简易函数波形发生器
简易波形发生器设计

根据设计要求,可以考虑四种波形切换,用两个开关的四种状态来实现。需要两根口线,如果用按钮来切换波形就只需要一根I/O线,而且使用也方便一些。另外,波形频率的改变是通过电位器输入电压来实现的,所以需要一个模拟量输入,选用常用的A/D转换器芯片0809可以满足要求。波形输出是通过D/A转换器实现的,可以选用D/A专用芯片0832来完成。这样系统的主要器件就确定了。其系统原理图如图1所示。
DB 1,2,5,10,15,21,29,37,47,57,67,79,90,103,115,128
2.三角波
三角波的产生较为简单,因为它的上升沿遵循数据加1的规律。下降沿则按数据减1的规律产生。所以在波形的上升沿只要判断上一次的数据是否为最大值FFH,如果不是最大值,将原数据加1输出;而在波形的下降沿只要判断上一次数据是否为0,如果不是0,则将原数据减1即可,当数据为FFH或0时,应当及时调整升降标志,以便下一次能输出正确的数据。根据上述编程思想绘制的三角波程序框图如图3所示。
为了将这六个数顺次输出,可以采用列表或将原数加50再判断这两种方式。采用后者输出数据的阶梯波程序框图如图4所示。
5.频率控制
每种波形输出一个数据后程序都转到程序控制部分,各种波形的频率就是通过这一部分控制的。它的控制原理是首先读出0809的A/D转换值,并以此为基值延时,延时完毕后再启动0809开始采样模拟电压,为下一次读数做准备。当然,也可以隔几秒钟进行一次A/D转换,这样要用到定时器中断。若直接将A/D转换值作为延时基数去延时,则频率的变换范围有限。若将A/D转换值乘以一个倍率再去延时,虽然可扩大频率的变化范围,但波形的失真会明显增大。
1.2 设计的内容、要求
设计一个简易波形发生器,要求该系统能通过开关或按钮有选择性的输出正弦波、三角波、方波、及阶梯波等四种波形,并且这四种波形的频率均可通过输入电位器在一定范围内调节。
《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技术知识,运用AD画图软件,设计并制作完成一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源电路。
1.2 整机实现的基本原理及框图函数信号发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。
其电路中使用的器件可以是分立器件,也可以是集成电路。
本课题需要完成一个能产生方波、三角波的简易函数信号发生器。
产生方波、三角波的方案有很多种,本课题采用运放构成电压比较器出方波信号,采用积分器将方波变为三角波输出,其原理框图如图1所示。
直流电源电路一般由"降压--整流--滤波--稳压"这四个环节构成。
基本组成框图如图2所示。
电源变压器的作用是将电网220V的交流电压变成整流电路所需要的电压u。
因此,u 1=nui(n为变压器的变比)。
整流电路的作用是将交流电压u1变换成单方向脉动的直流U2。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U2=0.9u1。
每只二极管所承受的最大反向电压URM =√2u1,平均电流I D(av)=12IR=0.45u1R对于RC滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC=(3~5)T/2,T为50Hz交流电压的周期,即20ms。
2 硬件电路设计这是直流电源电路的原理图,由“降压——整流——滤波——稳压”这四个环节构成。
通过变压把电网 220V 的交流电压变成整流电路所需要的电压,4个二极管的作用是整流,电容起滤波的作用,再经过7812跟7912进行稳压,2个LED灯起指示作用。
这部分采用运放构成电压比较器出方波信号这部分采用运放构成积分器将方波变为三角波输出3 制作与调试过程根据要求画出实验电路的原理图,根据测量元器件来确定孔径的大小,元器件管脚间的距离以及元器件的大小,导入PCB后改好规则,布好局后连线,布局时要留出一定位置来放变压器,放置姓名学号,这样制版的第一步就做好了。
