《一元二次方程》PPT教材课件

合集下载

人教版九年级数学上册《一元二次方程》课件(共13张PPT)

人教版九年级数学上册《一元二次方程》课件(共13张PPT)

【跟踪训练】
3.把方程 x(2x-1)=1 化成 ax2+bx+c=0 的形式,则 a,
b,c 的一组值是( A )
A.2,-1,-1
B.2,-1,1
C.2,1,-1
D.2,1,1
4.把下列关于 x 的一元二次方程化为一般形式,并指出其 二次项系数、一次项系数和常数项.
(1)3x2=5x-1; (2)a(x2-x)=bx+c(a≠0). 解:(1)一般形式为 3x2-5x+1=0,二次项系数为 3,一次 项系数为-5,常数项为 1. (2)一般形式为 ax2-(a+b)x-c=0,二次项系数为 a,一次 项系数为-(a+b),常数项为-c.
证明:∵关于 x 的一元二次方程 ax2+bx+c=0(a≠0)中的 二次项系数与常数项之和等于一次项系数,
∴a+c=b. ∴当 x=-1 时,ax2+bx+c=a-b+c=b-b=0, ∴-1 必是该方程的一个根.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话, 另一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
第二十一章 一元二次方程
21.1 一元二次方程
1.一元二次方程的概念 只含有__一__个___未知数,并且未知数的最高次数是___2____ 的___整__式___方程,叫做一元二次方程. 注意:一元二次方程有三个特点:(1)只含有一个未知数; (2)未知数的最高次数是 2;(3)是整式方程.

北师大九年级数学上册《一元二次方程》课件(共17张PPT)

北师大九年级数学上册《一元二次方程》课件(共17张PPT)
1.判断下列哪些是一元二次方程
(×1)4x25y22 (×5)y2 1 80
y
×23x429 ×62x3y0
3y2 1 y√
3
4x2 0 √
×7 x2 3 x 4x2 7 8 ×a2x b xc0
(a、b、c为常数 )
考点1、一元二次方程的概念及相关问题。
1、一元二次方程定义: 把握住:①整式方程②只含有一个未知数 ③未知数的最高次数是2 2、一元二次方程一般形式:
3x24x10
49x2212 0 1
强调:在选择解方程的方法时, 应先考虑直接开平方法和因式分解法; 再考虑用配方法,最后考虑用公式法.
考点3、一元二次方程根的判别式。
3.根的判别式△=___b_2-__4_a_c_: (1)△>0时 __原__方__程__有__两__个__不__相__等__的__实__数根 (2)△=0时 __原__方__程__有__两__个__相__等__的__实__数__根 (3)△<0时 __原__方__程__无__实__数__根__________
谢谢观赏
You made my day!
我们,还在路上……
❖1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 ❖2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 ❖3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022

一元二次方程课件ppt

一元二次方程课件ppt
(4)原方程变形为 (xm)2 n 形式
(5)如果右边为非负数,直接开平方法 求出方程的解,如果右边是负数,一元二 次方程无解。
心动 不如行动
例1: 用配方法解方程
x26x70
解: 移项得:x26x7
配方得:x26x32732
即(x3)2 16
开平方得: x34
∴原方程的解为:x11, x27
范例研讨运用新知
x12;x21.
学习是件很愉快的事
淘金者
❖ 你能用分解因式法解下列方程吗?
1 .x2-4=0; 解:1.(x+2)(x-2)=0,
2.(x+1)2-25=0. 2.[(x+1)+5][(x+1)-5]=0,
∴x+2=0,或x-2=0. ∴x1=-2, x2=2.
∴x+6=0,或x-4=0. ∴x1=-6, x2=4.
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2 xb xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
2a
2a
b b 2a 2a
b0
❖用“因式分
解法”解一元 二次方程
回顾与复习 1
1.我们已经学过了几种解一元二次方程
1.x2 7;
2.3y2y1.4
解:1.一元二次方程解: 2.一元二次方程
x2 70
3y2 y 14 0
的两个根 x1 是7,x2 7. x27(x7)x (7).
的3两y2个y根1 是y1 4 3 (2y, y22)y (73 . 7).
3

《一元二次方程》数学PPT课件(10篇)

