验报告代码

数字逻辑实验报告代码

实验名称:数字逻辑基础实验实验目的:1. 理解并掌握基本的数字逻辑门电路及其功能。

2. 学习使用数字逻辑门电路设计简单的组合逻辑电路。

3. 掌握数字逻辑电路的仿真方法。

实验器材:1. 数字逻辑实验箱2. 仿真软件(如Multisim)实验内容:一、实验一:基本逻辑门电路测试1. 实验原理基本逻辑门电路是数字逻辑电路的基础,包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。

本实验通过测试这些基本逻辑门电路,验证其功能。

2. 实验步骤(1)按照实验箱说明书连接电路。

(2)使用开关模拟输入信号,观察输出结果。

(3)分别测试与门、或门、非门、异或门的功能。

3. 实验结果与门:输入均为高电平时,输出为高电平;否则,输出为低电平。

或门:输入至少有一个高电平时,输出为高电平;否则,输出为低电平。

非门:输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。

异或门:输入不同时,输出为高电平;输入相同时,输出为低电平。

二、实验二:组合逻辑电路设计1. 实验原理组合逻辑电路是由基本逻辑门电路组合而成的电路,其输出仅与当前的输入有关,而与电路历史状态无关。

2. 实验步骤(1)设计一个4位二进制加法器。

(2)使用基本逻辑门电路搭建电路。

(3)测试电路功能。

3. 实验结果设计了一个4位二进制加法器,其功能正常。

三、实验三:数字逻辑电路仿真1. 实验原理数字逻辑电路仿真是一种利用计算机软件模拟实际电路的方法,可以直观地观察电路的输入输出关系。

2. 实验步骤(1)打开仿真软件,创建一个新的项目。

(2)根据实验要求,使用基本逻辑门电路搭建电路。

(3)设置输入信号,观察输出结果。

(4)调整电路参数,观察输出变化。

3. 实验结果使用仿真软件成功搭建了实验二中的4位二进制加法器电路,并验证了其功能。

实验总结:通过本次数字逻辑实验,我们对基本逻辑门电路及其功能有了更深入的了解。

同时,我们学会了使用基本逻辑门电路设计简单的组合逻辑电路,并掌握了数字逻辑电路的仿真方法。

数字逻辑 实验法

数字逻辑 实验法

数字逻辑实验法
数字逻辑实验是电子工程中重要的一环,它涉及到数字电路的设计、分析和测试等方面。

数字逻辑实验的主要目的是为了学生能够掌
握数字电路的基本原理和实现方法,以及了解数字电路的应用。

数字
逻辑实验内容繁多,下面我们一一来解析。

1. 基本组合逻辑电路实验
基本组合逻辑电路实验包括了与门、或门、非门、异或门和与非
门等电路的实现与测试。

在实验中,学生需要掌握数字逻辑电路的输
入输出特性,了解逻辑电路的单元运算过程,以及掌握数字逻辑元器
件的基本使用方法与测试技巧。

2. 时序逻辑电路实验
时序逻辑电路实验主要包括了触发器、计数器、移位寄存器、时
序比较器等电路的实现与测试。

在该实验中,学生需要掌握数字逻辑
元器件的触发过程,理解时序电路的时序条件,掌握时序电路的输入
输出特性及使用方法。

3. 数字信号处理实验
数字信号处理实验主要是针对数字信号的处理过程进行研究,包
括了数字滤波器、数字变换器、数字编解码器等电路的实验。

在该实
验中,学生需要了解数字信号的基本概念以及数字信号的表示方法等。

4. FPGA设计实验
FPGA(现场可编程门阵列)设计实验是数字逻辑实验中的一个重
要组成部分,其主要包括了原理图设计、Verilog语言编程、逻辑仿真、下载到FPGA器件等多个方面。

学生需要掌握FPGA器件的配置文件与
下载流程,了解FPGA器件的使用方法与项目调试方法,掌握电子系统
设计的流程及方法。

以上就是数字逻辑实验的主要内容,希望可以帮助广大电子工程
学子,提升数字逻辑实验的设计与分析水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

___计算机__学院___专业__1_班________组、学号姓名_______协作者______________ 教师评定_________________实验题目____________基于实验箱的数字逻辑实验_____________1.基本门电路2.组合逻辑电路3.时序逻辑电路实验报告基本门电路一、实验目的1、了解基本门电路的主要用途以及验证它们的逻辑功能。