简易波形发生器

简易波形发生器一、实验目的1.掌握DAC0832和ADC0809的应用和编程方法。
2.熟悉几种典型波形的产生方法。
二、实验内容与要求利用微机实验平台编程实现一个波形发生器,可以产生正弦波、方波、三角波等各种波形,频率和幅度均可调。
1.基本要求(1)具有产生正弦波、方波、三角波三种周期性波形的功能。
(2)输出波形的频率范围为100Hz~1kHz,步进为100Hz。
(3)输出波形幅度范围1~5V(峰-峰值),可按步进1V(峰-峰值)调整。
(4)通过ADC0809采样DAC0832的输出,在屏幕上画出图形。
示波器查看波形发生器的输出和屏幕上的图形比较。
2.提高要求(1)增加输出波形的类型。
(2)扩展输出波形频率范围。
(3)减少幅度范围的步进量。
三、实验报告要求1.设计目的和内容2.总体设计3.硬件设计:原理图(接线图)及简要说明4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法)四、总体设计本次设计结合D/A和A/D转换,用键盘输入来选择DAC0832的输出波形,再通过ADC0809采集后在PC机上以图形方式显示。
实验主要利用实验箱上的DAC0832 、ADC0809和8253等硬件电路和PC机资源。
设计要求该波形发生器能产生正弦波、方波、三角波等形状的波形,频率和幅度可调。
不同的波形主要是由输入DAC0832的不同规律的数据,所以在软件设计是主要是构造各种波形的数据表格。
方波只需要控制输出高低电平的时间,三角波的表格可以由数字量的增减来控制,产生正弦波关于构造一个正弦函数数值表,通过查该函数表来实现波形的输出。
波形的频率控制是通过对输出数据的时间间隔控制。
幅度是通过改变输出数据的大小来控制的。
为了程序实现方便,可以把每种波形的数据表构造好,再统一查表来实现。
硬件由于采用了PC机的资源和微机实验平台,不用外加其他的电路,比较简单。
将微机系统里面的中断、8253、 DAC0832以及ADC0832的电路弄清楚,通过相应的跳线就可以完成电路的设计。
简易波形发生器的设计

目录第一章单片机开发板 (1)1.1 开发板制作 (1)1.1.1 89S52单片机简介 (1)1.1.2 开发板介绍 (2)1.1.3 89S52的实验程序举例 (3)1.2开发板焊接与应用 (4)1.2.1开发板的焊接 (4)1.2.2开发板的应用 (5)第二章函数信号发生器 (7)2.1电路设计 (7)2.1.1电路原理介绍 (7)2.1.2 DAC0832的工作方式 (9)2.2 波形发生器电路图与程序 (10)2.2.1应用电路图 (10)2.2.2实验程序 (11)2.2.3 调试结果 (15)第三章参观体会 (16)第四章实习体会 (17)参考文献 (18)第一章单片机开发板1.1 开发板制作1.1.1 89S52单片机简介图1.1 89s52 引脚图如果按功能划分,它由8个部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EP ROM)、I/O口(P0口、P1口、P2口、P3口)、串行口、定时器/计数器、中断系统及特殊功能寄存器(SF R)的集中控制方式。
各功能部件的介绍:1)数据存储器(RAM):片内为128个字节单元,片外最多可扩展至64K字节。
2)程序存储器(ROM/EPROM):ROM为4K,片外最多可扩展至64K。
3)中断系统:具有5个中断源,2级中断优先权。
4)定时器/计数器:2个16位的定时器/计数器,具有四种工作方式。
5)串行口:1个全双工的串行口,具有四种工作方式。
6)特殊功能寄存器(SFR)共有21个,用于对片内各功能模块进行管理、监控、监视。
7)微处理器:为8位CPU,且内含一个1位CPU(位处理器),不仅可处理字节数据,还可以进行位变量的处理。
8)四个8位双向并行的I/O端口,每个端口都包括一个锁存器、一个输出驱动器和一个输入缓冲器。