《一元二次方程》数学PPT课件(10篇)
4-7x2=0
一般形式
二次项 一次项 常数项 系数 系数
3x2-5x+1=0
3 -5 1
1x2 +1x-8=0
1
-7x2 +4=0 或-7x2 +00x+4=0 -7
或7x2 - 4=0
7
1 -8
04 0 -4
抢答: 一元二次方程
2x2+x+4=0
-4y2+2y=0 3x2-x-1=0
4x2-5=0
二次项系数
一次项系数
例1:判断下列方程是否为一元二次方程?
(1)x2+x =36
(2) x3+ x2=36
(3)x+3y=36
(4)
1 x2
2 x
0
(5) x+1=0 (6) x2 6 (7)4x2 1 (2x 3)2 3
(8)( x )2 2 x 6 0
练习巩固
下列方程哪些是一元二次方程? 为什么? (1)7x2-6x=0 (2)2x2-5xy+6y=0
?
问题(1) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm ,宽
为 (50-2x)cmБайду номын сангаас.
① 只含一个未知数;
②未知数的最高次数是2.
③ 都是整式方程;
一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx的形c 式0,我们把

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)

人教版数学九年级上册21.1 一元二次方程课件(共24张PPT)
解:设小道的宽度为x米,得(20-2x)(10-x)=120整理得x2-要建造一个长10m,宽5m玻璃顶观景亭,如图所示在它的四角建造四个截面为正方形的承重柱. 已知需要用到玻璃的面积为45m2,那么承重柱的宽度多少?
解:设承重柱的宽度为x米,得(10-x)(5-x)=45整理得x2-15x+5=0.
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
ax2 称为二次项, a 称为二次项系数, bx 称为一次项, b 称为一次项系数, c 称为常数项.
为什么一般形式 ax2 + bx + c = 0 中要限制 a ≠ 0?b,c 可以为 0 吗?
21.1 一元二次方程
1.能根据具体问题中的数量关系列出一元二次方程(2022年版课标调整为“能根据现实情境理解方程的意义,能针对具体问题列出一元二次方程”)2.理解一元二次方程的概念及一元二次方程根的意义;3.理解并灵活运用一元二次方程概念解决有关问题.
某社区按照“崇尚自然、接近自然、回归自然”的原则,打造独具特色的“幸福林”,要对社区公园景观化进行改造.任务1 打造“郁金香”观赏带为了增加观赏性,要在一个占地面积为10000km2的正方形郁金香观赏园,求郁金香种植园的边长是多少呢?
例1 根据问题列出方程,判断是否为一元二次方程,若是请指出二次项系数,一次项系数和常数项
解:根据题意列方程为4x(x+2)=100去括号化为一般式为x2+2x-25=0该方程是一元二次方程二次项系数为1,一次项系数为2,常数项为-25
(2)若公园的长比宽长2,周长为100,求公园边长x;
解:根据题意列方程为2x+(x+2)=100去括号得3x-98=0该方程不是一元二次方程