2、学习“与或非门”有关参数的测试。

3、熟悉数字电路实验箱的使用方法。

二、实验仪器及器件1、GDUT-J-1数字电路实验箱。

2、拨码开关SI1~SI8,LED灯LD_I1~LD_I16、LD_O1~LD_O16。

3、逻辑笔,示波器,数字万用表。

4、器件:74HC00、74HC02、74HC04、74HC08、74HC32、74HC86。

三、实验原理数字电路研究的对象是电路的输入与输出之间的逻辑关系,这些逻辑关系是由逻辑门电路的组合来实现的。

门电路是数字电路的基本逻辑单元。

要实现基本逻辑运算和复合逻辑运算可用这些单元电路(门电路)进行搭建。

门电路以输入量作为条件,输出量作为结果,输入与输出量之间满足某种逻辑关系(即“与、或、非、异或”等关系)。

电路输入与输出量均为二值逻辑的1和0两种逻辑状态。

实验中用高低电平分别表示为正逻辑的1和0两种状态。

输出端的1和0两种逻辑状态可用两种方法判定:①将电路的输出端接实验仪的某一位LED,当某一位的LED灯亮时,该位输出高电平,表示逻辑“1”;LED灯不亮时,输出低电平,表示逻辑“0”。

②用逻辑笔可以测量输出端的逻辑值。

四、实验结果和数据处理(见附表)表2-1 74HC00(四2输入与非门)输入输出状态输入端输出端YA B LED(亮/灭)逻辑状态0 0 亮 10 1 亮 11 0 亮 111 1 灭074HC00的逻辑表达式:Y=BA表2-2 74HC02(四2输入或非门)输入输出状态输入端输出端YA B LED(亮/灭)逻辑状态0 0 亮 10 1 灭01 0 灭01 1 灭074HC02的逻辑表达式:Y=AB表2-3 74HC04(六组反相器)输入输出状态输入端输出端YA LED(亮/灭)逻辑状态0 亮 11 灭074HC04的逻辑表达式:Y=A表1-4 74HC08(四2输入与门)输入输出状态输入端输出端YA B LED(亮/灭)逻辑状态0 0 灭00 1 灭01 0 灭021 1 亮 174HC08的逻辑表达式:Y=AB表2-5 74HC32(四2输入或门)输入输出状态输入端输出端YA B LED(亮/灭)逻辑状态0 0 灭00 1 亮 11 0 亮 11 1 亮 174HC32的逻辑表达式:Y=A+B表2-6 74HC86(四2输入异或门)输入输出状态输入端输出端YA B LED(亮/灭)逻辑状态0 0 灭00 1 亮 11 0 亮 11 1 灭074HC86的逻辑表达式:Y=A B+A B五、结论答:学会了如何验证门电路的逻辑功能,并且检验了电箱的准确性。