这四个端口的功能不完全相同。
A、P0口既可作一般I/O端口使用,又可作地址/数据总线使用;B、P1口是一个准双向并行口,作通用并行I/O口使用;C、 P2口除了可作为通用I/O使用外,还可在CPU访问外部存储器时作高八位地址线使用;D、P3口是一个多功能口除具有准双向I/O功能外,还具有第二功能。
基于LM324的简易波形发生器

目录摘要 (1)一、课程设计的目标和设计的任务 (1)1.1设计培养的目标 (1)1.2设计任务 (1)1.3课程设计的要求及技术要求 (2)二、电路设计原理方案及电路图 (2)2.1设计方案及电路图 (2)2.2 Multisim仿真结果 (3)三、电路板的制作 (4)四、电路的安装与调试 (4)五、波峰焊、回流焊 (5)5.1波峰焊 (5)5.2回流焊 (6)六、心得体会 (6)附录:仪器仪表及元件清单 (7)摘要在电子系统中,经常要使用到方波、三角波等波形的波形信号产生电路,常用于产生各种电子信号,完成电子系统间的通信以及自动测量和自动控制等系统中。
本系统采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。
该波形发生器具有效率高、体积小、重量轻,输出稳定,能产生方波、三角波和正弦波等电子信号,可以作为其它电子系统的信号发生模块电路。
一、课程设计的目标和设计的任务1.1设计培养的目标1、总体目标:本课程的目标是让学生在掌握模拟和数字电子技术的基础上,通过典型实践题目的设计与实现,使其加深对模拟和数字电子技术知识的理解,初步掌握现代电子系统的设计方法和调试方法,培养分析、解决实际问题的能力,提高工程设计的技能。
2、知识目标:(1)熟悉各种模拟电路和数字电路的内容;(2)按要求完成整个电路的分析和设计;(3)对整个系统制作和调试;3、能力目标:(1)能熟练掌握操作万用表、信号发生器、示波器、稳压电源等常用电子仪器仪表;(2)能熟练查阅常用电子元器件和芯片的规格、型号等资料;(3)能熟练运用线路板设计软件制作电路图;(4)完成电路板制作和硬件连接,并学会排错、解决故障;1.2设计任务在电子系统中,经常要使用到方波、三角波等波形的波形信号产生电路,常用于产生各种电子信号,完成电子系统间的通信以及自动测量和自动控制等系统中。
本系统采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。
基于LM324的简易波形发生器

设计报告作品名称:基于LM324的简易波形发生器*者:***洪文娟吴丽萍基于LM324的简易波形发生器摘要在电子系统中,经常要使用到方波、三角波等波形的波形信号产生电路,常用于产生各种电子信号,完成电子系统间的通信以及自动测量和自动控制等系统中。
本系统采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。
该波形发生器具有效率高、体积小、重量轻,输出稳定,能产生方波、三角波和正弦波等电子信号,可以作为其它电子系统的信号发生模块电路。
关键词LM324 简易波形发生器目录1 方案设计与论证 (1)1.1 方案1 (1)1.2 方案2 (1)2 系统设计 (1)2.1 LM324芯片简介 (1)2.2 电路组成和工作原理 (2)2.3 电路设计与计算 (3)3 系统测试 (5)3.1 测试工具 (5)3.2数据测试与结果分析 (5)3.3 测试结论 (5)4 设计结论 (7)参考文献 (7)1 方案设计与论证1.1 方案1采用ICL8038集成函数信号发生器芯片外加电阻、电容元件,构成波形发生电路。
ICL8038集成函数信号发生器芯片是一种多用途的波形发生器芯片,它可以用来产生正弦波、方波、三角波和锯齿波。
它的振荡频率可以通过外加的直流电压进行调节,是一种压控集成函数信号发生器。
虽然ICL8038集成函数信号发生器的功能强大,但是它的价格昂贵,而且市面上也较难买到。
如果用ICL8038芯片来制作简易波形发生器系统,则会大大增加系统的制作成本。