一元二次方程的解法ppt课件

一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根

公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=

,x
2=1

观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室

一元二次方程ppt课件

一元二次方程ppt课件
一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。

根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看

一元二次方程课件ppt

一元二次方程课件ppt

• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(m 2)2 x2 3m2x m2 4 0
有一根为0,则2m2 4m 3
的值为多少?
?
解 :∵ x 0是方程的解 代入得m2 4 0 m 2 经检验m 2都符合题意 2m2 4m 3 2 22 4 2 3 3 或2m2 4m 3 2 (2)2 4 (2) 3 19 代数式的值为3或19.
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx c 0 的形式,我们把 ax2 bx c 0
(a,b,c为常数,a≠0)称为一元二次方程的一般形式。
3、模仿一元二次方程的定义你能对一元三次 方程下个定义吗?请你试试看!
1 m2 m 1
1 m
m
m
(m2 1) m 2009m m 2008
m
m
拓展提高
1.已知方程x2+mx-12=0的一个根是x=-2,
求m的值。 m=-4
2.方程(x-1)(x+3)(x -2)=0的解为_x1_=_1_,x_2=_-_3_,x_3=_2__.
3.方程(x2-1)(2x+5)=0的解为x_1_=_1_,x_2=_-_1_,x_3=_2_._5 。
探究
上一节我们认识了一元二次方程, 接下来我们就要探求一元二次方 程的解.
方程解的定义是怎样的呢?
能使方程左右两边相等的 未知数的值就叫方程的解
问题 要组织一次排球邀请赛,参赛的每两队之 间都要比赛一场,根据场地和时间等条件,赛程 计划安排7天,每天安排4场比赛,比赛组织者应 邀请多少个队参加比赛?
例例题题讲讲解解
(3)已知m是方程x2 2009x 1 0
的一个根, 试求
? m2
2008m
2009 的值。
m2 1
解 m是方程x2 2009x 1 0的一个根,
m2 2009m 1 0,
m2 2009m 1或m2 1 2009m.
m2
2008m
2009 m2 1
(m2 2009m) m 2009 2009m
5)已知m是例方题程讲x解2 3x 1 0
的一个根, 试求
m2
3m
m 的值。
m2 1
若方程x2a+b-2xa-b+3=0是关于 x的一元二次方程,则a、b的 值各是多少?
1.一元二次方程的概念
只含有一个未知数,并且未知数的最高次数是2的整 式方程叫做一元二次方程。
2、一元二次方程的一般形式
(m 2)2 x2 3m2x m2 4 0
有一根为0,则2m2 4m 3
的值为多少?
?
解 :∵ x 0是方程的解 代入得m2 4 0 m 2,且m 2 0 m 2 2m2 4m 3 2 22 4 2 3 3 代数式的值为3.
例例题题讲讲解解
(2)关于x的 一方元程二次方程ቤተ መጻሕፍቲ ባይዱ
复习巩固
1.一元二次方程的概念
只含有一个未知数,并且未知数的最高次数是2的整 式方程叫做一元二次方程。
2、一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以
化为 ax2 bx c 0 的形式,我们把 ax2 bx c 0
(a,b,c为常数,a≠0)称为一元二次方程的一般形式。
0或1 即:平方后是它本身的数是哪些?
例题讲解
1)已知关于x的一元二次方程 (a 1)x2 x a2 1 0的一根是X 0
则a的值为B
A.1 B.-1 C.1或-1 D.0
?
感谢您的阅读! 为了便于学习和使用,本 文档下载后内容可随意修 改调整及打印。 欢迎下载!
例例题题讲讲解解
(2)关于x的 一元二次方程
4.已知m是方程x2+x-2009=0的一个根,
求m2+m的值为 2009

拓展提高
5.方程x2-2007x-2008=0的解为( c )
A. 1;2
B. 2;2008
C. -1;2008 D. 1;-2008
6. 已知6和-7是某一个方程的两个根,则该方程
可以是(D)
A. (x-7)(x+6)=0
B. (x+7)(x+6)=0
C. x2-x+42=0
D. x2+x-42=0
练习
1)若a b c 0,则一元二次方程 ax2 bx c 0必有一解为_X_=_
1
2)若a b c 0,则一元二次方程 ax2 bx c 0必有一解为X_=_-_1
3)若4a 2b c 0,则一元二次方程
ax2 bx c 0必有一解为_X_=_
4)根据下表的对应值,试判断一2 元二次
方程ax2 bx c 0的一解的范围是C
x
3.23
ax2 bx c -0.06
3.24 -0.02
3.25 0.03
3.26 0.07
A 3<x <3.23
B 3.23<x <3.24
C 3.24<x <3.25 D 3.25<x <3.26
思考:
你能否说出下列方程的解?
1) x2 36 0
2) x2 36 0
3) (x 6)2 0
一元二次方程的根的情况与一元一 次方程有什么不同吗?
练习:
1)下面哪些数是方程x2 x 6 0 的根?
-4 -3 -2 -1 0 1 2 3 4
2)你能写出方程 x2 x 0 的根吗?
解:设邀请了x队参加比赛,根据题意得:
1 x(x 1) 28 2
即:x2-x=56
x 1 2 3 4 5 6 7 8 9 10 …
X2-x 0 2 6 12 20 30 42 56 72 90 …
由表中数值可以发现,当x=8时是方程x2-x=56的解. 是否只有x=8是方程的根呢? X= -7呢?
相关文档
最新文档