了解到了各种门电路的工作性能,电箱的接线还不算很复杂,为今后的实验打下了基础。

六、问题与讨论问题:输出的LED状态和什么有关讨论结果:输出的LED状态与有效电平输入有关。

3组合逻辑电路一、实验目的1、了解全加器的工作原理及其典型的应用,并验证4位全加器功能。

2、了解和掌握数字比较器的工作原理及如何比较大小。

3、了解和掌握译码器的工作原理,并测试其逻辑功能。

4、了解和掌握编码器的工作原理,并测试其逻辑单元。

5、了解和掌握数据选择器的工作原理及逻辑功能。

二、实验仪器及器件1、GDUT-J-1数字电路实验箱。

2、器件:8-3编码器74HC148、3-8译码器74HC138、4选1数据选择器74HC153、4位数字比较器74HC85、4位全加器74HC283。

三、实验结果和数据处理(见附表)表2-7 74LS148输入输出状态控制十进制数字信号输入二进制数码输出状态输出E I I0I1I2I3I4I5I6I7A2A1A0G S E O1 X X X X X X X X 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 00 X X X X X X X 0 0 0 0 0 10 X X X X X X 0 1 0 0 1 0 10 X X X X X 0 1 1 0 1 0 0 10 X X X X 0 1 1 1 0 1 1 0 10 X X X 0 1 1 1 1 1 0 0 0 10 X X 0 1 1 1 1 1 1 0 1 0 10 X 0 1 1 1 1 1 1 1 1 0 0 10 0 1 1 1 1 1 1 1 1 1 1 0 18-3编码器74LS148的逻辑表达式:A2 = EI+ I4 + I5+ I6+ I7A1=EI+( I2I3+I4+I5) I6 I7GS=EI+ I0 I1 I2 I3 I4 I5 I6 I7E O=EII2I1I3I0I7I4I6I5表2-8 74HC138输入输出状态45使能输入数据输入 译码输出1E2EE 3 A 2 A 1 A 0 0Y1Y2Y3Y4Y 5Y6Y7Y1 X X X X X 1 1 1 1 1 1 1 1 X 1 X X X X 1 1 1 1 1 1 1 1 X X 0 X X X 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 00 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 011111111113-8译码器74HC138的逻辑表达式:0Y =A 2+A1+A01Y =A 2A1A 02Y =A 2A 1A03Y =A 2A 1A 04Y =A 2A1A05Y =A 2A1A6Y =A 2A 1A07Y =A 2A 1A 0表2-9 74HC153输入输出状态选择输入 数据输入 输出使能输入输出 S 1 S 0 1I 0 1I 1 1I 2 1I 3 1E 1Y X X X X X X 1 0 0 0 0 X X X 0 0 0 0 1 X X X 0 1 1 0 X X 0 X 0 0 1 0 X X 1 X 0 1 0 1 X 0 X X 0 0 01X1XX1选择输入数据输入输出使能输入输出S1S01I01I11I21I31E 1Y1 1 X X X 0 0 01 1 X X X 1 0 14选1数据选择器74HC153的逻辑表达式:1Y=1I0S1S0+1I1S1S0+1I2S1S0+1I3S1S0表2-10 74HC85输入输出状态比较输入级联输入输出A3 A2 A1 A0 B3 B2 B1 B0 IA>B IA=B IA<B A>B A=B A<B1 X X X 0 X X X X X X 1 0 00 X X X 1 X X X X X X 0 1 01 1 X X 1 0 X X X X X 1 0 00 0 X X 0 1 X X X X X 0 1 01 0 1 X 1 0 0 X X X X 1 0 00 0 0 X 0 0 1 X X X X 0 1 01 1 0 1 1 1 0 0 X X X 1 0 00 0 1 0 0 0 1 1 X X X 0 1 01 1 0 1 1 1 0 1 0 0 0 1 1 00 1 0 0 0 1 0 0 0 0 1 0 1 01 1 0 1 1 1 0 1 1 0 0 1 0 00 0 0 0 0 0 0 0 1 0 1 0 0 01 1 1 1 1 1 1 1 X 1 X 0 1 04位数字比较器74HC85的逻辑表达式:gt=A33B+┐(A3⊕B3)A22B+┐(A3⊕B3)┐(A2⊕B2)A11B+┐(A3⊕B3) ┐(A2⊕B2) ┐(A1⊕B1)A00Beq=┐(A3⊕B3)┐(A2⊕B2)┐(A1⊕B1)┐(A0⊕B0)lt=eqqt表2-11 74HC283输入输出状态6Cin 4位被加数输入4位加数输入输出加法结果和进位1 A4 A3 A2 A1 B4 B3 B2 B1 COUT S4 S3 S2 S10 0 0 0 0 0 1 1 0 0 0 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 01 0 1 1 1 0 0 1 0 0 1 0 0 10 0 1 0 0 0 1 1 0 0 1 0 1 10 0 1 0 1 0 1 1 1 0 1 1 0 00 1 0 0 0 0 1 1 1 0 1 1 1 10 1 0 0 1 1 0 0 1 1 0 0 1 01 0 0 0 0 0 0 0 1 0 0 0 1 01 0 0 0 0 0 0 1 0 0 0 0 1 10 0 0 0 1 0 0 0 1 0 0 0 1 01 0 0 0 0 0 1 0 0 0 0 1 0 10 0 0 0 1 0 0 1 1 0 0 1 0 01 1 0 0 0 1 0 0 0 1 0 0 0 1思考:如增加Cin,输出结果会如何?请自行在表上增加,并验证其它取值的加法结果,填入表中。

增加Cin后,S1可能会不同,所以导致Cout,S2,S3,S4也会改变。

四位并行进位加法器74HC283的逻辑表达式:C0=A0B0+A0Cin+B0CinC1=A1B1+(A1+B1)(A0B0+A0Cin+B0Cin)C2=A2B2+(A2+B2)[A1B1+(A1+B1)(A0B0+A0Cin+B0Cin)]C3=A3B3+(A3+B3){A2B2+(A2+B2)[A1B1+(A1+B1)(A0B0+A0Cin+B0Cin)]}S1=A1⊕B1⊕CinS2=A2⊕B2⊕C1S3=A3⊕B3⊕C2S4=A4⊕B4⊕C3四、结论答:验证了编码器、译码器、4选1数据选择器、4位数字比较器、4位全加器的功能,并让我们了解到它们各自的特点与运动方式。

如4位全加器,用连续的电频输出方式验证,才能清楚地看到位数逐一增加的过程。

五、问题与讨论问题: (1)什么时候我们要考虑4位数字比较器的级联输入?讨论结果: 当输入的A和B的4位数都相等的时候,我们要考虑级联输入。

用随机的方式级联输入方式来进一步判断A和B的大小。

当级联输入是000或者101的时候,是无7效输入。

(2)当进行4位全加器的时候,我们应该注意哪些地方.讨论结果:4位全加器涉及到低位向高位的进位,所以在输出S1.S2.S3.S4的时候除了要关心A1.B1.A2.B2.A3.B3.A4.B4的数据时,也要关心从低位输入的进位,从而得到正确的输出结果.89时序逻辑电路一、实验目的1、掌握D 触发器的逻辑功能和测试方法,熟悉常用集成触发器的型号及引线排列。

相关文档
最新文档