1.2 方案2采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。
LM324是一种集成运算放大器芯片,它的内部有四个独立的运算放大器。
根据所学的知识,运算放大器可以构成滞回比较器、积分器和二阶有源低通滤波器电路,可以分别产生方波、三角波和正弦波。
依靠这些电路的组合,就可以制作成简易波形发生器电路。
该电路具有效率高、体积小、重量轻,输出稳定等特点。
实验报告 简易波形信号发生器的制作

0x0B,0x0D,0x0E,0x10,0x11,0x13,0x15,0x16,0x18,0x1A,0x1C,
0x1E,0x20,0x22,0x25,0x27,0x29,0x2B,0x2E,0x30,0x33,0x35,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,
0x0B,0x0D,0x0E,0x10,0x11,0x13,0x15,0x16,0x18,0x1A,0x1C,
TMOD=0x10;//置定时器1为方式1
while(1)
{
for(i=0;i<=255;i++)//形成锯齿波输出值,最大255
{
DA0832=i;//D/A转换输出
delay_1ms();
}
}
}
采用DAC0832产生正弦波的编程思路:把产生正弦波输出的二进制数据以数值的形式预先存放在程序存储器中,再按顺序依次取出送至D/A转换器,程序流程如下图所示:
void delay_1ms()
{
TH1=0xfc;//置定时器初值
TL1=0x18;
TR1=1;//启动定时器1
while(!TF1);//查询计数是否溢出,即定时1ms时间到,TF1=1
TF1=0;// 1ms时间到,将定时器溢出标志位TF1清零
}
void main()//主函数
{
uchar i;
#include<reg51.h>
简易波形产生器

简易波形产生器摘要函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由555定时器所构成的多谐振动器产生方波,方波经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
关键词:函数发生器555定时器积分器差动放大电路目录摘要 (1)1.方案的选择 (2)1.1 方案一 (2)1.2 方案二 (2)1.3 方案三 (2)2.系统方案设计 (2)2.1 系统组成框图 (2)2.2 方波的产生 (2)2.3 由方波输出为三角波 (2)2.4 由三角波输出正弦波 (2)2.5 结论 (2)3.总结 (2)致谢 (2)参考文献 (2)附录一:总原理图 (2)附录二:元器件选型 (2)附录三:555定时器的介绍 (2)1.方案的选择三种波形都是比较简单且常见的波形,产生的方法由很多种,可以先产生方波,然后得到三角波和正弦波,也可以先得到正弦波,然后翻过来再输出另外两种波形;可以用集成芯片,同时也可以运用各种元器件来实现振荡电路。
1.1 方案一采用集成片ICL8038做函数信号发生器图1 ICL8038原理图ICL8038是一种集成度很高的芯片,只需要外加少量调整电路即可以获得完美的方波-三角波-正弦波的波形1.2 方案二采用振荡电路获得正弦波,再由比较器获得方波,最后通过积分电路获得三角波图2函数发生器原理一1.3 方案三由555定时器所构成的多谐振动器产生方波,方波经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统框图
1、系统设计
1.1总体设计
系统采用±12V双电源供电,由LM324集成运放芯片构成滞回比较器、积分器和二阶有源低通滤波器。
它由滞回比较器产生方波信号,方波信号经过积分器后产生三角波信号。
三角波信号一路反馈回滞回比较器,作为滞回比较器的V REF(反馈电压);另一路经二阶有源低通滤波器滤波以后产生正弦波信号。
使用时可以在电路系统的不同输出点得到不同的波形信号。
正弦波信号通过LM358集成芯片构成全波整流电路。
2.2 单元电路设计
2.2.1方波——三角波发生电路
方波-三角波发生电路由滞回比较器和积分运算电路组成。
通过滞回比较器产生方波,方波通过积分电路产生三角波。
积分运算电路既作为延迟环节又作为方波变三角波电路,滞回比较器和积分运算电路的输出互为另一个电路的输入。
方波的输出电压幅度由稳压管ZD1、ZD2共同决定。
稳压幅度Uz为
+Uz=3.9+0.7=4.6(V)
其中,0.7V为二极管D1正向导通的管压降。
-Uz=-(3.9+0.7)=-4.6 (V)
其中,0.7V为二极管D2正向导通管压降。
所以
U o1=±U Z=±4.6(V)
V pp(方波)=9.2V
电路的第二级是一个积分器,用于输出三角波。
当电路的第一级输出的方波信号U01送入该级电路后,由该级电路对信号进行积分变换以后,产生三角波信号U02。
U02分成两路,一路输入第三级电路,另一路反馈回滞回比较器,作为滞回
比较器的V REF。
R1为10KΩ,R2为10 kΩ,R4=10kΩ,C1=0.1uF。
第二级电路的输出电压幅度为:
错误!未找到引用源。
=(10K/10K)*4.6V=4.6(V)
V pp(三角波)=9.2(V)
第一级电路和第二级电路的振荡周期相同,可以由以下的公式求得:
=4×(10x103)×(10x103)×0.1×10-6/(10×103)
T=4 (ms)
则振荡频率为:
f=1/ T=1/(0.172×10-3)=250(Hz)
2.2.2正弦波发生电路
C2
第三级电路是二阶有源低通滤波器,用于对第二级电路送来的信号U02进行滤波。
U02经过第三级电路的滤波之后,变换成正弦波信号后由U03输出。
U03输出信号的周期与U02输出信号的周期相同。
根据集成运算放大器的工作原理,集成运算放大器的两输入端“虚短”,即两输入端的电压相等。
所以在第三级电
路中,运放的第9引脚和第10引脚的电位相等。
因为R8=R9=10kΩ,所以
M点的电流方程为
P 点的电流方程为错误!未找到引用源。
联立上面两式,得
把,f=268.8Hz代入上式,得
又因为
所以
所以
所以V pp(正弦波)=13.1(V)
而第三级电路的上限截止频率为:
上述公式中,
R=错误!未找到引用源。
=6.8(KΩ)
f H=1/(2×3.14159×6.8X103×0.1×10-6)=234.05(H Z)
这说明,第三级电路将阻止频率高于234.05H Z的信号通过。
没修改之前错误!未找到引用源。
=3.9(KΩ),上限截止频率=1/(2×3.14159×3.9X103×0.1×10-6)=408.1Hz,而错误!未找到引用源。
(三角波)的输入频率为268.8Hz,在268.8~408.1区间通过傅里叶展开可知这区间的频率(谐波的频率)会影响正弦波的波形,使它有点尖,要使谐
波减少到最小,要使上限截止频率与三角波输入频率接近,由得
R=6.8K Ω,所以我们取错误!未找到引用源。
=6.8(K Ω),观察测试的波形,正弦
波波形理想。
2.2.3全波整流电路
当正弦波的输入电压大于0V 时,二极管D1导通,D2截止,左边电路实现反相比例运算,错误!未找到引用源。
错误!未找到引用源。
当正弦波的输入电压小于0V 时,二极管D2导通,D1截止,错误!未找到引用源。
中电流为零,因此输出电压错误!未找到引用源。
=0。
根据错误!未找到引用源。
可知,当正弦波的输入电压大于0V 时,输出电压,当正弦波的输入
电压小于0V 时,
,所以
,从而实现全波整流。
我们把二极管D2旁边的电阻错误!未找到引用源。
(2 K Ω)的电阻去掉,使电压跟随效果更好,所以全波整流后的波形和没去掉电阻错误!未找到引用源。
的波形相比,有明显的改善,波形更为理想。
2、系统测试2.1数据及波形的测量
2.1.1方波的测量
2.1.2三角波的测量
2.1.3正弦波的测量
错误!未找到引用源。
=3.9(KΩ),上限截止频率等
于408.1Hz时的波形
错误!未找到引用源。
=6.8(KΩ),
2.1.4 全波整流的测量
11
去掉二极管D2旁边的电阻错误!未找到引用源。
(2 KΩ)的电阻时的波形
12。